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Abstract—This paper presents a novel approach to camera
geolocation from mountain images. Existing mountain view-based
geolocation techniques use only mountain skylines and assume
that such skylines are available and can be reliably extracted
from query images. However, in real-life scenarios the skyline in
a query image may be blurred or invisible, due to occlusions,
adverse weather conditions and atmospheric effects, and poor
image quality. Geolocating mountain view images with poor
skylines is a challenge. In addition, when geolocating a query
image, existing techniques do not estimate the camera roll angle,
assuming that the roll angle is always small and its impact to
the geolocation accuracy is negligible. However, in our research
we have observed that even a small camera roll angle of only a
few degrees can significantly alter the skyline features extracted
from the query image and thus cause geolocation failure due to
feature mismatching between the query and feature database.
It is another challenge to reliably handle query images with
non-negligible camera roll angles. In this paper, we propose
a novel solution to these challenges by exploiting additional
visual features extracted from mountain ridges beyond skylines
and performing search-based camera roll angle estimation. Our
proposed approach has been extensively tested on real-world
challenging query images from five different regions in three
continents. The experimental results from our proposed approach
is significantly superior to those obtained from state-of-the-art
skyline-based image geolocation approaches.

Index Terms—Image geolocation, digital elevation model, ter-
rain matching, bag-of-words

I. INTRODUCTION

Geolocation of an image is a challenging task that has

received significant attention in recent years, largely due to

the increasing availability of large amount of geo-tagged

images on the Internet (such as social media websites Flickr,

Panoramio, etc.) as well as the fast growing computational

power of modern computers. However, state-of-the-art auto-

mated image geolocation techniques have been largely limited

to finding matches with geo-tagged ground imagery [10], [22],

[23]. Such approaches are only applicable to frequently visited

and photographed areas that are well represented in ground-

imagery databases. Unfortunately, this is not the case for a

large portion of the world. While recently, some methods have

been proposed to address this problem by using a combination

of sparse ground-level images with overhead views [13] for

localization in small geospatial regions, the applicability of

such methods over large geospatial regions (of the order of

10,000 km2) is yet to be established. Furthermore, none of

the above-mentioned techniques are applicable in mountainous

regions that typically do not have many reference geo-tagged

training images.

It is therefore important to use additional information

sources, such as 3D terrain models, to estimate the geolocation

of the camera for images taken in mountainous regions. Given

these data sources, the challenges are then to i) extract relevant

features from the reference data sources as well as (often

times noisy) query images; ii) index the extracted features

from reference data for efficient searching; and iii) robustly

match the features from the query to the reference data. For

example, it has been demonstrated that the visible skyline from

query image is a robust feature [2], [3], [15], [20], [24] that

can be indexed and matched with terrain features for image

geolocalization in mountainous regions. In particular, a novel

efficient algorithm has been proposed in [2], which relies on

only the visible skyline extracted from the query image and

its similarity with features extracted from digital elevation

models (DEM) to accurately estimate camera location in large

geospatial regions.

While visible skyline based matching has been shown to

perform well in standard research datasets, this approach has

its limitations when dealing with imagery from real-world

settings. For example, real-world systems often have to deal

with challenging cases where the skyline is occluded, blurred

(or completely missing) by atmospheric effects (such as heavy

fog) or by other physical objects (such as vegetation and

buildings). For example, Fig. 1 shows query images in which

the visible skyline is considerably different from the synthetic

views rendered from DEM using ground truth camera param-

eters. In these cases, the skyline cannot be reliably extracted

from query images even with the help of a user-in-the-loop,

thereby affecting the quality of matching. Furthermore, the

real-world imagery often has non-negligible camera roll angles

that also pose a challenge to existing approaches. Some query

images with camera rolls are shown in Fig. 2. Due to absence

of any reference features, e.g. horizon line, it is obvious that

estimating the roll angles from these images is not a trivial

task. The paper addresses these challenges and proposes a

solution that is more practical and applicable in real-world

settings. The proposed approach does not assume the visibility

of skyline in images and tackles the problem of unreliable

skylines by supplementing the skyline features with additional

terrain features, such as mountain ridge-lines. It also uses

camera roll angles as a search parameter and is therefore able

to handle images with non-negligible camera roll angles.

The major contribution of this paper is an algorithm that is

able to accurately geolocate real-world images with mountain

views in large world regions. The proposed algorithm can

handle missing, occluded, and unreliable skylines in query
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Fig. 1: Examples of query images with occluded skylines.

