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Abstract -In this paper, the problem of estimating the 

directions of arrival (DOAs) for an unknown number of 

sound sources is addressed using a microphone array. In 

outdoor environments, the reverberation is not considered, 

so the pure delay mixture model is typically adopted here. 

Since the sound signal is usually wide-band and non-

stationary, the Short Time Fourier Transform (STFT) is 

employed. However in practical applications, the missing 

or appearing of sources frequently occurs, resulting in a 

time-varying number of targets. To deal with this problem, 

a new preprocessing method is presented to partition the 

whole time domain into some small time windows. In each 

time window, the sample covariance is computed and used 

to produce the DOA estimate. Moreover, two methods 

(Eigenvalue-based and Information Theory-based) are 

used for estimating the number of independent sources. 

Some selected simulation results are given to demonstrate 

the estimation performance for the DOAs, and the time 

accuracy for detecting the change of the number of 

sources. 

Keywords: Direction of Arrival (DOA), Number of 

Independent Sources, Short Time Fourier Transform, Array 

Signal Processing 

1 Introduction 

The estimation of Direction of arrivals (DOAs) for 

sound sources by using microphone arrays has been an 

active research topic since the early 1990’s [1]. It has been 

widely used in many application areas, such as video 

conferencing [2], speech enhancement and speech 

recognition [3].  The fundamental principle behind the DOA 

estimation is to capture the phase information present in 

signals picked up by microphones. The multiple source 

localization problems can be resolved based on high-

resolution subspace techniques, such as the MUSIC [4] and 

ESPRIT [5] algorithms.  

Some methods of estimating DOA is introduced in [6], 

which is based on the pre-knowledge about the sound’s 

waveform such as gun shots.  To reduce the influence of the 

noise another DOA estimating method based on the 

Weighted Bispectrum Spatial Correlation Matrix is 

introduced in [7].  If two or more arrays are used together, 

then the Kalman Filter or Particle Filter can be used to 

locate and track the sound source based on the MUSIC 

algorithm  which is introduced in [8]. 

But there are also some limits when using MUSIC or 

ESPRIT algorithm for the DOA estimation. On one hand, 

the MUSIC and ESPRIT algorithms only work well in 

narrow-band, stationary signals, such as radar signals   [4-5], 

in which the phase information is simply relative with 

arriving time lag. But in reality, especially for sound signals, 

the phase information is not only relative with arriving time 

lag but also the frequency of the signals, since the sound 

signal is usually wide-band and non-stationary [9]. On the 

other hand, estimating the DOAs of multiple sources 

requires the knowledge of the number of independent 

sources. However in practical applications, the number of 

signals is generally not known exactly. Moreover, the sound 

source may disappear or appear randomly.  

 In this paper, we develop a new preprocessing method 

to partition the whole time domain into some small time 

windows. This proposed method provides a tradeoff 

between reducing the influence of noise due to a short time 

window and improving the time accuracy for detecting the 

change of the number of sources. In each time window, the 

sample covariance is computed, and the DOAs can be 

obtained in different frequency points using the ESPRIT 

algorithm. As for the estimation of the number of sources, 

the Information Theoretical criteria [10-11] can be adopted. 

In this paper, performance comparisons are done based on 

two methods (Eigenvalue-based and Information Theory-

based) for estimating the number of independent sources.  

2 Problem Formulation 

A microphone array with N  microphones aligning in a 

linear form is assumed, andd is the distance between any 

two adjacent microphones. There are M sound sources 

placed in one side of the array, with different DOA 
m
� for 

1, ,m M� � . In this case, it is assumed that the number 

of sources is less than the number of microphones, i.e. 

M N� . So we can use the ESPRIT algorithm to estimate 

the DOAs. Fig.1 shows the microphone-target 

configuration geometry.  
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Following the model in [12], the attenuation 

coefficient between source m  and microphone n is set to 1. 

It is usually valid in a far field. M source signals are mixed 

and transmitted to microphone n  with additive noise ( )
n
n t ,

which is zero mean white Gaussian noise. In this way, the 

mixed signal ( )
n
x t received by microphone n  can be 

written as  

�

1

( ) ( - ) ( )
M

n m nm n
m

x y s y n y�
�

� �� ����������������(1) 

� �� �where y  is discrete time index, assume that ( )
n
x y  have L

discrete points.  

Then, the STFT is used to ( )
n
x y due to the linearity of 

the STFT. So, we have: 
1

2

1

( , ) ( , ) ( , )
s nm

kM j f
K

n m n
m

X p k S p k e N p k
� �

�
�

�

� �� (2)

where p  is the window index, k  represents the discrete 

frequency index, 1,2...k K� , K  is the window length. To 

simplify the notation, we replace the discrete frequency 

index k  by true frequency
1
s

k
f f

K

�
� , 0, , / 2

s
f f� �

due to the symmetry of the DFT.  
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Considering microphone n at each frequency f , the 

(1, ), (2, ), , ( , )
n n n
X f X f X P f�  is still a time sequence 

signal, where P  is the number of windows. It is assumed 

that the noise at different microphone is uncorrelated, and 

the noise and the signals are uncorrelated. 

