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Abstract—The task of tracking objects with angular-only
measurements imposes an interesting estimation problem due to
the fact that range information is not obtainable when the sensor
is mounted on a non-maneuvering platform and the tracked
object itself is moving as well. Here, the use of log-spherical
state variables within an extended Kalman filter is a well-
established approach to tackle the problem. This paper focusses
on the initialization of such a filter. A suitable (approximate)
prior for the non-observed quantities is derived aiming for an
initialization with a single measurement pair of bearing and
elevation. Alternatively, filter initialization can be performed by
applying a batch estimator using several such measurement pairs.
One possible estimator of this kind is also presented. Simulation
results using both schemes are provided.

I. INTRODUCTION

The problem of tracking with angular-only measurements

is widely discussed in literature and may appear in context

with a lot of different applications. One such application is

that of tracking with measurements from jammed radar (cf.

[1], [2] and the reference cited therein), another one is the use

of optical sensors for collision avoidance and separation of

manned or unmanned air traffic participants (see, e. g., [3]–

[5]). A well-established tracking approach for the problem

is based on a state space in modified polar coordinates as

been introduced in [6] with the refinement of using log-polar

coordinates as proposed (for 2D) in [7]. But, while there is

improved tracking performance using those coordinates within

an extended Kalman filter (EKF), “accurate initialisation is

crucial to obtaining effective tracking performance for the

single sensor bearings-only problem” according to that very

same paper. However, the initiation scheme proposed by the

authors starts from measurements being converted to Cartesian

space (with some chosen default range) and thus does not

operate in log-spherical space directly. With this paper, we try

to fill, at least to some extent, that gap that also has been left

open in our previous related publication [8]. Herein, we will

discuss the 3D case based on log-sperical coordinates. The

reduced 2D case in log-polar coordinates is implicitly covered

by this as well. It should be mentioned at this point that more

advanced non-linear estimation techniques like the unscented

Kalman filter [9] or the particle filter [10] may also be applied

to the investigated tracking problem, but this is beyond the

scope of this paper.

We will start our discussion by shortly recalling the fun-

damental properties of log-spherical coordinates as well as

propagation and update of an EKF based thereon where we

follow our presentation in [8]. Afterwards, we will derive a

suitable prior for the quantities not observed when initializa-

tion is based on one measurement pair. We will see that this

prior is exact for a non-moving platform only, but we will

somewhat heuristically apply it in adapted form for moving

platforms, too. As an alternative to that one-point initializa-

tion, we will investigate a regression-based batch estimator

using multiple measurement pairs for track initialization. For

Cartesian-complete measurements, one minimal example for

such an estimator is known as two-point differencing [11]

(with an exact solution to the resulting system of equations),

but multiple-point initialization with a weighted least-squares

solution to an over-determined system of (linear) equations is

common practice there as well which motivated us to search

for an analogeous initialization scheme in the case of angular-

only measurements. Simulation results conclude this paper.

II. LOG-SPHERICAL COORDINATES

For the sake of conciseness, we assume a constant velocity

motion model for the platform and an (ideally undisturbed)

motion model of the same type for the object to be tracked.

In the following presentations, positions as well as their

polar representations (ranges and angles) are considered in

a Cartesian coordinate system with constant orientation, e. g.,

an east-north-up (ENU) system centered within and moving

with the ownship position. Velocities and log-spherical rates

are relative to the moving platform and referenced in the same

coordinate system.

We use the (relative) bearing angle � and the (relative)

elevation angle � following the convention

� = � cos� cos �

� = � sin� cos �

� = � sin �

(1)

With the unitary rotation matrices

B(�) =

⎡

⎣

cos� − sin� 0
sin� cos� 0
0 0 1

⎤

⎦ (2)
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and

E(�) =

⎡

⎣

cos � 0 − sin �
0 1 0
sin � 0 cos �

⎤

⎦ (3)

the position p = [�, �, �]� following eq. (1) can be written as

p = �B(�)E(�)u� (4)

with the unit vector u� = [1, 0, 0]
� . Differentiation of (1) with

respect to time and ordering of terms yields the velocity

v =

⎡

⎣

��
��
��

⎤

⎦ =

⎡

⎣

�̇
�̇
�̇

⎤

⎦ = �B(�)E(�)