These query images (top row) have visible skylines con-

siderably different from the synthetic views rendered from

DEM using ground truth camera parameters (bottom row).

Our proposed approach successfully geolocated these query

images while approaches using only skylines (e.g., [2]) failed.

(a) roll: −4.4◦ (b) roll: −2.3◦ (c) roll: −2.3◦

Fig. 2: Examples of query images that cannot be geolocated

by the baseline approach in [2] due to non-negligible camera

rolls, but were successfully located by the proposed approach.

images by employing a coarse-to-fine estimation mechanism.

The proposed method extends the bag-of-curves model of [2]

to obtain a coarse estimate of the camera position, heading,

and roll angle using both skyline and mountain ridge-line

features. The coarse estimation process considers geometric

consistency of the matching ridge-lines and provides a ranked

list of camera parameters (locations, heading, and roll angles)

in a quantized space. These quantized parameters are then

refined by first identifying stable image and DEM features

from multiple terrain views, establishing the correspondences

between image and terrain features, and exploiting them to

search for the optimal camera position and orientation param-

eters. The paper demonstrates the effectiveness and accuracy

of the proposed approach on real-world images from a variety

of large geospatial regions around the world.

II. RELATED WORK

Many efficient and effective methods have been proposed in

literature to solve the image geolocalization problem. In this

section, we limit our discussion to only the approaches that

use 3D reference data to geolocate images. These approaches

can be characterized based on the type of scenes they handle

(urban, mountainous, etc.) and the type of reference data they

use (elevation maps, LIDAR, or image-based reconstructions).

For example, various approaches have recently been proposed

to geolocate images in large urban areas [11], [12], [17],

[19] by using direct and indirect matching between local

features from the 2D query images and points from the 3D

models. These methods typically utilize 3D point cloud models

obtained from large unstructured Internet photo collections [1].

All of these approaches require the 3D models that are built

from ground images and have features that are compatible with

query images. Therefore, such approaches are not applicable in

mountainous regions that typically do not have good coverage

of available ground imagery.

Baboud et al. [3] proposed an automatic photo-to-terrain

alignment algorithm for annotation. This approach matches

the image edges to silhouette edges extracted from synthetic

panoramic views rendered from DEM. However, it requires

prior knowledge of of the viewpoint location as well as the

camera field-of-view (FOV).

Baatz et al. [2] proposed a novel grid-based method for

large-scale mountain image geolocalization that does not re-

quire any prior knowledge of the camera location or camera

field-of-view. They used skyline (i.e., the mountain outline) as

the only feature and used a bag-of-curves model to represent

the skyline features. Their algorithm matches the extracted

skyline from image with synthetic skylines rendered from

DEM on a uniform geospatial grid. Specifically, the image

and synthetic skylines are broken down into small overlapping

segments that are then uniformly sampled, normalized, and

quantized. A 24-bit contour word is created by concatenating

the quantized samples for each segment. The synthetic contour

words are organized into an inverted index table, with the

24-bit integer as the key, and location and viewing direction

as the content. The image contour words are then matched

to the synthetic contour words and the matching scores are

used to vote for the corresponding locations and directions.

The approach takes geometric consistency into account in the

voting process so the output list contains not only the matching

location but also the heading direction. Since the method only

uses skyline, only geometric consistency in the horizontal

direction is considered. The resulting camera estimates fall

on a regular grid, the resolution of which depends on the

quantization of the geospatial region used for sampling the

digital elevation model.

This grid-based approach has also been adapted by [9],

[21] where different models were used to represent the visible

skyline for image geolocalization in mountainous regions.

Tzeng et al. [21] used concavity-based features to represent

user-labelled query skylines and synthetic skylines. Whereas

Hammoud et al. [9] used the Chamfer distance to compare

the similarity between query skylines and synthetic mountain

profiles. It is not clear whether these representations provide

significant improvement over the bag-of-curves model.

All of these approaches use image skyline as their only

feature. As mentioned in the previous section, such approaches

become inapplicable if the skyline is not visible or reliable.

