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Abstract—In this paper, we consider the distributed
classification of discrete random signals in wireless sensor
networks (WSNs). Observing the same random signal makes
sensors’ observations conditionally dependent which complicates
the design of distributed classification systems. In the literature,
this dependence has been ignored for simplicity although this may
significantly affect the performance of the classification system.
We derive the necessary conditions for the optimal decision
rules at the sensors and the fusion center (FC) by introducing
a “hidden” random variable. Furthermore, we introduce an
iterative algorithm to search for the optimal decision rules.
The proposed scheme is applied to a distributed Automatic
Modulation Classification (AMC) problem. It is shown to attain
superior performance in comparison with other approaches
which disregard the inter-sensor dependence.

Keywords: distributed classification, dependent obser-

vations, wireless sensor networks, automatic modulation
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I. INTRODUCTION

Classification using multiple sensors is generally more reli-

able, and has been widely studied in several engineering appli-

cations like, target recognition, and identification. Distributed

processing approaches for classification are desired in wireless

sensor networks (WSNs) because gathering all sensors’ obser-

vations at the FC requires large communication bandwidth. In

this approach, the sensors process and analyze their observed

raw data and transmit only the compressed information to the

FC, which then generates the final decision [1]. Distributed

hypothesis testing schemes for classification have received

significant attention, but most research has focused on cases

where the observations at different sensors are independent

[2]–[4]. However, when sensors observe the same random

signals, their observations may not be independent.

The Automatic Modulation Classification (AMC) problem

serves as a good example of the above scenario, where under

each modulation scheme (hypothesis), the communication

signal can be viewed as a discrete random variable taking

values from the corresponding set of constellation symbols.

AMC is a signal processing method that is used to classify

the modulation scheme corresponding to the received noisy

communication signals and plays a key role in various civilian
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and military applications. Extensive research has been done

on AMC methods with a single receiver [5]–[9], whose

performance depends heavily on the channel quality. Thus,

network centric methods for AMC using multiple sensors have

been motivated and investigated [10]–[15]. In many cases, due

to the scarcity of transmission resources including channel

bandwidth and local sensors’ energy, distributed processing of

locally sensed signals is desirable. Accordingly, local decision

rules and the fusion rule in such environments are investigated

in [12]–[14]. In [13], each sensor conducts a test based on

the likelihood ratio of its observations, which, according to

[16], is optimal only with conditionally independent sensor

observations. To the best of our knowledge, no work has

tackled the problem of distributed modulation classification

considering conditionally dependent observations, which is the

topic studied in this paper.

Some recent efforts on distributed detection with condition-

ally dependent observations are discussed in [17]–[20], where

[20] focuses on only the fusion aspect of the problem and

[19] emphasizes a very general theoretical framework. The

main contribution of this paper is that we derive the optimal

rules at the sensors and the FC in the Bayesian framework

with dependent observations for the distributed classification

problem shown in Figure 1. Our approach is based on the

introduction of a new “hidden” random variable as proposed

in [19], through which a hierarchical conditional independence

model is built. We derive the necessary condition for optimal

decision rules at the sensors and the FC, based on which, an

iterative optimization algorithm is proposed. We address the

implementation issue of the iterative algorithm by discretizing

observation space of the local sensors. Through simulation,

we are able to show that in the distributed AMC problem,

our proposed method outperforms the other approaches that

assume conditionally independent observations.

The paper is organized as follows. In Section II, the prob-

lem of distributed classification of discrete random signals

is formulated. In Section III, the necessary conditions for

the optimal sensor rules and the optimal fusion rule with

dependent observations are derived. An iterative optimization

algorithm is proposed in Section IV and the results of applying

our proposed algorithm to a distributed AMC problem are

provided in Section V. Section VI concludes this work and
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discusses potential extensions.