⎡

⎣

�̇/�
�
�̇

⎤

⎦ (5)

with the projected bearing rate

� = �̇ cos � (6)

Log-spherical coordinates use as state variables, in addition to

the angles � and �, the logarithmic range

� = log(�/�) ⇒ �̇ = �̇/� (7)

with some normalizing range � as well as the three rate

components �̇, �, and �̇. Denote with subscript 0 all quantities

at some given time �0 and with subscript 1 all at some time

�1 = �0 + � . For brevity, we will further write

q =
[
�, �, �

]�
and q̇ =

[
�̇, �, �̇

]�
(8)

—with respect to its second component, q̇ is not really the

time derivative of q, so we abused notation here a bit for

reasons of convenience—in our derivations. Starting from the

equations

p1 = p0 + �v0 and v1 = v0 (9)

and in view of

�1 = �0 + �10 ⇒ B(�1) = B(�0)B(�10) (10)

with �10 = �1 − �0 one obtains in combination with eqs. (4)

and (5) the propagation correspondence

�1B10E1u� = �0�10 with �10 = E0(u� + � q̇0) (11)

when using the short-hand notation E0 = E(�0), E1 = E(�1),
and B10 = B(�10). From that, there follows both

�1 = ∥�10∥ �0 ⇐⇒ �1 = �0 + log (∥�10∥) (12)

∥�10∥ =
√

(1 + �̇0� )2 + (�0� )2 + (�̇0� )2 (13)

as well as—the singularity for ∥�10∥ = 0 and for ∥�10∥ = 0
is excepted from further discussion—

cos(�10) = �10/ ∥�10∥ and sin(�10) = �10/ ∥�10∥ (14)

sin(�1) = �10/ ∥�10∥ ⇒ cos(�1) = ∥�10∥ / ∥�10∥ (15)

�10 =
[
�10, �10, �10

]�
and �10 =

[
�10, �10, 0

]�
(16)

The state propagation of the rates is obtained from eqs. (5)

and (10) in combination with the identity v1 = v0 yielding

q̇1 =
1

∥�10∥
E�

1 B�
10E0q̇0 (17)

which can be shown (cf. [8] for the details) to imply

� �̇1 = 1−
1 + �̇0�

∥�10∥
2

(18)

The use of log-spherical coordinates hence produces ad-

ditive increments for both log-range and bearing. It is a

known decisive feature that these increments as well as all

other propagation equations depend neither on the range nor

on the bearing of the tracked object, but only on the last

four components �, �̇, �, and �̇ of its state. In addition, the

propagation equation of the normalized range rate �̇ = �̇/�
does not depend on elevation.

The undisturbed straight line relative movement of the

tracked object uniquely determines a plane with normal vector

n =
p0 × v0

∥p0 × v0∥
(19)

—in case the tracked object is permanently moving directly

towards the platform (or exactly in the opposite direction),

the plane is not uniquely defined, but, of course, there are

still vectors n normal to the movement—and going through

the initial origin of the platform-oriented coordinate system.

If �̃, �̃, �̃, ˙̃�, �̃, and ˙̃� denote the quantities of the state vector

with respect to a rotated coordinate system whose �-axis is

co-aligned with n, then (relative) elevation �̃ and (relative)

elevation rate ˙̃� will be zero throughout, while (logarithmic)

range and normalized range rate are not affected by the

rotation of the coordinate system. A formal replacement of

each variable ∗ by ∗̃ in eqs. (11) to (18) while honoring �̃ = 0
and ˙̃� = 0 leads to the two-dimensional log-polar propagation

equations in the variables �̃ = �, �̃, ˙̃� = �̇, and �̃. As we have
˙̃� = 0, there always holds

� = �̃ cos(�) and �̇ = �̃ sin(�) (20)

with

∣�̃∣ =
√

�2 + �̇2 (21)

and some angle �. With all of this, the conservation law of

the angular momentum reads

�̃1 =
1

∥�10∥
2
�̃0 =

�20
�2
1

�̃0 (22)

which shows that also the propagation equation of the effective

bearing rate �̃ does not depend on elevation.