The proposed approach is most closely related to Baatz et

al. [2]. However, as opposed to [2], the proposed approach

does not assume visibility of the skyline in image, rather it

exploits all features and geometric consistency of all available

internal ridge-lines visible in the image to overcome the

issues that arise from occlusions and reliability of the feature

extraction (Fig. 1). In addition to camera location and heading,
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the proposed approach also estimates camera roll angle and

therefore can reliably geolocate images with non-negligible

camera roll angles (Fig. 2). Finally, instead of re-ranking the

coarsely estimated cameras as in [2], the proposed refinement

step optimally solves for the camera position and orientation

parameters using feature correspondence between image and

digital elevation model. Therefore, the resulting estimates are

not restricted to quantized parameter space.
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Fig. 3: Overview of the proposed approach

III. PROPOSED APPROACH

An overview of the proposed approach is shown in Fig. 3.

Given a geospatial region of interest (ROI), an associated

visual feature database is built by extracting and indexing

skyline and ridge features from synthetic panoramic depth

maps rendered using the corresponding DEM data. Given a

query image from this ROI (e.g., Fig. 4(a)), the skylines and

ridges are first extracted from the query image (Fig. 4(b))

and then fed to an coarse estimation module to obtain a

ranked list of camera geolocation candidates in the quantized

space (Figs. 4(c) and (d)). The results from coarse estimation

are further refined to obtain a short list of final camera

geolocations (Fig. 4(e)), which are used to render synthetic

views of the query image (e.g., Fig. 4(f)) for visual inspection.

A. Building multi-ridge visual feature database

To build the multi-ridge visual feature database, we first

render panoramic depth maps on a uniformly sampled grid

within the ROI. In our experiments, the grid sample distance

is 250m per sample. At each position on the grid, a panoramic

depth map is generated by concatenating non-overlapping

views rendered from the DEM data at this position, at an

altitude of 1.6 meters relative to ground. The altitude parameter

is chosen based on the assumption that the query image is

taken by a person standing on ground.

Skylines and non-skyline mountain ridges are extracted

from the synthetic depth maps based on depth discontinuity.

Let dr,c be the depth value at rth row and cth column of the

depth map. In each column in the depth map, the skyline

pixel is taken as the topmost pixel with finite distance to the

(a) (b)
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Fig. 4: An example of the system input and output: (a) query

image, (b) extracted skyline and ridges, (c) coarse estimates of

the camera locations and heading (blue arrows) and the ground

truth location and headings (magenta arrow), (d) probability

heat map generated from the coarse estimates, (e) final output:

a small list of refined camera estimates (there is only one in

the displayed region), and (f) a synthetic view rendered using

the refined camera parameters. In (c)-(e), only a quarter of the

geospatial region is shown for illustrative purposes.

14

1516 17
18

1920
0

Fig. 5: An example of the synthetic panoramic image (top

row), extracted skyline (in red) and multiple ridges (in colors

other than red). The middle row shows details within the red

block in the panoramic image. The bottom row shows the

extracted ridges and their layer indices.

camera. Furthermore, a pixel at location (r,c) in the depth

map is detected as a mountain ridge point if a) dr,c > Dthld ,

b) the point is on a mountain slope with slope angle > θthld ,

and c) the neighborhood depth ratio
dr−1,c

dr,c
> rthld . The first

two conditions locate pixels in the mountain regions in the

depth map and the last one implies a depth discontinuity.
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The ridge pixels are then connected by a tracing algorithm,

discarding isolated points and short ridges. In our experiments,

Dthld = 500m, θthld = 10◦, and rthld = 1.4.

The skyline is assigned a layer index of 0, and internal

ridges are labelled with layer indices starting from 1 in a raster

scan fashion from left to right and from top to bottom. An

example of the extracted skyline and ridges overlaid on the

synthetic panoramic image is shown in Fig. 5. The skyline

and ridge pixels are then rectified to the normalized image

plane to reduce the distortion around image boundaries. The

latitude and longitude of each pixel on the skyline and ridges

are calculated from the depth map and camera parameters.

The skyline and ridge pixel coordinates and world coordinates

are saved as binary files in the database indexed by the grid

position. These features are used in the refinement process.

The skyline and each of the ridges are handled individually

to extract the contour words in the same way as in [2].

We use three different feature windows of width 2.5, 5, and

10 degrees. Fig. 6 illustrates the process of contour word

generation. Fig. 6(a) shows the raw skyline (layer index 0) in

a feature window of width w = 2.5 degrees. The raw segment

is rectified and uniformly sampled (Fig. 6(b)). The mean of

these samples are removed, and the samples are normalized

by w (Fig. 6(c)). The normalized sampled are quantized into

8 disjoint bins (Fig. 6(d)). Finally, the 24-bit integer (con-

tour word) representing this segment is calculated. In this

example, the integer is calculated as (2,3,2,2,4,5,5,5) =
(010011010010100101101101) = 5056877. An inverted index

table is created using the 24-bit contour word and feature

window width w as the key. The content of the table is the

grid position, viewing direction, ridge layer index, and mean

height of the segment.
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Fig. 6: Contour word extraction from a 2.5◦-wide skyline

segment : (a) raw skyline segment, (b) uniformly sample the

rectified segment, (c) remove mean and normalize the samples,

and (d) quantize the samples into 8 bins.