II. PROBLEM FORMULATION

We consider a distributed hypothesis testing problem in

a wireless sensor network. Suppose there are K candidate

hypotheses represented by H0, . . . , HK−1, with prior prob-

abilities π0, . . . , πK−1. The signal is represented by a discrete

random variable s. Under Hi, the signal set is given as Si, i.e.,

s ∈ Si = {I1i , . . . , I
Mi

i }, where Imi

i is the mi-th symbol. It is

assumed that there is no prior information available about the

probability of each symbol for a given hypothesis Hi. Thus,

the probability of each symbol is considered equal, i.e.,

Hi : P (s = Imi

i ) =
1

Mi
, mi = 1, . . . ,Mi (1)

for i = 0, . . . ,K−1, where P (·) denotes the probability mass

function (PMF). It is noted that the symbol sets under different

hypotheses may overlap, i.e., Si ∩ Sj 6= ∅, ∀i 6= j.

We consider a general signal reception scenario with multi-

ple sensors where the received observation of sensor l at time

n can be written as:

rnl = hlsn + wnl (2)

where hl is the channel gain and {sn}
N
n=1 is the discrete

random signal sequence. We assume wnl to be independent

and identically distributed (i.i.d) noise whose distribution is

known. Thus, the probability density function (PDF) of rnl
conditioned on the hypothesis Hi and the symbol sn can be

obtained and written as pi(rnl|sn), where pi(·) denotes the

PDF under hypothesis Hi.

Fig. 1. Distributed modulation classification using a wireless sensor network

As shown in Figure 1, each sensor l locally processes

the observation sequence rl := [r1l, . . . , rNl]
T and makes a

decision ul = γl(rl), where ul ∈ K := {0, . . . ,K−1}, where

γl(·) is the decision rule at sensor l. When the FC receives the

local decisions u := [u1, . . . , uL] from all sensors, it makes

the final decision u0 = γ0(u), where u0 ∈ K and γ0(·) is the

fusion rule. We assume that the true underlying hypothesis

remains unchanged during the collection of N observations.

Our goal is to design the set of local decision rules and

the fusion rule, i.e., γ := {γ1 . . . , γL, γ0} to maximize the

classification performance, in terms of probability of cor-

rect classification Pc, considering the fact that the sensors

observing the same discrete random signals have dependent

observations, i.e.,

pi(r1, . . . , rL) 6=
L
∏

l=1

pi(rl) (3)

III. DESIGN OF OPTIMAL SENSOR RULES AND FUSION

RULE

In the distributed classification system, the random variables

involved form the following Markov chain:

H → R → U → U0 (4)

where H represents the hypotheses, R is the observation

matrix, U is the vector of sensor decisions, and U0 is the

final decision. Independence between R and H makes the

derivation of decision rules easy by allowing factorization

of p(R|H), but it does not hold here as discussed in the

previous section. However, according to the observation model

in (2), for a given symbol sn which takes a value from the set

S := ∪K−1
i=0 Si, the variables [Rn1, . . . , RnL] are independently

distributed, for all n = 1, . . . , N . Thus, we define a random

vector Y := [s1, . . . , sN ] to represent the underlying symbols.

And by introducing Y between H and R, into the Markov

chain in (4), the following results hold:

1) Given Y, R is independent of H , namely, the following

Markov chain is valid:

H → Y → R → U → U0 (5)

2) The introduction of random variable Y makes different

sensors’ observations conditionally independent of each

other, and thus facilitates the design of sensor decision

rules. In other words, R1, . . . ,RL are independent con-

ditioned on Y, i.e.,

p(r1, . . . , rL|Y) =
L
∏

l=1

p(rl|Y). (6)

We aim to derive the sensor decision rules and the fusion

rule that maximize the probability of correct classification Pc

Pc =

K−1
∑

u0=0

K−1
∑

i=0

cu0,ipi(u0)πi

(7)

where, cu0,i indicates the cost of deciding u0 when the true

hypothesis is Hi. We consider the particular cost assignment

where cu0,i = 1 if and only if u0 = i, otherwise, cu0,i =
0, which means that a correct classification occurs when the

decision at the FC matches with the true hypothesis. Thus, Pc

can be further simplified as

Pc =
K−1
∑

u0=0

p(u0|Hu0
)πu0

(8)
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We can express Pc with respect to sensor l as follows:

Pc =

∫

R

∑

u

K−1
∑

u0=0

πu0
p(u0|u)p(u|r)pu0

(r)dr

=

∫

Rl

∑

ul

p(ul|rl)fl(ul, rl)drl (9)

where r := [r1, . . . , rL] and

fl(ul, rl) =
∑

ul

K−1
∑

u0=0

πu0
p(u0|u

l, ul)

∫

Rl

p(ul|rl)pu0
(r)drl (10)

where a vector (matrix) with a superscript denotes it without

the lth element (column), for example, Rl represents the vector

R \Rl = [R1, . . . , Rl−1, Rl+1, . . . , RL].

To maximize Pc, the optimal decision rule at sensor l given

fixed decision rules at all the other sensors and the FC is to

make a decision ul such that fl(ul, rl) is maximized, namely

γl(rl) = argmax
ul

fl(ul, rl) (11)

for all rl. This is because for given rl, p(ul|rl) = 1 only for

ul = γl(rl), otherwise p(ul|rl) = 0, thus the decision rule in

(11) maximizes the probability of making a correct decision

when rl is observed.

With the introduction of the hidden random vector Y, the

joint distribution of all sensors’ observations r conditioned on

hypothesis Hi, i.e., pi(r) (pu0
(r) in (10)), can be written as

follows:

pi(r) =
∑

Y

P (Y = y|Hi)

L
∏

l=1

p(rl|Y = y)

=
∑

Y

(

1

Mi

)N L
∏

l=1

p(rl|Y = y) (12)

where
∑

Y =
∑

y∈SN . By combining (12) and (10), fl(ul, rl)
can be simplified as follows:

fl(ul, rl) =
∑

Y

βl(ul,y)p(rl|y) (13)

where

βl(ul,y) =
∑

ul

K−1
∑

u0=0

πu0
pu0

(y)p(u0|u
l, ul)

×

∫

Rl

p(ul|rl)p(rl|y)drl

=
∑

ul

K−1
∑

u0=0

πu0
pu0

(y)p(u0|u
l, ul)

×
L
∏

h=1,h 6=l

∫

Rh

p(uh|rh)p(rh|y)drh (14)

is a scalar function of ul and y. Thus, the optimal sensor rule

γl is

γl(rl) = argmax
ul

∑

Y

βl(ul,y)p(rl|y). (15)

For a binary hypothesis testing problem, i.e, K = 2, the

optimal decision rule in (15) can be written as follows:

γl(rl) = ✶

{

∑

Y

[βl(1,y)− βl(0,y)]p(rl|y)

}

(16)

where ✶{·} is defined as follows:

✶{x} =

{

1, x ≥ 0
0, otherwise

(17)

Next, the optimal fusion rule at the FC that maximizes the

probability of correct classification Pc is investigated. We have

Pc =
K−1
∑

u0=0

p(u0|Hu0
)πu0

=
∑

u

K−1
∑

u0=0

p(u0|u)p(u|Hu0
)πu0

(18)

To maximize Pc, the optimal fusion rule is to make a decision

u0 such that such πu0
p(u|Hu0

) is maximized, namely

γ0(u) = argmax
u0

πu0
p(u|Hu0

)

= argmax
u0

∫

R

L
∏

l=1

p(ul|rl)pu0
(r)πu0

dr (19)

for any local decision vector u. Because for a given u, p(u0|u)
takes the value either 0 or 1, the fusion rule in (19) maximizes

Pc given in (18). For a binary hypothesis testing problem, the

following fusion rule can be obtained:

γ0(u) = ✶ {π1p1(u)− π0p0(u)} (20)

Proposition 1: Let {γ1(r1), . . . , γL(rL)} and γ0(u) be a

set of optimal sensor decision rules and an optimal fusion

rule in a distributed classification system that maximizes the

probability of correct classification Pc. Then they must satisfy

the following conditions:

1) For all local decision rules γl, l = 1, . . . , L:

γl(rl) = argmax
ul

∑

Y

βl(ul,y|γ
l, γ0)p(rl|y) (21)

where βl(·) is given as follows:

βl(ul,y|γ
l, γ0)

=
∑

ul

K−1
∑

u0=0

πu0
pu0

(y)δ
(

γ0(u
l, ul)− u0

)

×
L
∏

h=1,h 6=l

∫

Rh

δ (γh(rh)− uh) p(rh|y)drh (22)

where the notation of β(·|γl, γ0) is to emphasize that the value

of β is conditioned on the given decision rules γl, γ0, and δ(·)
is defined as follows:

δ(x) =

{

1, x = 0
0, otherwise.

(23)
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2) For the fusion rule:

γ0(u) = argmax
u0

∫

R

L
∏

l=1

δ (γl(rl)− ul) pu0
(r)πu0

dr. (24)

The necessary conditions to determine the optimal rules that

maximize the probability of correct classification naturally is

obtained. To search for the optimal rules, we adapt the idea of

Gauss-Seidel iterative algorithm. We present a computationally

efficient iterative algorithm for obtaining discrete approxima-

tions of the optimal rules in the next section.

IV. COMPUTATIONAL ALGORITHM

We propose an iterative algorithm based on Proposition 1,

by considering the following Gauss-Seidel iterative process

[21]. Let the sensor decision rules and the fusion rule at the

kth stage of iteration be denoted by (γ
(k)
1 , . . . , γ

(k)
L , γ

(k)
0 ) with

the initial set (γ
(0)
1 , . . . , γ

(0)
L , γ

(0)
0 ). At the k + 1th iteration,

after the decision rule of sensor l−1, i.e. γ
(k+1)
l−1 , is updated, the

decision rule of sensor l is updated according to the following

equation

γ
(k+1)
l (rl) =

argmax
ul

∑

Y

βl(ul,y|γ
(k+1)
1 , . . . , γ

(k+1)
l−1 ,

γ
(k)
l+1, . . . , γ

(k)
L , γ

(k)
0 )p(rl|y). (25)

Once every sensor’s decision rule is updated, the fusion rule

is obtained by

γ
(k+1)
0 (u) =

argmax
u0

∫

R

L
∏

l=1

δ
(

γ
(k+1)
l (rl)− ul

)

pu0
(r)πu0

dr.(26)

This algorithm involves obtaining sensor rules (γ
(k)
1 , . . . , γ

(k)
L )

that are continuous functions. Thus, discretizing the input

space, and thus the continuous functions, is necessary for

obtaining a solution in practice. For illustration purposes, we

present the algorithm with each sensor making its decision

based on the observation at a single time instant, i.e.,

N = 1. And for notational simplicity, xnl will be written

as xl by omitting the time index n. The corresponding

hidden random variable Y is a scalar variable in this case.

We define these functions on equally discretized grids of

{r1,1, . . . , r1,t1 , . . . , r1,T1
}, {r2,1, . . . , r2,t2 , . . . , r2,T2

}, . . . ,

{rL,1, . . . , rL,tL , . . . , rL,TL
} with ∆l being the discretization

step size of rl. The following discretized Gauss-Seidel

iterative algorithm is obtained:

Step 1: Initialize L sensor rules and the fusion rule respec-

tively, for l = 1, . . . , L.