To simplify the notation, the equations can be written as 

follows:  

� ( , ) ( ) ( , ) ( , )p f f p f p f� �X A S N �����������������(6)�

where             T

1
( , ) [X ( , ), ,X ( , )]

N
p f p f p f�X � ,

1 1
( ) [ ( , ), , ( , )]

M M
f f f� ��A a a� ,

Each column of ( )fA is

( , )
m m

f� �a

2 *0* *sin( )/ 2 *1* *sin( )/ 2 *( 1)* *sin( )/ T[ , , , ]m m m
j f d c j f d c j f N d c
e e e

� � � � � �� � � �
� so 

( )fA  is a  N M�  mixing matrix. The source signal is 

T

1
( , ) [ ( , ), , ( , )]

N
p k S p f S p f�S � , and the noise is   

T

1
( , ) [ ( , ), , ( , )]

N
p k N p f N p f�N � .

The main objective is to estimate the number of sound 

sources and the corresponding DOAs
m
� . After that, the 

mixing matrix ( )fA� can be estimated. The frequency-

domain Blind Source Separation (BSS) problem [13] could 

be done by using de-mixing matrix 1( ) ( )f f ��W A�� .The

permutation problem [14] can be solved by the estimated 

DOAs. Finally the source signals can be recovered by 

inverse STFT.  

�

3 Estimating DOA of Variable Number 

of Sound Sources  

To implement the STFT, the received signal is divided 

into P  windows, and each window has K  values. The 

window widthK  is a critical parameter. Even if the sound 

signal is not stationary, the short time period of the signal 

can be approximately regarded as stationary. However, a 

short window width is not good for the frequency 

resolutions, whereas a long window width is not good for 

the time resolutions. What we want to do is to present a 

preprocessing method to partition the time window 

efficiently. 

Before using the ESPRIT algorithm, it is required to 

determine the number of the sources in every time window, 

for the sound source may appear or disappear randomly. 

Then, time-frequency domain mixed signals are normalized, 

so that the normalized signals have zero mean and unit 

variance. 

3.1 Preprocessing 

The covariance matrix of ( , )p fX  is 

H( , )= ( , ) ( , )p f p f p f
xx
R X X                   (7) 

where � 	
H


  is the conjugate transpose operator. In reality, 

the eigenvalue decomposition is not directly used to matrix 

1
S

m
S

m
�

(n 1)* d* sin( )
m
��

Fig.1.   Microphone-target configuration geometry 
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( , )p f
xx
R , because the ( , )p f

xx
R  is often singularity when 

given a certain time and frequency. So, in general, the time-

domain mean of ( , )p f
xx
R  is used jointly, i.e. 

H

1

1
( )= ( , ) ( , )

P

p

f p f p f
P �

�xx
R X X . However, doing this 

ignores the signal difference due to the randomly appearing 

or missing of sound sources. In fact, it is difficult for us to 

determine when the sources appear or disappear. So, we 

aim to find a tradeoff between reducing the influence of 

noise due to a short time window and improving the time 

accuracy for detecting the change of the number of sources. 

   The time-domain mean of  ( , )p f
xx
R  is still needed here. 

However, we only sum up those time windows that overlap 

with each other, but not the whole time-domain. 

Define the time mean of ( , )p f
xx
R  in a short time period 

as
( 1)* /( )

( 1)* 1

( , ) ( , )
q K K K O

p q K

K O
q f p f

K

� � �

� � �

�
� �xx xx

R R      (8)

where [1,2.... ]q Q�  is a new window index, Q  is the 

minimum integer larger than /L K , O  is the overlap 

points in STFT. In fact, ( , )q f
xx
R includes not only all the 

data between time ( 1) 1q K� �  to ( 1)q K K� � , but also 

the next K   points. That means ( , )q f
xx
R represent a 

2K points information, and the time-domain accuracy is 

2 /
s

K f  . For example, the frequency-domain window 

width is 8K � points, and the overlap of two adjacent time 

windows is O 7�  points. We only sum up 

/ [ ] 8K K O� �  windows from 1p �  to 8p � when 

computing the time-domain mean. Fig.2 shows this basic 

idea. 

Fig.2.   Example for ( , )q f
xx
R

3.2 Estimating the number of sources  

( , )q f
xx
R  carries the information at frequency f   in 

time window ( 1) 1q K� �  to ( 1)q K K� � . In this time 

window, the eigenvalue decomposition as for ( , )q f
xx
R

used to estimate the number of sources.  