B. Coarse estimation from multiple ridges

The coarse estimation step takes the extracted skyline and

ridges directly from the query image as input, and outputs

a ranked list of N (e.g., N = 1000) camera estimates with

the latitude/longitude coordinates on the DEM sampling grid

along with an estimation of the camera heading, roll, and FOV.

The camera location and heading direction are estimated from

the voting process as follows.

Voting. The proposed approach is an extension of the original

voting scheme in [2]. Instead of only checking geometric con-

sistency horizontally for the heading direction as in [2], it also

takes into account the consistency of relative positions between

the query image and references in the vertical direction for the

ridge layer ordering.

Specifically, the votes are calculated in four dimensions: the

location specified by latitude/longitude coordinates, heading

direction, and vertical offset on the normalized image plane.

This involves a very large 4D array AAA, but most of the

entries are zero or have negligible small values, therefore

sparse data structures can be adopted to improve the time and

memory efficiency in the voting process. For each contour

word from the query image with horizontal angle vimage and

height himage, we obtain relevant DEM information from the

inverted index table in quadruples (i, j,vDEM,hDEM), where

i and j are integers indicating the location on the DEM

grid given by the latitude/longitude coordinates, vDEM is the

heading direction, and hDEM) is the height. For each entry

in the table, we calculate the horizontal offset between the

viewing directions dv and vertical offset between the heights

dh as follows.

dv = vimage − vDEM, dh = himage −hDEM (1)

The offsets are then quantized into disjoint bins

bv =

⌊

1

qv

· mod
(

dv +
qv

2
,360

)

⌋

, bh = [dh/qh] (2)

where qv and qh are the quantization step sizes for the viewing

direction and height bins, respectively, and ⌊·⌋ and [·] are the

floor and rounding operators, respectively. The appropriate bin

in the array AAA is then updated by the weighted vote:

AAA(i, j,bv,bh) =AAA(i, j,bv,bh)+w (3)

where w is the tf-idf score of this word. After all image contour

words have been processed, we suppress the 4D cube of votes

into a 3D one by only keeping the highest votes in the vertical

offset dimension:

AAA(i, j,bv) = argmax
bh

AAA(i, j,bv,bh). (4)

In this way, the proposed multiple-ridge algorithm does not

require any accurate skyline and ridge order matching: the

order is automatically taken care of by the height-offset bins.

This is because the out-of-order matches usually result in large

variations in height offsets, therefore the votes from these

matches spread into multiple height-offset bins.
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Handling camera tilt, FOV, and roll. The camera tilt angle

is approximately handled by rotating the skyline vertically to

adjust its position such that the mountains occupy the mid-

upper part of the query image. The FOV is estimated by non-

uniform sampling over typical FOV range (0-70 degrees) as

in [2]. As mentioned in Section 1, camera roll also has a

significant effect on the matching quality. To overcome the

effect of camera roll, we also sample the camera roll over the

range of -6 to 6 degrees. The range of roll angle was chosen

based on the analysis of typical query images and the tradeoff

on computation time and quality of matching.

Fig. 7 illustrates the effect of camera roll. The query image

in Fig. 2(b) has a slight roll angle of around 2.3 degrees. If

a zero roll angle is assumed (Fig. 7(a)), the query skyline is

considerably different from the skyline obtained from synthetic

image rendered using the ground truth camera parameters,

especially at the curvelet level, leading to different contour

words. Fig. 7(c) shows the voting scores obtained from the

baseline approach in [2] of the 120 heading direction bins,

centered at 0, 3, . . ., 357 degrees, at the ground truth position.

We see that although the correct bin of 195 degrees has the

highest voting score, the score is not prominent from the other

bins. On the other hand, with a 2.3 degree rotation, the query

and reference skylines almost perfectly overlap each other

(Fig. 7(b)), and the bin at 195 degrees has a significantly higher

score than the others (Fig. 7(d)).

