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Abstract—In many applications, multi-object tracking algo-
rithms are either required to handle different types of objects or
rapidly maneuvering objects. In both cases, the usage of multiple
motion models is essential to obtain excellent tracking results. In
the field of random finite set based tracking algorithms, the Mul-
tiple Model Probability Hypothesis Density (MM-PHD) filter has
recently been applied to tackle this problem. However, the MM-
PHD filter requires error-prone post-processing to obtain target
tracks and its cardinality estimate is fluctuating. The Labeled
Multi-Bernoulli (LMB) filter is an accurate and computationally
efficient approximation of the multi-object Bayes filter which
provides target tracks. In applications using only a single motion
model, LMB filter has been shown to significantly outperform
the PHD filter. In this contribution, the Multiple Model Labeled
Multi-Bernoulli (MM-LMB) filter is proposed. The MM-LMB
filter is applied to scenarios with rapidly maneuvering objects
and its performance is compared to the single model LMB filter
using simulated data.

I. INTRODUCTION

Multi-object tracking algorithms tackle the problem of

jointly estimating the number of objects and their individual

states using a sequence of noisy measurements. The presence

of object deaths and births as well as the ambiguities in

track-to-measurement association due to missed detections

and false alarms render multi-object tracking significantly

more challenging than single-object tracking. Starting in the

1970’s, Joint Probabilistic Data Association (JPDA) [1] and

Multiple Hypotheses Tracking (MHT) [2] have been popular

algorithms to handle the challenges in multi-object tracking.

Recently, Mahler proposed the multi-object Bayes filter [3]

which uses random finite sets (RFSs) to represent the multi-

object state. Thus, it naturally captures the individual objects’

state uncertainty as well as the uncertainty about the number

of objects in the scene.

During the last decade several moment and parameter

approximations of the multi-object Bayes filter have been

introduced to reduce computational complexity. The approxi-

mation of the multi-object posterior by its first moment results

in the Probability Hypothesis Density (PHD) filter [4] which

may be implemented using Gaussian Mixtures (GM) [5] or

sequential Monte Carlo (SMC) methods [6]–[8]. The Cardi-

nalized PHD (CPHD) filter [9], [10] approximates the multi-

object Bayes filter by propagating the first moment and the

cardinality distribution over time which results in a more stable

cardinality estimate compared to the PHD filter. In contrast,

multi-Bernoulli filters such as the Cardinality Balanced Multi-

Target Multi-Bernoulli (CB-MeMBer) filter [11] approximate

the multi-object posterior distribution by a multi-Bernoulli

distribution and propagate its parameters over time.

In [12], Vo and Vo introduced the class of labeled RFS

which augments the state vector of each object by a track

label. Further, it is shown that two specific classes of labeled

RFS, the Generalized Labeled Multi-Bernoulli (GLMB) and

the δ-GLMB RFS, enable an analytic implementation of the

multi-object Bayes filter. The δ-GLMB filter outperforms the

CPHD filter due to a more accurate update step and the

absence of the error-prone track extraction which is required in

sequential Monte-Carlo (SMC) implementations of the CPHD

filter. However, the improved performance is obtained at the

cost of a higher computational complexity. The labeled Multi-

Bernoulli (LMB) filter proposed in [13], [14] is an efficient

approximation of the δ-GLMB filter which uses the δ-GLMB

update step in each iteration. Yet, it approximates the resulting

δ-GLMB distribution by an LMB distribution to reduce the

computational complexity. Due to the identical update, the

LMB filter delivers comparable results to the δ-GLMB filter

in a wide range of applications and significantly outperforms

the PHD, CPHD, and multi-Bernoulli filters [14]. In [?], LMB

filter is used to realize the multi-sensor environment perception

system of the autonomous car of Ulm University [15], [16]

which demonstrates the real-time capability as well as the

robustness of the LMB filter.