�( , ) ( , ) ( , ) ( , )q f q f q f q f�
xx
R V V          (9)

where ( , )q fV  is the matrix formed by the corresponding 

eigenvectors,
1 2

( , ) [ ( , ) ( , )  ( , )]
N

q f q f q f q f�V v v v� , and 

�( , )q f  is the diagonal matrix formed by eigenvalues in the 

descending order,  

�
1 2

( , ) diag{ ( , ), ( , ) ( , )}
N

q f q f q f q f� � �� �    , 

( , ) ( , ), for  
i j
q f q f i j� �� �

Two ways to estimate the number of sources are adopted 

here.  

(1) Eigenvalue-based 

   It is well known that, the larger eigenvalues correspond to 

the signals, and the smaller eigenvalues correspond to the 

noise. A simple way is given to find the number of larger 

eigenvalues . 

   By calculating 

1 1 2

2 2 3

-1 1

( , ) / ( , )

( , ) / ( , )

( , ) / ( , )
N N N

e q f q f

e q f q f

e q f q f

� �

� �

� �
�

�

�

�

�

,

   The number M̂ of sources can be determined by finding 

out the maximum, 

1 2 1
ˆ=arg max( , , )

Nm
M e e e

�
�              (10) 

(2) Information Theory-based  

  Another way to find the number of sources is the 

Information Theoretical Criteria. The Akaike Information 

Criteria (AIC) is a mature criterion usually used in 

estimating the model order. The AIC is defined by 

ˆ2 log (X | ) 2AIC f ���  �                (11) 

where �  is the number of independent parameter, ̂  is the 

estimated parameter set, and ˆ(X | )f   is the likelihood 

function. 

  For given ,q f , the AIC criterion is computed by  

( )= -2 ( )log ( ) 2 (2 )
K

AIC m N m m m N m
K O

�� � �
�

 (12) 

where 
1

1 2

1 2

( )
( )

1
( )

N m
m m N

m m N

m

N m

� � �
�

� � �

�
� �

� �

�

� � �
�

�

�

So, the number of sources can be estimated by  

ˆ arg  min( ( )), 1,2... 1
m

M AIC m m N� � �     (13) 
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3.3 ESPRIT algorithm 

when given a certain parameter f and q , with the 

estimated number M̂ of sources, the ESPRIT algorithm can 

be used to find out the DOAs ˆ ( , )
m
q f� .The details are as 

follows. 

(1) Select out M̂  eigenvector ˆ1
( , ), , ( , )

M
q f q fv v�

corresponding to the M̂  largest eigenvalues; 

(2) Form matrixs: ˆ1 1 1
( , ) [ ( , ), , ( , )]

M
q f q f q f

�
�G v v�  and 

ˆ2 2
( , ) [ ( , ), , ( , )]

M
q f q f q f�G v v� ;

(3) Calculate the matrix: 

�
H 1 H

1 1 1 2
( , ) ( ( , ) ( , )) ( , ) ( , )q f q f q f q f q f�� G G G G

(4) Find out the M̂  eigenvalues of matrix �( , )q f

� �ˆ1
( , ), , ( , ), , ( , )

m M
q f q f q f

� � �
� � �� �

(5) Calculate the DOAs: 

ˆ ˆ( , ) arcsin{Im{ln( ( , )) / (2 )}}, m 1, 2,m mq f q f c fd M�� � �� � �

where the Im( )
  show the image part of a complex number. 

From this, it can be seen that, in a certain time windowq ,

there are lot of DOA estimates ˆ ( , )
m
q f�  in different 

frequency points. Although these estimates correspond with 

the same source, they may differ severely in some frequency 

points. Such a situation is mainly due to noise, calculating 

errors and the inherent defect of the ESPRIT algorithm. So, 

some measures must be taken to achieve the final DOA in 

time windowq .

3.4 Final DOA estimation 

 Note that the estimation performance of DOAs is sensible 

to the frequency in the ESPRIT algorithm. Too low or high 

frequency may result in an inaccurate DOA estimates. 

Givend , the maximum frequency that the array can work 

normally is / 2c d . If the frequency is higher than / 2c d ,

the array will meet the spatial aliasing problem. For the 

lower frequency point, the wavelength is too long. When the 

phase only changes a little bit, the array fails to capture the 

changes precisely.  

 In [12], the estimates ˆ ( , )
m
q f�  in different frequency 

points are used to approximate the probability density 

function of the real DOAs in a certain time windowq . Then, 

the final DOA ( )
m
q�� can be obtained by using the maximum 

likelihood estimation (MLE) . 