III. LOG-SPHERICAL EKF: PREDICTION AND UPDATE

In order to implement a recursive state estimator in log-

spherical coordinates, an extended Kalman filter is set up. For

such a filter, an update with bearing and elevation is trivial as

these are direct measurements of state variables. Propagation

is more involved as the state transition equations are non-

linear in the states. The computation of the corresponding

Jacobians is somewhat tedious and has been elaborated in [8].

However, it is in fact not necessary to implement those.

Instead, one can convert the log-spherical state and covariance

into Cartesian ones (the corresponding Jacobians look much

simpler and can also be found in [8] and elsewhere), perform
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the prediction there, and transform back into log-spherical

coordinates immediately before update. Independently of the

chosen (unknown) range for the transformation (e. g., the one

from the prior derived later on), the result is exactly the

same as with the direct log-spherical implementation as long

as there is no process noise. And, a physically meaningful

process noise is more easily added in Cartesian than in log-

spherical space although then the initially assumed range has

an influence on the result and thus must be chosen reasonably

in order to get coherent (although most likely not correct)

range estimates in due course. Typically, a white acceleration

Cartesian process noise covariance

Q1 =

[
D� 3/3 D� 2/2
D� 2/2 D�

]

(23)

is assumed with D being the diagonal matrix of noise levels

��� , ��� , and �� .

IV. EKF: INITIALIZATION

With prediction and update of our EKF being stated, we are

ready to discuss the two different ways of initializing it.

A. Prior for log-range and log-spherical rates

With initially measured bearing and elevation and using

them unalteredly (including the corresponding measurement

error variances) to initialize the respective angular states of

our filter, we seek initial estimates (expected values as well

as covariances) for the remaining states. We assume that the

sensor has some minimum and maximum detection range

�min and �max. Then, an assumed diffuse prior after detection

becomes a homogeneous density �(�, �, �) on a spherical shell

yielding

�(�) = �0�
2 =

�2

1

3
(�3max − �3min)

for �min ≤ � ≤ �max (24)

and �(�) = 0 elsewhere.

With this, we find for the logarithmic range an expected

value

�̄ = E [�] = �0

∫ �max

�min

log(�/�)�2 d�

=
1

3
�0

[

�3
(

log(�/�)−
1

3

)]�max

�min

=
�3max�max − �3min�min

�3max − �3min

−
1

3

(25)

with

�min = log(�min/�) and �max = log(�max/�) (26)

as well as an expected squared value

E
[
�2
]
= �0

∫ �max

�min

log2(�/�)�2 d�

=
1

3
�0

[

�3
(

log2(�/�)−
2

3
log(�/�) +

2

9

)]�max

�min

=
�3max

(
�2max −

2

3
�max

)
− �3min

(
�2min −

2

3
�min

)

�3max − �3min

+
2

9

(27)

from which the variance can be computed to be

Var[�] = E
[
�2
]
− �̄2 =

1

9
−

�3max�
3
min(�max − �min)

2

(�3max − �3min)
2

(28)

In the limit of zero minimum detection range, the results

obtained simplify to

E [�] = �max −
1

3
and Var[�] =

1

9
(29)

which in particular means that the filter is then initialized

with slightly more than half the maximum detection range

according to �initial = exp(−1/3)�max ≈ 0.53�max.