In vehicle environment perception, the tracking algorithm is

required to track all relevant objects (e.g. cars and pedestrians)

in the vehicle’s surrounding which typically exhibit differ-

ent motion characteristics [17]–[19]. Thus, the multi-object

tracking algorithm is required to use multiple models (MM)

to obtain decent estimates for the object’s positions. Further,

MM approaches are also required in applications with rapidly

maneuvering objects. Multiple model filters are typically based

on Jump-Markov models. In [20], Mahler compares several

MM approaches for the PHD filter. The Jump-Markov-System

(JMS) PHD filter proposed in [21] turns out to be the only

mathematically sound MM-PHD filter. In [22], the MM-PHD

filter is applied to time-lapse cell microscopy sequences.

Further, Meissner et al. applied the MM-PHD filter to road

user tracking at a public intersection [17]–[19] and proposed

a Classifying MM-PHD filter incorporating the estimation of

the objects’ class into the filter.

In this contribution, a Multiple Model Labeled Multi-

Bernoulli (MM-LMB) filter based on a Jump-Markov-System

is proposed. The prediction of the individual tracks in the
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MM-LMB filter is shown to be identical to the prediction of

single-object MM filters. Further, the update equations for the

MM-LMB RFS are derived. The performance of the proposed

MM-LMB filter is evaluated using two scenarios. The first

scenario only contains a single object which facilitates the

evaluation of the switching behavior for the motion models.

Further, this scenario is used to compare the performance to

a standard LMB filter. The second scenario contains multiple

maneuvering object as well as appearance and disappearance

of objects. Hence, this scenario is used to show the multi-

object tracking performance of the proposed MM-LMB filter.

This paper is organized as follows: First, the class of labeled

random finite sets is reviewed. Section III outlines the Labeled

Multi-Bernoulli filter and the Multiple Model Labeled Multi-

Bernoulli filter is proposed in Section IV. Finally, tracking

results using simulated data are presented in Section V.

II. BACKGROUND

This section summarizes briefly the class of labeled ran-

dom finite sets introduced in [12] and provides the required

background for the labeled multi-Bernoulli (LMB) RFS. For

additional details and other labeled multi-object distributions

(e.g. labeled Poisson RFS or δ-Generalized Labeled Multi-

Bernoulli RFS), the reader is referred to [12], [23] and [24].

A. Notation

Throughout this contribution, the following notation is used:

Single-object states are denoted by small letters (e.g. x),

multi-object states by capital letters (e.g. X), and labeled

distributions and states by bold face letters (e.g. π, x, X).

Blackboard bold letters represent spaces (e.g. the state space

X and the measurement space Z). Finite subsets of spaces are

denoted by F(·) and subsets comprising exactly n elements

are represented by Fn(·). For two functions f(x) and g(x),
the inner product is abbreviated by

〈f, g〉 ,

∫

f(x)g(x)dx.

Furthermore,

hX ,
∏

x∈X

h(x)

denotes the multi-object exponential notation for real-valued

functions h where h∅ = 1 by definition. The generalized

Kronecker delta function and the inclusion function supporting

sets, vectors and integers as input arguments are given by

δY (X) ,

{

1, if X = Y
0, otherwise,

1Y (X) ,

{

1, if X ⊆ Y
0, otherwise.

B. Labeled Random Finite Sets

In [12], the class of labeled RFS was introduced to enable

the estimation of the objects’ states and their individual trajec-

tories within the RFS framework. To facilitate the estimation

of an object’s trajectory, the state vectors x ∈ X are augmented

by a label ℓ ∈ L where L is a discrete space. Hence, a labeled

single-object state is given by x = (x, ℓ) and a labeled multi-

object state X = {x(1), . . . ,x(n)} is an RFS on the space

X × L. In multi-object tracking applications, the labels in a

multi-object state are required to be distinct, i.e. there must

not be two state vectors with the same label in a realization

of the labeled multi-object state X. The class of labeled RFS

[12] ensures distinct labels of the tracks using the distinct label

indicator

∆(X) = δ|X|(|L(X)|) (1)

which simply requires the cardinality of the RFS |X| to be

identical to the number of track labels within this set. Using

the projection L((x, ℓ)) = ℓ, the set of track labels of the

labeled RFS X is obtained by L(X) = {L(x) : x ∈ X}.