Ranking. In the proposed coarse estimation process, both

FOVs and rolls are sampled and the results are re-ranked alto-

gether. However voting scores from different FOV assumptions

are not compatible to each other. This is because a larger FOV

usually leads to more contour words and thus higher scores.

Therefore, instead of comparing the raw voting scores from

different FOVs as in [2], we use normalized voting scores. The

normalization factor is determined empirically by the mean

value of the maximum score for a certain FOV across all roll

angles. The normalized scores are then re-ranked across all

possible locations, headings, FOVs, and rolls to generate the

list of coarse camera estimates.

The effect of normalization can be illustrated by the follow-

ing example. Fig. 8 shows the probability heat maps for the

camera estimates of the query image in Fig. 4 before and after

normalization. We see that before normalization the camera

candidates with high scores spread all over the ROI. After

normalization, the candidates concentrate within a small region

centered at the ground truth location.

C. Refinement of estimated camera parameters

The refinement process takes the list of coarsely-estimated

camera candidates as input. The output of the refinement step

is a small list of camera candidates (usually no greater than

20) with estimated parameters (latitude, longitude, altitude,

heading, roll, tilt, and FOV). The final output of the refinement

step is no longer restricted to a quantized space.

To obtain a pinpoint camera estimation, one of the most

important issues is to establish correspondences between the
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Fig. 7: Effect of camera roll. (a) Query skyline (red solid)

directly labelled from image and partial database skyline (blue

dashed). (b) Query skyline corrected by camera roll (-2.3

degrees) and database skyline. (c) and (d) Voting scores for

the 120 direction bins at the ground truth position for the

skylines in (a) and (b), respectively, obtained by the baseline

skyline matching algorithm [2]. The y-axis in (a) and (b) is

exaggerated to better illustrate the differences between image

and synthetic skylines.

↑Ground Truth ↑Ground Truth

Fig. 8: Probability heat maps for camera estimates (left) before

normalization and (right) after normalization.

world coordinates (latitude/longitude/altitude) and pixel co-

ordinates ([i, j]). Directly obtaining the accurate correspon-

dences from image features with a candidate rendered view

is challenging due to the inaccuracies in DEM data, rendering

resolution, and noise in image features, etc. However, it is

observed that multiple matched rendered views within a small

geospatial region can be used to identify stable features for

alignment. Fig. 9(a) shows the 20 matching DEM skylines ren-

dered within a 3 sq km region around the ground truth location

from the coarse camera estimates. Fig. 9(b) shows the DEM
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locations (blue) and ground truth location (magenta). One can

observe that the matching skylines have a large variation in

terms of the individual pixels, implying that it is unreliable

to establish correspondences using a single matching skyline.

However, there are stable and common features (such as the

maxima of the curve) that can be utilized for camera parameter

refinement. The proposed refinement method clusters camera

candidates with similar views and exploits them in conjunction

to identify stable features and to establish correspondences. A

simplified pinhole camera model with intrinsic parameter of

focal length, position (latitude/longitude/altitude), and orienta-

tion parameters (heading, tilt, and roll) is assumed. The DEM

skylines/ridges/peaks mentioned in this section are referring

to those extracted from rendered depth maps in Section III-A,

but not directly from the DEM dataset.
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Fig. 9: 20 matching database skylines for the same query

image rendered at locations around the camera ground truth.

Clustering of camera candidates. The coarsely-estimated

camera candidates are first re-ranked by a 2D Iterative Closest

Point (ICP)-like fine alignment step [4], [17]. This is similar to

the geometric verification process in [2]. However we employ

both skyline and ridges. Moreover, the alignment errors are

normalized to alleviate the effects from different vertical FOVs

and are calculated by

en =
1

N · f 2
v

N

∑
k=1

(

iimage,k − iDEM,k

)2
+
(

jimage,k − jDEM,k

)2
(5)

where
(

iimage,k, jimage,k

)

and (iDEM,k, jDEM,k) are the coordi-

nates of the kth image and DEM points in the aligned image

plane, respectively, and fv is the vertical FOV. The camera

candidates are then re-ranked according to the alignment errors

en and then grouped into several clusters, as shown in the

example in Fig. 10. A camera is estimated for each cluster

separately.
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Fig. 10: Clustering the re-ranked camera estimates. Seven

clusters are shown in different colors.

Establishing correspondences from a cluster of camera

candidates. Given a cluster of camera estimates, we first get

world coordinates of peaks on image skyline and ridges from

all camera estimates in the cluster. The peaks are usually

considered to be the most robust terrain features [15]. The

pixel coordinates of image and DEM peaks are extracted

as the local maxima of the skylines and ridges. The local

windows centered the image and DEM peaks are then aligned.