In order to derive corresponding expressions for the log-

spherical rates, we first investigate the simplified case of a

fixed platform. We choose an isotropic prior in the Cartesian

velocity with zero mean and independent of position, i. e., we

assume, in particular, E [�̇] = E [�̇] = E [�̇] = 0 as well as

Var[�̇] = Var[�̇] = Var[�̇] = �2
vel to hold. From

�̇ =
�̇

�
=

��̇+ ��̇ + ��̇

�2
(30)

we get

E [�̇] = E
[ �

�2

]

E [�̇]
︸︷︷︸

=0

+E
[ �

�2

]

E [�̇]
︸︷︷︸

=0

+E
[ �

�2

]

E [�̇]
︸︷︷︸

=0

= 0 (31)

and next

E
[
�̇2
]
= E

[
�2

�4

]

E
[
�̇2

]
+ 2E

[��

�4

]

E [�̇�̇]
︸ ︷︷ ︸

=0

+ E

[
�2

�4

]

E
[
�̇2
]
+ 2E

[��

�4

]

E [�̇�̇]
︸ ︷︷ ︸

=0

+ E

[
�2

�4

]

E
[
�̇2
]
+ 2E

[��

�4

]

E [�̇�̇]
︸ ︷︷ ︸

=0

= E

[
�2 + �2 + �2

�4

]

�2

vel = E

[
1

�2

]

�2

vel

(32)

As there holds

E

[
1

�2

]

= �0

∫ �max

�min

1

�2
�2 d� = 3

�max − �min

�3max − �3min

(33)

the variance of the normalized range rate reads

Var [�̇] = 3�2

vel

�max − �min

�3max − �3min

=
3�2

vel

�2max + �max�min + �2min

(34)

which reduces in the limit of zero detection range to

Var [�̇] =
3�2

vel

�2max

(35)

Now, we compute the still missing cross-covariance between

log-spherical range and range-rate component. Not surpris-

ingly, the correlation is zero which is confirmed by looking

at

E [(�− �̄) �̇] =E [��̇]− �̄E [�̇]
︸︷︷︸

=0

= E
[��

�2

]

E [�̇]
︸︷︷︸

=0

+E
[��

�2

]

E [�̇]
︸︷︷︸

=0

+E
[��

�2

]

E [�̇]
︸︷︷︸

=0

= 0
(36)
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We conclude the fixed-platform case by looking at the re-

maining rates. For them, we use the conjecture—the proof

for preconditions and correctness of that conjecture is still

open—that the isotropic Cartesian velocity prior implies an

also isotropic log-spherical rates prior, so that initialization

with zero mean and a variance value as computed in eq. (34)

also for both � and �̇ (without correlation between them or to

any of the other states) would be the right approach.

While we were able to derive prior expressions for fixed

platforms with a certain level of rigorousness, the extension

to the case of moving platforms is by no means trivial when

it comes to the computation of the log-spherical rates prior.

Therein, one would have to distinguish clearly between the

velocities relative to the platform—those relative velocities

are the ones to be converted to and from log-spherical space

in order to get the desired decoupling of the remaining

components from the range—and velocities in a stationary

coordinate system that happens to have its origin in the current

platform position. It is for the latter that the assumption

of zero mean and isotropic covariance in Cartesian velocity

makes sense, not for the former one. Unfortunately, there

appears to be no way of maintaining the principles used to

derive our results in a rigorous fashion in this case. So, we

resort to a heuristic approach here. Based on the measured

pair of bearing �m,0 and elevation �m,0 and starting from a

known platform velocity vown and an assumed prior object

velocity vabs,0 = 0 being translated into the prior relative

velocity v0 = vabs,0 − vown = −vown, we use the prior range

�initial = � exp(�̄) and eq. (5) to initialize the rate components

via ⎡

⎣

�̇0
�0

�̇0

⎤

⎦ = −E� (�m,0)B
� (�m,0)

vown

�initial

(37)

Covariances are initialized as if the platform were not moving.

Herewith, we ignore existing correlations within our initial

estimates that certainly exist as we, in particular, use the same

measured values for initialization of both angles and rates.

However, an investigation of how those correlations can be

quantified is left to future research.