C. Labeled Multi-Bernoulli RFS

A Bernoulli RFS represents the uncertainty about the exis-

tence of a single object in an intuitive way. With probability

1−r, the Bernoulli RFS X is given by the empty set and with

probability r it is given by a singleton. Hence, the parameter r
is commonly called the existence probability of an object and

the probability density of a Bernoulli RFS is given by [3]:

π(X) =

{

1− r, if X = ∅,

r · p(x), if X = {x}.
(2)

A multi-Bernoulli RFS X is the union of M independent

Bernoulli RFSs X(i), i.e. X =
⋃M

i=1X
(i). Thus, a multi-

Bernoulli RFS is completely defined by the parameter set

{(r(i), p(i))}Mi=1.

A labeled multi-Bernoulli (LMB) RFS with state space

X and label space L is given by the parameter set π =

{r(ℓ), p(ℓ)}ℓ∈L. Equivalently, the LMB RFS may also be

represented by

π(X) = ∆(X)w(L(X))pX (3)

where the weights and the spatial distributions are given by

w(L) =
∏

i∈L

(

1− r(i)
)

∏

ℓ∈L

1L(ℓ)r
(ℓ)

1− r(ℓ)
, (4)

p(x, ℓ) = p(ℓ)(x). (5)

III. THE LABELED MULTI-BERNOULLI FILTER

The labeled multi-Bernoulli (LMB) filter [13], [14] is an

approximation of the multi-object Bayes filter [3] based on

labeled random finite sets. Compared to PHD, CPHD, and

CB-MeMBer filter, the LMB filter delivers significantly more

accurate estimates in addition to the integrated estimation

of the object’s trajectories [14]. Compared to the δ-GLMB

filter [12] and the marginalized δ-GLMB filter [25], the LMB

filter provides almost identical results in a wide range of

scenarios at a significantly lower computational complexity

due to the possibility to separate the tracking problem into

several statistically independent sub-problems. Further, the use

of the δ-GLMB filter’s update equations ensures accurate state

estimates.
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In the following, the prediction and update steps of the LMB

filter are outlined. For additional details and the derivation of

the filter, refer to [13], [14]. For notational convenience, time

indices of posterior quantities are omitted and the ones of

of predicted quantities are abbreviated by a ”+” (e.g. x+ ,

xk+1|k).

A. Prediction

The prediction step assumes the prior density as well as

the birth density to be an LMB RFS. The prior density with

state space X and label space L is given by the parameter set

π = {(r(ℓ), p(ℓ))}ℓ∈L, i.e.

π(X) = ∆(X)w(L(X))pX (6)

w(L) =
∏

i∈L

(

1− r(i)
)

∏

ℓ∈L

1L(ℓ)r
(ℓ)

1− r(ℓ)
, (7)

p(x, ℓ) = p(ℓ)(x). (8)

The birth density also follows an LMB RFS with state space

X and label space B. It is given by the parameter set πB =

{(r
(ℓ)
B , p

(ℓ)
B )}ℓ∈B or equivalently by

πB(X) = ∆(X)wB(L(X)) [pB ]
X
, (9)

wB(L) =
∏

i∈B

(

1− r
(i)
B

)

∏

ℓ∈L

1B(ℓ)r
(ℓ)
B

1− r
(ℓ)
B

, (10)

pB(x, ℓ) = p
(ℓ)
B (x). (11)

Observe that the label space of the new born objects and the

one of existing objects have to be distinct, i.e. L ∩ B = ∅.