 The Parzen-windows is a non-parametric method to 

estimate the probability distribution by 
ˆ( ) ( , )1

( ( )) ( )m m

m
f

q q f
P q Ker

Fh h

� �
�

�
� �

where F  is the samples. In our problem, it is the number of 

frequency points. h  is a smoothing parameter called 

bandwidth. ( )Ker 
  is the kernel. Here, we adopt Gaussian 

kernel. The algorithm in [15] provided a way to choose the 

optimal bandwidth h .The final DOAs is 

( )
( ) argmax ( ( ))

m
m mq
q P q

�
� ���

4 Simulation results 

   In this section, some selected simulation results are given 

to illustrate the estimation performance for the DOAs, and 

the time accuracy for detecting the change of the number of 

sources.  

4.1  Parameter settings 

Two typical scenarios are considered here.  

(1) Scenario 1 

Two sources appears all the time. This stage is used 

to show the performance for the DOA estimation of 

wide-band signals, and illustrate the effect by using 

the Parzen window to estimate the probability 

density function and then determine the final DOA 

based on the MLE. 

(2)Scenario 2 

Two sources appears all the time. The third source 

appears in some time after the beginning and stays 

for a period of time, and then disappears. This stage 

is designed to detect the change of the number of 

sources, and determine the appearing and missing 

time for the third source. The design parameters are 

shown in Table.1. 

       TABLE 1 PARAMETER SETTING 

Parameters Values 

Source categories S1 English speech; 

S2 Drum;  

S3 Sound of water 

flow 

Source1 DOA Scenario 1: 45 degree 

Scenario 2: 60 degree 

Source2 DOA Scenario 1: -60 degree 

Scenario 2: 30 degree

Source3 DOA Scenario 2: -60 degree

Source1,2 length 80000 points ;3.628s 

Source3  length 30000 points;1.36s 

Source3  appear 

disappear time 

Appear at 1.36s; 

Disappear at 2.72s 

Number of 

microphones 

Scenario 1: 4  

Scenario 2: 5 

Array spacing d 0.005m 

Sample rate fs 22050Hz 

Window Width 512 points 

Overlap  Scenario 1:256 points 

Scenario 2:496 points 

FFT window Hamming 

Monte Carlo 100 
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4.2 Experiment results 

(1) Scenario 1 

Fig.3 shows the results of the DOA estimate in 

different frequencies for scenario 1.  
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Fig.3. The DOA estimate in different frequency, 

(one source is at 45 degree and another at -60 degree) 

   From Fig.3, it can be seen that two DOAs for two 

sources can be determined well for most frequency 

values. However, the estimation performance is poor in 

parts of low frequency and high frequency. The final 

DOA estimate will be obtained in the sense of MLE 

based on the estimated probability density function. Here, 

only the estimated probability density for source 2 is 

plotted in Fig.4.  
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Fig.4. The final DOA estimate for source 2  

(DOA:  -60 degree, SNR=30dB). 

     Fig.4. shows that a satisfied DOA estimation can be 

achieved by introducing the MLE. Fig.5. shows the RMSE 

of estimated DOAs versus SNR. It is easily observed that 

the RMSE decreases as the SNR grows. 
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Fig.5. RMSE for the DOA estimation 

(2) Scenario 2 

 Figs. 6-7 depict the probability densities for a certain 

DOA (x-axis), and time (y-axis). The darker the points are, 

the higher the probability densities are. 

Fig.6. The appearing of the third source at time 1.498s,DOA 

-59.91 degree using AIC 

Fig.7. The missing of the third source at time 2.715s DOA -

59.35 degree using AIC 
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The Information Theory-based method to estimate the 

source number can discover efficiently the appearance and 

disappearance of the third source (-60 degree). The 

estimated appearing time is1.498s (the true time is 1.36s), 

and the estimated missing time is 2.715s (the true time is 

2.72). The reason for the deviation lies in two aspects. One 

is that the time accuracy for ( , )q f
xx
R  is 2 /

s
K f  points 

(about 0.045s) ; The other one is that the signal’s amplitude 

may be so small at the beginning that the algorithm 

considered it as noise. 

Fig.8 show the results by using Eigenvalue-based 

method to estimate the number of sources.  We can see that 

the probability density for the signal located at 60 degree is 

less� concentrated than that in Fig.6. It reveals that the 

Information Theory-based method outperforms the 

Eigenvalue-based method when estimating the number of 

sources. 

Fig.8. The example of using eigenvalue-based method 

5 Conclusions and Future Work 

This paper proposed an algorithm to estimate the wide-

band signals’ DOAs based on the microphone array when 

the number of sound signals changes over time. The 

algorithm is robust to noise and to the non-stationary signals. 

But the proposed approach has its own problems. The DOA 

estimation based on the ESPRIT algorithm does not behave 

well for the low and high frequency components. In addition, 

as the number of microphones and sound sources grow, the 

computation burden may increase dramatically. Future work 

includes  how to reduce the computational load, and the 

investigation for multiple moving sound sources.  
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