B. Batch estimator

As an alternative to a one-point initialization, we seek for

a batch estimate of all observable states based on several

measurement pairs. We note that an exact solution (that would

be in analogy to the two-point differencing for Cartesian-

complete measurements) does not exist, as we need at least

three measurement pairs (yielding six equations) for the five

quantities to estimate. Based on the measured values �m,� and

�m,� at times ��, we search for optimum values �0, �0, �̇0, �0,

and �̇0. But, the minimization of

∑

�

(

(�m,� − ��)
2

�2

�

+
(�m,� − ��)

2

�2
�

)

(38a)

for a straight line constant velocity movement with

�� = �(�0, �0, �̇0, �0, �̇0, ��)

�� = �(�0, �0, �̇0, �0, �̇0, ��)
(38b)

and �� = ��−�0 states a non-linear least-squares (LS) problem

without closed form solution. As an approximate solution, we

propose to first determine an estimate of the normal vector

n of eq. (19) and then solve, in an LS sense, the set of

equations resulting from the propagation equation (16) in the

plane specified by n.

For the true states, there holds

n�w� = 0 for w� =

⎡

⎣

cos(��) cos(��)
cos(��) sin(��)
sin(��)

⎤

⎦ (39)

We obtain the estimate of n from the measured unit vectors

wm,� by selecting it to yield, under the constraint ∥n∥ = 1,

min
n

{∑

�

(n�wm,�)
2

}

= min
n

{

n�Wn
}

(40)

with

W :=
∑

�

wm,�w
�
m,� (41)

Consequently, n is chosen as an unimodular eigenvector

referring to the smallest eigenvalue of W.

With this n written as

n =

⎡

⎣

��

��

��

⎤

⎦ =

⎡

⎣

cos(�̄) cos(�̄)
sin(�̄) cos(�̄)
sin(�̄)

⎤

⎦ (42)

the transformation matrix

R =

⎡

⎣

− cos(�̄) sin(�̄) − sin(�̄) cos(�̄) cos(�̄)
− sin(�̄) sin(�̄) cos(�̄) sin(�̄) cos(�̄)

cos(�̄) 0 sin(�̄)

⎤

⎦ (43)

is used to compute transformed values according to

w̃m,� = R�wm,� (44)

where, for an R without error, the vectors w̃� = R�w� would

have zero �-components and could thus be written as

w̃� =

⎡

⎣

cos(�̃�)

sin(�̃�)
0

⎤

⎦ (45)

For the so defined transformed bearings �̃� in the tilted

plane, eq. (16) implies

sin(�̃� − �̃0)(1 + �̇0��)− cos(�̃� − �̃0)�̃0�� = 0 (46)

that can, with the abbreviations

�� = cos(�̃�) and �� = sin(�̃�) (47)

m�
� = [��,−��, ����,−����,−����,−����] (48)

t� = [�0, �0, �0�̇0, �0�̇0, �0�̃0, �0�̃0] (49)

be written as

t�m� = 0 (50)

Moreover, there must hold

t�m = 1 with m� = [�0, �0, 0, 0, 0, 0] (51)
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With this result, we use the measured vectors mm,� and mm

and try to determine t via

min
t

{∑

�

(t�mm,�)
2 + (t�mm − 1)2

}

(52)

or, equivalently,

min
t

{

t�Mt− 2t�mm + 1
}

(53)

with

M :=mmm
�
m +

∑

�

mm,�m
�
m,� (54)

under the constraint �20 + �20 = 1 and honoring the special

structure of t given in eq. (49).

In order to determine the constrained optimum, we mim-

imize the Lagrange function

�(�) := t�Mt− 2t�mm + �(1− (�20 + �20)) (55)

with multiplier � with respect to �0, �0, �̇0, and �̃0 (and

� which of course just yields the constraint). Derivates can

compactly be written by using further abbreviations

a� = [�0, �0] , a�m = [�m,0, �m,0] (56)

and

A� =

[
1 0 �̇0 0 �̃0 0
0 1 0 �̇0 0 �̃0

]

(57)

With 0 being a 2× 1 vector with zero elements, we can write

t =

⎡

⎣

a 0 0

0 a 0

0 0 a

⎤

⎦

⎡

⎣

1
�̇0
�̃0

⎤

⎦ = Aa (58)