If the prior density and the birth density are given by (6)

and (9), respectively, the predicted density is an LMB RFS

with state space X, label space L+ = B ∪ L, and parameter

set

π+ =
{(

r
(ℓ)
+,S , p

(ℓ)
+,S

)}

ℓ∈L

∪
{(

r
(ℓ)
B , p

(ℓ)
B

)}

ℓ∈B

, (12)

where the existence probabilities and spatial distributions of

the surviving objects are determined by

r
(ℓ)
+,S = ηS(ℓ)r

(ℓ), (13)

p
(ℓ)
+,S = 〈pS(·, ℓ)f(x|·, ℓ), p(·, ℓ)〉 /ηS(ℓ), (14)

ηS(ℓ) = 〈pS(·, ℓ), p(·, ℓ)〉 . (15)

Here, the state dependent persistence probability of the track

with label ℓ is represented by pS(·, ℓ) and f(x|·, ℓ) denotes

the single-object Markov transition density.

B. Update

The predicted LMB RFS on X × L+ is given by the

parameter set

π+ =
{(

r
(ℓ)
+ , p

(ℓ)
+

)}

ℓ∈L+

. (16)

Following [13], the predicted LMB RFS is converted into

an equivalent δ-GLMB representation to facilitate the exact

measurement update of the δ-GLMB filter. Afterwards, the

multi-object posterior is approximated by the LMB RFS on

X× L+ with parameter set

π(·|Z) =
{(

r(ℓ), p(ℓ)(·)
)}

ℓ∈L+

. (17)

The updated existence probabilities and spatial distributions of

the individual tracks are calculated using

r(ℓ)=
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(ℓ), (18)

p(ℓ)(x)=
1

r(ℓ)

∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(ℓ)p
(θ)(x, ℓ), (19)

where

w(I+,θ)(Z) ∝ w+(I+)[η
(θ)
Z ]I+ , (20)

p(θ)(x, ℓ|Z) =
p+(x, ℓ)ψZ(x, ℓ; θ)

η
(θ)
Z (ℓ)

, (21)

η
(θ)
Z (ℓ) = 〈p+(·, ℓ), ψZ(·, ℓ; θ)〉 , (22)

ψZ(x, ℓ; θ) =

{

pD(x,ℓ)g(zθ(ℓ)|x,ℓ)

κ(zθ(ℓ))
, if θ(ℓ) > 0

qD(x, ℓ), if θ(ℓ) = 0
. (23)

Here, pD(x, ℓ) is the state dependent detection probability

of track ℓ, the missed detection probability is abbreviated

by qD(x, ℓ) = 1 − pD(x, ℓ), the single-object measurement

likelihood is denoted by g(z|x, ℓ), and κ(·) is the intensity

of the clutter process. The number of clutter measurements

follows a Poisson distribution with an expected number of λc
measurements. Further, ΘI+ is the space of the track label

to measurement assignments θ : I+ → {0, 1, ..., |Z|}, where

unique assignments are ensured by the property θ(i) = θ(i′) >
0 =⇒ i = i′, As shown in [13], the posterior LMB RFS

(17) with existence probabilities and spatial distributions given

by (18) and (19), respectively, matches the first moment (or

the PHD) of the unlabeled multi-object posterior.

IV. THE MULTIPLE-MODEL LMB FILTER

In [20], Mahler discusses several approaches for the usage

of jump-Markov systems (JMS) to track multiple maneuvering

objects using the multi-object Bayes filter. In single-object

JMS filters, augmented states x̃ = (x, o) are typically used

to represent the object’s state and the according motion model

o ∈ O where O denotes the discrete space of all possible

motion models. Following [20], the multi-object state has to

be a finite set of augmented states, i.e.

X̃ = {x̃1, . . . , x̃n} = {(x1, o1), . . . , (xn, on)}. (24)

In the context of labeled random finite sets, the corresponding

multi-object state is consequently given by

X̃ = {x̃1, . . . , x̃n} = {(x1, ℓ1, o1), . . . , (xn, ℓn, on)}, (25)

where the state vector is augmented by the track label ℓ and

the mode o. The state transition matrix {to,o′}o,o′ models

the transition of the jump variables o and to,o′ denotes the

probability that a track switches from mode o′ to mode o.
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A. Prediction

The spatial distribution of each track ℓ is given by the joint

distribution

p(ℓ)(x, o) = p(ℓ)(x|o)p(ℓ)(o) ∀ o ∈ O, (26)

where p(ℓ)(o) denotes the probability that track ℓ is currently

in mode o and p(ℓ)(x|o) is the spatial distribution of track ℓ
conditioned on mode o.