γ
(0)
l (rl,tl) = i ∈ K ∀tl = 1, . . . , Tl (27)

γ
(0)
0 (u) = i ∈ K ∀u ∈ KL (28)

Step 2: Iteratively, update L sensor rules and the fusion

rule for better system performance. The (k+1)th stage of the

iteration is as follows:

For t1 = 1, . . . , T1,

γ
(k+1)
1 (r1,t1) =

argmax
u1

∑

Y

β1(u1, y|γ
(k)
2 , . . . , γ

(k)
L , γ

(k)
0 )

×p(r1,t1 |y) (29)

with

β1(u1, y|γ
(k)
2 , . . . , γ

(k)
L , γ

(k)
0 ) =

∑

u1

K−1
∑

u0=0

πu0
pu0

(y)δ
(

γ
(k)
0 (u1, u1)− u0

)

×
L
∏

l=2

[

Tl
∑

tl=1

δ
(

γ
(k)
l (rl,tl)− ul

)

p(rl,tl |y)∆rl

]

(30)

For t2 = 1, . . . , T2,

γ
(k+1)
2 (r2,t2) =

argmax
u2

∑

Y

β2(u2, y|γ
(k+1)
1 , γ

(k)
3 , . . . , γ

(k)
L , γ

(k)
0 )

×p(r2,t2 |y) (31)

with

β2(u2, y|γ
(k+1)
1 , γ

(k)
3 , . . . , γ

(k)
L , γ

(k)
0 ) =

∑

u2

K−1
∑

u0=0

πu0
pu0

(y)δ
(

γ
(k)
0 (u2, u2)− u0

)

×

[

T1
∑

t1=1

δ
(

γ
(k+1)
1 (r1,t1)− u1

)

p(r1,t1 |y)∆r1

]

×
L
∏

l=3

[

Tl
∑

tl=1

δ
(

γ
(k)
l (rl,tl)− ul

)

p(rl,tl |y)∆rl

]

(32)

. . . . . .

For tL = 1, . . . , TL,

γ
(k+1)
L (rL,tL) =

argmax
uL

∑

Y

βL(uL, y|γ
(k+1)
1 , . . . , γ

(k+1)
L−1 , γ

(k)
0 )

×p(rL,tL |y) (33)

with

βL(uL, y|γ
(k+1)
1 , . . . , γ

(k+1)
L−1 , γ

(k)
0 ) =

∑

uL

K−1
∑

u0=0

πu0
pu0

(y)δ
(

γ
(k)
0 (uL, uL)− u0

)

×
L−1
∏

l=1

[

Tl
∑

tl=1

δ
(

γ
(k+1)
l (rl,tl)− ul

)

p(rl,tl |y)∆rl

]

(34)
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For u ∈ KL,

γ
(k+1)
0 (u) =

argmax
u0

T1
∑

t1

· · ·
TL
∑

tL

L
∏

l=1

δ
(

γ
(k+1)
l (rl,tl)− ul

)

×pu0
(r1,t1 , . . . , rL,tL)πu0

(35)

Step 3: The local decision rules and the fusion rule are

updated iteratively until the following termination criterion is

satisfied:

γ
(k+1)
1 (r1,t1) = γ

(k)
1 (r1,t1),

γ
(k+1)
2 (r2,t2) = γ

(k)
2 (r2,t2), . . . ,

γ
(k+1)
L (rL,tL) = γ

(k)
L (rL,tL); (36)

∀t1, . . . , tL. And for all u ∈ KL

γ
(k+1)
0 (u) = γ

(k)
0 (u) (37)

The above algorithm terminates, since the search is done on

a discretized space. After these decision rules γ0, γ1, . . . , γL
are obtained, they are employed to make local decisions and

final decision are made.

V. EXAMPLE

In this section, we apply our proposed approach to a

distributed AMC problem. For the candidate hypothesis being

a M-PSK signal, the constellation symbol set is given as

Si = {ej2πmi/Mi |mi = 0, . . . ,Mi−1} while for the candidate

hypothesis being a M-QAM signal, the constellation symbol

set is Si = {bmi
ejθmi |mi = 1, . . . ,Mi}, where bmi

is the

amplitude of the mi-th symbol. Binary hypothesis testing is

considered in our example, i.e., K = 2.