For the derivatives, we find

0
!
=
1

2

∂�

∂ [�̇0, �̃0]
�
=

[
0� a� 0�

0� 0� a�

]

Mt (59)

and

0
!
=
1

2

∂�

∂a
= A�Mt− �a− am (60)

Still, a closed-form solution of this resulting set of polynomial

equation is, if at all, hard to find. However, we can determine

the pair �̇0 and �̃0 as a function of a and vice versa and, with

this, are able to set up an iterative scheme. By writing in a

block-wise fashion

M =

⎡

⎣

M11 M12 M13

M�
12 M22 M23

M�
13 M�

23 M33

⎤

⎦ (61)

eq. (59) becomes

[
a�M�

12a a�M22a a�M23a

a�M�
13a a�M�

23a a�M33a

]
⎡

⎣

1
�̇0
�̃0

⎤

⎦ = 0 (62)

which delivers �̇0 and �̃0 for a given a. On the other hand,

eq. (60) is equivalent to

a = −(�1−A�MA)−1am (63)

Computation of the inverse as quotient of adjoint and deter-

minant plus successive insertion into the constraint a�a = 1
yields a fourth-order polynomial in the multiplier �. Once

among the real toots of the polynomial that one minimizing

�(�) has been determined (for given �̇0 and �̃0), a is known,

too.

With the equations above, a can be, starting from initial

value am, determined as fixed point of the mentioned iterative

scheme. Convergence appears to be quite fast and can, if

necessary, be accelerated by commonly known methods.

With estimates �0 and �0 as well as �̇0 and �̃0 now obtained,

we have to transform back from the tilted plane. The angles

�0 and �0 are obtained from the vector

p0

�0
=

⎡

⎣

cos(�0) cos(�0)
sin(�0) cos(�0)
sin(�0)

⎤

⎦ = R

⎡

⎣

�0
�0
0

⎤

⎦ (64)

while the rates are computed via

v0

�0
= R

⎡

⎣

�0�̇0 − �0�̃0

�0�̇0 + �0�̃0

0

⎤

⎦ (65)

and finally as

q̇0 = E� (�0)B
� (�0)

v0

�0
(66)

We are unable to derive explicit expressions for the expected

squared estimation error of the proposed batch estimator. One

first guess would be to use the Cramer-Rao lower bound

(CLRB) of the upcoming section, evaluated at the estimates

instead of the (unknown) true object state. The simulation

results therein suggest that this approach can be considered

appropriate at least to a certain extent although a more rigorous

investigation of this aspect is required in the future.

V. SIMULATION RESULTS

In order to get some insight into the estimation performance

achievable with an EKF using the derived prior and with the

proposed batch estimator, we have simulated two different

scenarios with tracked objects performing noise-free constant

velocity motions. In both cases, a sensor receiving angular

measurements with sample time � = 1 s and accuracies

�� = �� = 0.2 deg was assumed to be mounted on a

platform starting from initial position zero and moving hor-

izontally in pure �-direction with speed �own = 200m/s.
Initial position and velocity of the object to be tracked were

p�
0 = [15500,−11500, 1250]m with v�

0 = [−50, 50, 25]m/s
for the first considered case and p�

0 = [13250, 350, 180]m
with v�

0 = [−75, 5, 2]m/s for the second one. Herewith, the

tracked object was basically on a passing course in the first

scenario, while its course was close to collision in the second.

We ran the described extended Kalman filter (assuming some

small process noise ��� = �� = 10m
2/s3 for it) initialized

with the derived prior (for �min = 0m, �max = 25 km, and

�vel = 500m/s) and investigated the root mean square error

(RMSE) obtained with it for the five observable states in

� = 1000 Monte-Carlo runs. For comparison, we also ran a

1546



standard Cartesian-state EKF using Jacobians in the covariance

update. The position component of the state was initialized by

transforming a polar measurement with its range being half the

maximum detection range in combination with the measured

bearing and elevation according to eq. (1). The correspond-

ing covariance was chosen to be B(�)E(�)C0E
� (�)B� (�)

where the diagonal matrix C0 had entries �2max/12, �
2
max�

2

�/4,
and �2max�

2
�/4. Initial velocity was assumed to be zero with

uncorrelated errors of variance �2
vel each. We compared the

result of both recursive estimators wth the CRLB based on

all measurements received up to and including the respective

instance of time. This CRLB is the inverse of the Fisher

information matrix reading, without prior knowledge,

I(��) =
∑

�≤�

(

1

�2

�

b��b
�
�� +

1

�2
�

e��e
�
��

)