Using (26), the prior density is assumed to be an LMB RFS

on the augmented space which is given by the parameter set

π =
{(

r(ℓ), p(ℓ)(o)p(ℓ)(·|o)
)}

ℓ∈L

, (27)

i.e. each track is represented by its existence probability r(ℓ)

and its spatial distribution is a joint probability density on

X×O. Consequently, the Bernoulli component of each track

ℓ naturally captures the uncertainty about the current motion

model.

Similar to the LMB filter in Section III, the birth distribution

follows an LMB RFS. However, the spatial distributions of the

tracks are required to be defined on the augmented state space

X×O, i.e.

πB =
{(

r
(ℓ)
B , p

(ℓ)
B (o)p

(ℓ)
B (·|o)

)}

ℓ∈B

. (28)

Again, the label space B of the birth distribution and the label

space L of already existing objects are required to be distinct,

i.e. L ∩ B = ∅.

For the prediction step, it is assumed that the survival

probability of the tracks is independent of the current motion

model which is a reasonable assumption in most applications:

p
(ℓ)
S (x′, o′) = p

(ℓ)
S (x′). (29)

The prediction of the joint distribution is given by

p
(ℓ)
+,S(x, o) =

∫

p
(ℓ)
S (x′)f(x, o|x′, o′)p(ℓ)(x′, o′)d(x′, o′)

ηS(ℓ)

=

∑

o′∈O

∫

p
(ℓ)
S (x′)to,o′f(x|x

′, o′)p(ℓ)(x′|o′)p(ℓ)(o′)dx′

ηS(ℓ)

=
∑

o′∈O

to,o′p
(ℓ)(o′)

∫

p
(ℓ)
S (x′)f(x|x′, o′)p(ℓ)(x′|o′)dx′

ηS(ℓ)

(30)

where the mode transition is assumed to be independent of the

state transition, i.e.

f(x, o|x′, o′) = to,o′f(x|x
′, o′). (31)

Further, the normalizing constant follows

ηS(ℓ) =

∫

p
(ℓ)
S (x′)p(ℓ)(x′, o′)d(x′, o′) (32)

=
∑

o′∈O

p(ℓ)(o′)

∫

pS(x
′)p(ℓ)(x′|o′)dx′. (33)

The prediction of the joint distribution (30) facilitates the

following factorization into the probability

p
(ℓ)
+,S(o) =

∑

o′∈O

f(o|o′)p(ℓ)(o′) (34)

that track ℓ is in mode o after prediction and the according

spatial distribution

p
(ℓ)
+,S(x|o) =

∫

p
(ℓ)
S (x′)fo(x|x

′)p(ℓ)(x′|o′)dx′

ηS(ℓ)
(35)

which is conditioned on the mode o. Using (13), the predicted

existence probability of track ℓ follows

r
(ℓ)
+,S = ηS(ℓ)r

(ℓ). (36)

Hence, the predicted LMB RFS of the multiple model LMB

filter is given by the parameter set

π+ =
{(

r
(ℓ)
+,S , p

(ℓ)
+,S(o)p

(ℓ)
+,S(·|o)

)}

ℓ∈L

(37)

∪
{(

r
(ℓ)
B , p

(ℓ)
B (o)p

(ℓ)
B (·|o)

)}

ℓ∈B

(38)

with label space L+ = B ∪ L.

B. Update

Assume that the predicted LMB RFS is given by the

parameter set

π+ =
{(

r
(ℓ)
+ , p

(ℓ)
+ (o)p

(ℓ)
+ (·|o)

)}

ℓ∈L+

. (39)

Using the same approximation as in Section III, the multi-

object posterior is obtained by the LMB RFS with parameter

set

π(·|Z) =
{(

r(ℓ), p(ℓ)(o)p(ℓ)(·|o)
)}

ℓ∈L+

, (40)

where the updated parameters are given by

r(ℓ)=
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(ℓ), (41)

p(ℓ)(x|o)=
1

r(ℓ)

∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(ℓ)p
(ℓ,θ)(x|o),

(42)

p(ℓ)(o)=
1

r(ℓ)

∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(ℓ)p
(ℓ,θ)(o).