We assume that the wireless channel between the unknown

transmitter and each sensor undergoes flat block fading, i.e.,

the channel impulse response is

h(t) = αejθδ(t)

where α and θ are the channel (or the signal) gain and the

channel (or the signal) phase, respectively, which are assumed

known in this work. We assume the observation noise wnl

to be independent and identically distributed (i.i.d) circularly

symmetric complex Gaussian with real and imaginary parts

of variance N0/2, i.e., wnl ∼ CN (0, N0). The PDF of rnl
conditioned on the modulation format i and the symbol sn
can be written as

pi(rnl|sn) =
1

πN0
exp

(

−
1

N0
|rnl − αejθsn|

2

)

(38)

To evaluate the performance of the decision rules obtained

from the iterative algorithm for distributed AMC, denoted by

IADA, we consider several binary modulation classification

problems in this section. We first consider a WSN consisting

of two receiving sensors (L = 2), for each of which, the length

of the local decision window is N = 1.

In the initialization step, local sensor decisions γl(rl,tl) are

chosen randomly and the fusion rule is the majority voting

rule. Through multiple experiments, we are able to observe

that different initializations of the local rules eventually lead

to the same set of decision rules, while different initializations

of the fusion rule results in different outcomes. Thus, multiple

initializations of the fusion rule are needed for comparison

purposes and majority voting rule leads to the best perfor-

mance in our case. Then, sensor decision rules and the fusion

rule are updated iteratively until the termination conditions in

(36), (37) are satisfied. After the rules are obtained, 100, 000
Monte Carlo trials are conducted to test the performance of

these rules, in terms of the probability of correct classification.

Following the above procedure, the performance of the algo-

rithm in Section IV, is obtained for different signal to noise

ratio (SNR) values.

In the first simulation experiment, the two candidate hy-

potheses are both PSK and equal priors are assumed, i.e.,

π0 = π1 = 0.5. Many sets of simulation have been conducted

for different combinations of candidate hypotheses. Due to the

similarity of the results, the performance of IADA is given for

only two sets of simulations (BPSK vs. QPSK and QPSK vs.

8PSK) in Figure 2, where it is compared with the likelihood

ratio based method (LRBM) derived under the independence

assumption [13]. Our proposed algorithm achieves a much

better performance in distinguishing two different PSKs under

any SNR.

−5 0 5 10 15
0.5

0.55

0.6

0.65

0.7

0.75

SNR

P
c

 

 

IADA for BPSK v.s. QPSK

LRBM for BPSK v.s. QPSK

LRBM for QPSK v.s. 8PSK

IADA for QPSK v.s. 8PSK

Fig. 2. Pc vs. SNR for testing between two PSK modulation schemes

In the second simulation experiment, we test a PSK signal

against a QAM signal, and the priors are set to π0 =
0.3, π1 = 0.7. The performance of testing 16QAM against

BPSK and testing 16QAM against QPSK is shown in Figure

3, demonstrating the superiority of the decision rules obtained

by our algorithm compared to the independence-assumption

based method.

The previous simulations about binary modulation

classification were conducted for a two-sensor network. We

further test our proposed sensor rules and fusion rule in

networks with multiple sensors (L ≥ 2). As is shown in

Figure 4, the classification performance improves with the

increase in the size of sensor network.
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IADA for 16QAM v.s. BPSK

RLBM for 16QAM v.s. BPSK

RLBM for 16QAM v.s. QPSK

IADA for 16QAM v.s. QPSK

Fig. 3. Pc vs. SNR for testing a PSK against a QAM
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L = 4

L = 7
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Fig. 4. Pc vs. SNR for testing BPSK against QPSK in sensor networks with
different sizes

VI. CONCLUSION

In this work, we studied the problem of distributed

classification of random signals in sensor networks. With

the introduction of a “hidden” random variable, we suc-

cessfully derived the necessary conditions for the optimal

sensor compression rules and fusion rule under conditionally

dependent observations. An iterative algorithm, which is easy

to implement, was proposed to generate the sensor rules and

the fusion rule. We applied the method that we proposed in

this work to a modulation classification problem and it exhibits

better performance than the other approaches, as shown in the

numerical results. The convergence of our proposed algorithm

will be studied in the future work.
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