(67)

with

b�� =
∂��

∂s�
, e�� =

∂��
∂s�

, s� =
[
�� , �� , �̇� , �� , �̇�

]�
(68)

The CRLB constitutes a lower limit on the estimation error

covariance any unbiased estimator can achieve.

The performance of the proposed batch estimator was

analysed for the very same scenarios. Here, we have limited

the length of the batch, i. e., the number of measurement pairs

used for computing an estimate, to be six (or accordingly lower

as long as the number of received measurement pairs had

not reached that value yet). Again, the corresponding CRLB

served as a benchmark. Moreover, two other batch estimators

using the same up to six measurements were implemented. The

first one used separate regressions on bearing and elevation.

As the constant linear motion in Cartesian space leads to

non-linear movements in those two angular coordinates, a

quadratic regression was used, i. e., estimates for �� and �̇�

were obtained from determining, using the measurements �m,�

in the batch,

min
�� ,�̇� ,�̈�

∑

�

(�� + �̇�(�� − ��) + �̈�(�� − ��)
2 − �m,�)

2 (69)

and likewise for �� and �̇� . Obviously, this quadratic regression

estimator does not provide an estimate for �̇ = �̇/�. Finally, we

applied a general-purpose non-linear least-squares estimator

numerical trying to solve, at the cost of much higher compu-

tational effort than the other estimators, eq. (38a).

Figs. 1 and 2 show the simulation results, namely the true

observable states as well as the RMSE values from the Monte-

Carlo runs compared with the respective CRLBs. The first two

different CRLBs computed according to eq. (67) depend on

whether all measurements or only the six most recent ones

are considered where the latter case, of course, yields higher

values. The third CRLB differs from the first one by honoring,

in addition, the information contained in our assumed prior.

With this, we computed the corresponding extended Fisher

information matrix (with the prior variances as in eqs. (29)

and (35) for zero minimum detection range)

Ĩ(��) =

[
0 0�

0 I(��)

]

+ 9r0�r
�
0� +

�2max

3�2
vel

d0�d
�
0� (70)

with

r�0� =

[

∂�0

∂��

[
∂�0

∂s�

]�
]

, d�
0� =

[

∂�̇0

∂��

[
∂�̇0

∂s�

]�
]

(71)

Among all three CRLB variants, this third one yields the

smallest values. It should, however, be clear that our similation

setup does not fully match the assumptions behind this third

CRLB—we have chosen fixed initial (logarithmic) range and

(normalized) range rate and thus do not generate random errors

on the corresponding initial estimates—and hence deviations

from that are inevitable here. Moreover, when interpreting the

CRLB one must not forget that it refers to unbiased estimators

only and that a biased estimator may produce, for specific

values, a lower RMSE than suggested by the CRLB.

Fig. 1 refers to the almost passing and thus to the less

critical case (closest distance about 9.7 km). We note that both

recursive estimators, log-spherical and Cartesian EKF, deliver

very similar results in this case. They show, after some initial

phase, close to CRLB performance for quite some time. Due

to the assumed process noise however, they tend to loose

some information in the long run and show higher errors

than the CRLB then. When comparing the filter results with

the CRLB, a closer inspection of the initial phase confirms

that the one CRLB honoring the prior (on logarithmic range

and normalized range rate) much better matches the filter

performance than the one computed based on the angular

measurements alone. The match between the CRLB with prior

and the actual filter performance is very good indeed, only

in the normalized range rate we note some major deviation

where we have argued on this behalf already earlier (about

the difference between modelling assumption and actually

implemented procedure).