Fig. 11(a) shows peaks extracted from a partial query image

skyline (red), roughly aligned with the DEM skyline (blue),

and Fig. 11(b) displays the local windows centered at the

corresponding peaks. It can be easily seen that the 2nd and

7th image peaks are not matched to any DEM peaks, while

all others align very well locally.

Let ei, j denote the local alignment error between the ith

image peak and the jth DEM peak, Coord j be the world

coordinates of the jth DEM peak, and Si be the set of world

coordinates associated with the ith image peak with initial

value /0, then Si is updated by

Si = Si

⋃
Coord j, if ei, j < ξ (6)

where the threshold ξ is calculated by ξ = 0.8 ×
median

{

ei,k,∀k
}

. After all DEM peaks from this cluster

have been processed, the centroid of Si is then used as the

corresponding world coordinates for the ith image peak

image peaki ⇔ centroid(Si) .
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Fig. 11: (a) Matching query image skyline peaks to DEM

skyline peaks (only partial skyline is shown for better clarity).

(b) Aligned local windows. The 2nd and 7th peaks are not

considered as matched.

In some cases, the peaks on the skyline and ridges are

limited and may be insufficient for solving all unknown camera
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parameters. Therefore, more corresponding features are often

needed in addition to the peaks. We sample the image skyline

and ridges and adopt a similar local approach to associate

world coordinates obtained from DEM features to the sampled

points in image.

The above method obtains world coordinates corresponding

to pixels on image skylines and ridges. Therefore it cannot

utilize informative world coordinates if the corresponding

pixels are not labelled in the query image. To obtain the image

pixel coordinates of distinctive world coordinates, we consider

peaks extracted from DEM ridges. The DEM ridges containing

such peaks are transformed to the image coordinates and

then matched to the edge map of the query image derived

from a compass edge detector [18]. A template matching

approach [16] is applied to maximize the correlation between

DEM ridge and image edges. Fig. 12 shows a matching

pair of transformed DEM ridge and image edge. The world

coordinates of the DEM ridge peak (blue circle) and the pixel

coordinates of the matched image point (red circle) are then

considered a pair of correspondence.

transformed ridge from DEM

transformed ridge peak from DEM

matched edge in image

matched point in image

Fig. 12: Matching the transformed DEM ridge to image edge.

The transformed DEM ridge has a small offset due to coarsely

estimated camera parameters.

Optimization of camera parameters. The camera position

is obtained by minimizing a weighted summation of er-

rors between the image pixel coordinates and the projected

world coordinates, with constraint on camera altitude being

around 1.6 meters relative to ground. In optimization, the

RANSAC algorithm [6] is used to handle outliers. Within each

RANSAC iteration, we use the iteratively re-weighted least

squares (IRSL) algorithm [5] which assigns higher weights

for better inliers (i.e., with smaller alignment errors):

âaa = argmin
aaa

∑
i

wi(aaa)‖yi −Paaa(xi)‖
2

(7)

where yi are the pixel coordinates and xi are the world

coordinate, Paaa is a function that projects the world coordinates

to the pixel coordinates given camera parameter aaa, wi is the

weight of the ith correspondence which is updated at each

IRSL iteration by

w
(t+1)
i =

{

w
(t)
i /e

(t)
i e

(t)
i ≥ ε

w
(t)
i /ε otherwise,

(8)

where e
(t)
i =

∥

∥

∥
yi −P

(t)
aaa (xi)

∥

∥

∥
is the error of the

ith correspondence in the tth IRSL iteration,

ε = min(1,0.005×max(W,H)) is a small value used to

bound the weights, and W and H are the width and height

of the query image, respectively. The weights are then

normalized by w
(t+1)
i = w

(t+1)
i /∑k w

(t+1)
k .

After all of the clusters have been processed, the camera

candidates are then re-ranked based on number of inliers and

the ratio between the number of inliers and correspondences.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we demonstrate the effectiveness of the

proposed algorithm on five 10,000 sq. km-sized ROIs (Fig. 13)

located in North America, South America, and Asia. The ROI

in North America is covered by USGS 10m-resolution NED

(National Elevation Dataset) [7], [8]. The other four ROIs

are covered by the 30m-resolution ASTER-GDEM (Advanced

Spaceborne Thermal Emission and Reflection Radiometer-

Global Digital Elevation Model) data [14].