(43)

The measurement update of the spatial distributions condi-

tioned on mode o are obtained by

p(ℓ,θ)(x|o) =
ψZ(x, ℓ; θ)p

(ℓ)
+ (x|o)

η
(θ)
Z (ℓ|o)

(44)

η
(θ)
Z (ℓ|o) =

∫

ψZ(x, ℓ; θ)p
(ℓ)
+ (x|o)dx (45)

resembling equations (21) and (22) of the standard LMB filter

update. Observe that the likelihood function

ψZ(x, ℓ; θ) =

{

pD(x,ℓ)g(zθ(ℓ)|x,ℓ)

κ(zθ(ℓ))
, if θ(ℓ) > 0

qD(x, ℓ), if θ(ℓ) = 0
(46)

is identical to (23).
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The updated probability for track ℓ being in mode o is

calculated by marginalizing the state x out of the updated

joint probability density p(ℓ,θ)(x, o):

p(ℓ,θ)(o) =

∫

p(ℓ,θ)(x, o)dx

η
(θ)
Z (ℓ)

(47)

=

∫

ψZ(x, ℓ; θ)p
(ℓ)
+ (x|o)p

(ℓ)
+ (o)dx

η
(θ)
Z (ℓ)

(48)

=
p
(ℓ)
+ (o)η

(θ)
Z (ℓ|o)

η
(θ)
Z (ℓ)

. (49)

Here, the normalizing constant

η
(θ)
Z (ℓ) =

∑

o∈O

η
(θ)
Z (ℓ|o)p

(ℓ)
+ (o) (50)

ensures that the probabilities of the individual modes sum up

to one. Further, (50) represents the likelihood of measurement

zθ(ℓ) for track ℓ averaged over all modes o ∈ O. The updated

component weights are obtained by utilizing (50):

w(I+,θ)(Z) ∝ w+(I+)[η
(θ)
Z ]I+ . (51)

V. RESULTS

The performance of the proposed MM-LMB filter is evalu-

ated using a setup with two motion models, constant velocity

(CV) and constant acceleration (CA). The results are divided

into two parts: First, a single object in clutter is tracked

investigated to illustrate the switching behavior of the MM-

LMB filter and to compare the accuracy of the MM-LMB to

an LMB filter with a single model. Additionally, a scenario

containing multiple maneuvering objects is used to evaluate

the performance of the MM-LMB filter.

The MM-LMB filter and the LMB filter are implemented

using Gaussian Mixtures (GM). The implementation uses a

partitioning of tracks and measurements into approximately

independent groupings to reduce computational complexity.

Further, static birth locations next to possible birth locations

are used. For further implementation details, refer to [13]

and [14]. In all simulations, the probability of remaining

in the current motion model is to,o = 0.98. Further, the

survival probability is pS = 0.99. The sensor is assumed

to deliver Cartesian measurements of the objects’ x and y
position with standard deviation σx = σy = 1. The state

independent detection probability is given by pD = 0.98
and clutter follows a Poisson distribution a mean number of

λc = 60 measurements which are uniformly distributed over

the measurement space [−1000, 1000] × [−1000, 1000]. For

the CV model, the standard deviation of the process noise is

σv = 0.3 m/s. The CA model uses a standard deviation of

σa = 0.5 m/s2.

A. Single Object Tracking

Fig. 1 shows the absolute values of the velocity of the

tracked object. The object is not moving for the first 10 time

steps, accelerates between for 10 < k < 30, keeps a constant

velocity for 30 ≤ k ≤ 50, decelerates between 50 < k < 60,

and moves with constant velocity until k = 100.