Close to CRLB (induced by at most six measurements)

performance is also obtained by our batch estimator with

small degradations in bearing and normalized range rate.

The quadratic regression estimator shows good performance

where the assumption of a quadratic pseudo-maneuver in

angular space (over the time interval of the measurements

incorporated) is fulfilled, here for the bearing (and its rate). It

performs less well where this is assumption is less fulfilled,

here for the elevation (and in particular its rate). The general-

purpose LS estimator performs best in the angles, but shows

some deficiency in the rates as long as angular rates are small.

This deficiency appears to be inherent in the general purpose

non-linear LS estimator and leads to rate errors that exceed the

actual rates by orders of magnitude in the more critical second

scenario where the object was closer to collision (closest

distance roughly 710m). Because of those unreasonable rate

values delivered by the non-linear LS estimator, we have

omitted it from Fig. 2 showing the results for this case. For the

other estimators, similar remarks as for the first scenario can be
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Figure 1. True observable states (left) as well as root mean square errors (right) from 1000 Monte Carlo runs compared with CRLBs for a tracked object on
a passing course. Used estimators were a log-spherical EKF initialized with the derived prior, a Cartesian EKF initialized with a converted prior, the proposed
batch estimator, an estimator based on quadratic regression, and a general non-linear least-squares.

stated. All estimators, but especially the quadratic regression

estimator due to the then violated assumption of close to

constant rates, show some performance degradation near the

point of closest distance where angles undergo relatively rapid

changes and, thus, some degragation is not totally surprising.

Farther away from this special point, the batch CRLB for

�̇ increases rapidly which confirms the low observability of

the normalized range rate for an almost colliding course.

Nevertheless, our proposed batch estimator then still reaches

close to CRLB performance for that quantity as it does for

the other observable states most of the times. There is some

phase with reduced accuracy in bearing way before the point

of closest distance though. What exactly makes the special

geometry in this phase less favorable for the estimator remains

unclear for now, the CRLB does not suggest such a problem.

We wrap up the discussion of our simulation results by

noting that the EKF running in log-spherical coordinates and

being initialized via our derived prior tracks the object without

significant problems also in this more critical case. Moreover,

we note that it is, in comparison with the Cartesian EKF, better

capable of handling the weak observability of the normalized

range rate prior to the point of closest approach. Also with

respect to the projected bearing rate, its performance is slightly

better there.

VI. CONCLUSION

With this publication, we contributed to the wide field of

tracking based on angular-only measurements with focus on

filter initialization. In order to perform one-point initialization

of an EKF running in log-spherical coordinates, we have

derived a prior for the logarithmic range and the normalized

range rate that is based on a diffuse Cartesian position prior in

combination with (minimum and) maximum detection range of

the sensor plus a prior of Cartesian velocity having zero mean

and some assumed variance. Derivation of the log-spherical

prior was rigourous (up to one conjecture still to be proven)

for fixed sensors, a heuristic adaptation to moving sensors was

proposed. Simulation results confirmed the applicability of the

derived priors for two different scenarios. On the way to an

alternative regression-based multi-point initialization, we have
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Figure 2. True observable states (left) as well as root mean square errors (right) from 1000 Monte Carlo runs compared with CRLBs for a tracked object on
an almost colliding course. Used estimators were a log-spherical EKF initialized with the derived prior, a Cartesian EKF initialized with a converted prior,
the proposed batch estimator, and an estimator based on quadratic regression.

proposed a new batch estimator and investigated its (stand-

alone without successive filter updates) performance for the

same simulated scenarios with promising results.

A more intensive simulation study comparing tracking qual-

ity based on one-point vs. multi-point initialization is left

for the future, but we expect results in analogy to the ones

obtained for Cartesian-complete observations in [12]: Where

the assumptions made for the prior reflect reality at least to

some extent, its incorporation via the one-point initialization

plus successive updates should yield better results than the

multi-point initialization not using this valuable information.
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