Fig. 13: The five ROIs considered in this paper, denoted by

the red polygons.

The algorithm is tested on query images from a real-world

system where more than 40% of the query images suffer from

adverse conditions including blurred or occluded skylines, and

non-negligible camera roll angles. Some challenging examples

are shown in Figs. 1 and 2. The exact camera ground truth

locations (latitude/longitude) of 50 query images are known,

and about 40% of these query images have known camera

parameters. The skyline and ridges in the query images are

labelled by a user through a semi-automatic interface. Though

automated skyline detection algorithms can be used, the sys-

tem has not yet been tested against the output of such algo-

rithms. Fully automated skyline/ridge detection can be quite

challenging in noisy images with occlusions, and is out of

the scope of this paper. In our system, skyline/ridge extraction

from the query image is a semi-automated process. The user

selects the region of interest in the image which contains the

mountain regions, and clicks on a few difficult or confusing

points (e.g., points occluded by trees or partially overlapping

with cloud boundaries). The system then automatically extracts

the complete skyline/ridge by fitting a line along the detected

edges in the region of interest and the user-provided points,

while minimizing an energy function.
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TABLE I: Performance of coarse estimation on 50 queries
# geolocated # in R1

Multi-ridge with roll 42 35

Multi-ridge without roll 26 23

Skyline with roll 34 31

Skyline without roll 25 23

To quantify the coarse estimation performance, we use

the measure of geolocation area (GA) and total area (TA).

Specifically, a probability heat map is generated from the

ranked list of camera estimates, and then the highly probable

regions are selected and sorted according to the probability.

Suppose there are K camera candidate regions {Ri}i=1,2,...,K

each with area Ai km2, sorted from the most probable to

the least. If the camera ground truth is within the tth region

Rt , then GA is calculated as GA = ∑t
i=1 Ai, which represents

the search area a user will have to go through to geolocate

the query image. The TA measure is the total retrieved area

calculated by TA = ∑K
i=1 Ai, which implies the precision. A

query image is considered as “geolocated” if the ground truth

is within any of the K camera candidate regions. The GA and

TA curves show the percentage of query images geolocated

within certain GA/TA thresholds.

We first examine the performance of coarse estimation.

Fig. 14 shows the GA and TA curves using three algorithms

with DEM resolution 250 meters. The algorithm “skyline

without roll” is a direct implementation of the coarse matcher

in [2]. The proposed coarse estimation algorithm (“multi-

ridge with roll”) found around 60% of all query images

within a small region of 10 km2 (0.1% of the considered

ROI with a total area of 10,000 km2) and outperforms the

algorithms based purely on the skyline by geolocating 23%

more queries, demonstrating the effectiveness of exploiting

non-skyline ridges. Moreover, the incorporation of roll angles

also helps to significantly improve the geolocation ability,

as seen in the performance curves of the two skyline-only

algorithms, “skyline without roll” in black and “skyline with

roll” in green in Fig. 14. These two algorithms do not involve

the height offsets in the voting process.

Table I shows the total number of geolocated images and the

number of images located in the first candidate region R1. With

the proposed algorithm, a total of 42 query images have been

geolocated, and 35 out of the 42 have ground truth inside R1.

Fig. 15 shows the probability heat maps of the coarse camera

estimates using the proposed approach (multi-ridge with roll,

top row), skyline only with roll (middle row), and the baseline

algorithm (skyline only without roll). These probability heat

maps were obtained for four query images, one query for each

column in Fig. 15. The first two columns are heat maps for

the top two images in Fig. 1 exhibiting unreliable skylines

and the last two columns for Figs. 2(a) and (b) exhibiting

non-negligible camera rolls. We can see that exploiting both

multiple ridges and camera roll estimation leads to significant

performance improvement. The coarse estimates from our

proposed algorithm concentrate at a small region centered at

the ground truth camera location with a high probability.