0 20 40 60 80 100
0

5

10

15

20

time step k

v
[m

/s
]

Fig. 1. Ground truth velocity of the object.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

time step k
p
(o
)

CV

CA

Fig. 2. Probability of the CV and CA motion models for each time step
(averaged over 100 Monte Carlo runs).

The probability of the two motion models for each time

step k is depicted by Fig. 2 where the result is averaged

over 100 Monte Carlo runs. As expected, the MM-LMB filter

switches to the CA model while the object is accelerating

or decelerating. Due to the relatively small accelerations, the

MM-LMB filter requires approximately 3 time steps to switch

to the correct model. Further, the trajectories of the model

probabilities are very smooth, i.e. the estimated motion model

is very robust while the object is not maneuvering.

In Fig. 3, the performance of the MM-LMB filter is com-

pared to an LMB filter using the OSPA distance [26]. The

LMB filter uses a constant velocity model where the standard

deviation of the process noise is set to σv = 1.0 m/s to be

able to track the maneuvering object. The MM-LMB filter

outperforms the LMB filter for most time steps which is

expected to the usage of suitable models matching the actual

behavior of the object. The MM-LMB filter shows a slightly

higher OSPA distance at k = 11 and k = 51 when the object

starts to accelerate and decelerate. The reason for this is the

slight delay for model switching, i.e. the weight for the CV

model in the MM-LMB is higher than the one for the CA

model although the object already starts to accelerate. The

delay is mainly due to the fact, that the switching probabilities

are quite low and that the process noise of the CV model

approximately covers the acceleration of the object.

B. Multi Object Tracking

The performance of the MM-LMB filter for multi-object

scenarios is evaluated using the scenario depicted by Fig. 4. All
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Fig. 3. Comparison of the OSPA distances of the LMB and the MM-LMB
filter for the single-object scenario (averaged over 100 Monte Carlo runs).

−1,000 −500 0 500 1,000
−1,000

−500

0

500

1,000

x [m]

y
[m

]

Fig. 4. Ground truth trajectories of the objects in the multi-object scenario.

objects are appearing with a low velocity and start accelerating

at arbitrary time steps. The parameters of the simulation are

identical to the ones used in the single object scenario.

The cardinality estimate and OSPA distance of the MM-

LMB filter for the scenario depicted by Fig. 4 is shown in

Fig. 5 and 6, respectively. The MM-LMB filter estimates

the cardinality very precisely due to the relatively small

measurement noise. Further, the OSPA distance indicates that

the filter provides very accurate state estimates. The peaks of

the OSPA distance are related to cardinality changes or, e.g.

at k ≈ 10, due to changes of the objects’ acceleration.

VI. CONCLUSION

In this contribution, the Multiple Model Labeled Multi-

Bernoulli (MM-LMB) filter is proposed which is capable to

track maneuvering objects by using multiple motion models.

The prediction of the individual tracks resembles the prediction

of the multiple model single-object filters since all tracks are

assumed to be statistically independent during prediction. The

update step of the MM-LMB filter is similar to the one of

the LMB filter by updating each component of the tracks
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Fig. 5. Cardinality estimate and standard deviation of the cardinality estimte
of the MM-LMB filter for the scenario in Fig. 4 (averaged over 100 Monte
Carlo runs).
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Fig. 6. OSPA distance of the MM-LMB filter for the scenario in Fig. 4
(averaged over 100 Monte Carlo runs).

spatial distribution with the assigned measurement. Here, the

likelihood for assigning a measurement has to be averaged

over all motion model. Further, the filter update implicitly

adapts the weight of the motion models. The simulation results

illustrate that the MM-LMB filter successfully adapts to the

current motion model of the objects. Further, the MM-LMB

filter outperforms a single model LMB filter with respect to

the OSPA distance due to using more accurate process models.

In the future, the environment perception system will be

realized using the proposed MM-LMB filter. Compared to

the current system setup including two independent LMB

filters for vehicle and pedestrian tracking, the MM-LMB

filter is expected to deliver superior tracking performance

since classification errors during pre-processing do not lead

to missed detections in one of the trackers and false alarms in

the other one.
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