It is clear from the coarse estimation results that the

Fig. 14: Percentage of query images geolocated within GA

(top) and TA (bottom) thresholds obtained using different

coarse algorithms.

proposed method based on multi-ridge matching and camera

roll angle estimation significantly outperforms the baseline

algorithm in [2]. A close examination reveals that the baseline

algorithm achieves lower performances compared to those

reported in [2], which is mainly due to the difference in

training and query data. In our experiments, more than 40%

of the query images have artifacts, which present significant

challenge to the baseline approach. Furthermore, the ground

sampling resolutions of the DEM data used in our experiment

are 10m or 30m per sample, which are much lower than

the resolution of the DEM data used in [2] (one sample

per 2 square meters). We believe using DEM data with

higher resolution would benefit both baseline and proposed

algorithms. In addition, the sample distance of the grid used

for building visual feature database used in our experiment

is 250m, which is over twice as large as that in [2]. Such

increase in grid sample distance may also contribute to the

deteriorated performance of the baseline algorithm on our

dataset. In our research, we experimented with multiple values

for the grid sample distance from 125m to 2000m. Fig. 16

shows the GA and TA curves for a subset of 30 query images
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Fig. 15: Probability heat maps on four queries images, one

for each column, obtained from three coarse estimation al-

gorithms: multi-ridge with roll (top row), skyline with roll

(middle row), and skyline without roll (bottom row)
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Fig. 16: Percentages of queries geolocated within GA (left)

and TA (right) thresholds using different ground sampling

distance when the visual feature database was built

with grid sampling distances ranging from 125m to 2000m. It

can be observed from Fig. 16 that the performance, especially

the precision, generally improves with finer sampling grid.

The 250m grid sampling distance was selected as a tradeoff

between the desired accuracy and affordable computational

complexity for both database building and query processing.

We further examine the performance of the refinement

process. Note that the refinement step depends on the coarse

camera estimates, therefore we only consider the 42 query

images that have been geolocated. The measures are the

total number of output camera estimates, distance from the

estimated camera position to the ground truth, and heading

offset. Table II shows the minimal, maximal, and median

values of these measures on the query images. Among these

42 query images, 34 have the best estimate (in terms of the

distance to ground truth) as the first candidate, and 6 others as

the second. This indicates that the user only need to go through

a very small number of candidates to justify the results. Fig. 17

shows the percentage of query images that are located within

certain distances to the ground truth. We see that around 80%

are within 1000 meters. It is worth noting that the heading

estimation is very accurate (median offset < 0.5 degrees) and

the ground truth camera position is usually along the heading

direction of the estimated camera.

TABLE II: Performance of refinement on 42 query images.
min max median

number of output camera estimates 1 10 6

distance (m) 8.92 5750.22 341.64

heading offseta (◦) 0.001 10.402 0.270

acomputed using ground truth headings from 13 queries
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Fig. 17: Percentage of query images located within certain

distances.

Finally, we visually inspect the geolocalization performance

by comparing the query images against synthetic views ren-

dered through Google Earth using the optimized camera

parameters. Fig. 18 shows examples of query images and the

corresponding synthetic views. For these query images, the

distance from the estimated camera location to the ground

truth ranges from 188.17m to 372.88m. It can be seen that the

synthetic views are nearly identical to the query images.

Fig. 18: Left column: query images. Right column: synthetic

views rendered in Google Earth using the optimized camera

parameters. The distances from the estimated camera locations

to the ground truth are (from top down): 372.88m, 368.52m,

and 188.17m.
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Our system implementation is written in a combination of

Matlab, Java, and C/C++ languages. It takes several seconds

to one minute for the voting stage in the coarse estima-

tion process per roll per FOV, and one to ten minutes to

optimize the camera parameters in refinement process. It is

more computationally intensive than the baseline approach (the

authors reported 10 seconds per image in [2], and our own

implementation takes seconds to tens of seconds per roll per

FOV). The processing efficiency can be significantly improved

with software optimization and parallel processing.

V. CONCLUSIONS AND FUTURE WORK

Query images with poor skylines or non-negligible camera

rolls present a significant challenge to mount view-based

image geolocation. This paper presents a novel camera ge-

olocation approach capable of geolocating such challenging

query images by using additional multi-ridge features and per-

forming camera roll estimation. Experimental results on real-

world query images demonstrate the efficacy of our proposed

approach. It is shown that using visual features extracted from

multiple mountain ridges is critical to reliably geolocating

challenging real-world query images with blurred or invisible

mountain skylines, and that estimating camera roll angles is the

key to handle query images with non-negligible camera rolls.

In our future work, we will adopt an adaptive grid sampling

scheme [24] for visual feature database construction. Adaptive

grid sampling leads to improved computational efficiency by

allowing the sampling density to adjust adaptively to the

terrain complexity in the ROI. Furthermore, we will extend our

current approach to handle query videos, e.g., by exploiting the

3D scene geometry recovered from the video using structure

from motion techniques [1].
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