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Abstract—Matching radar gridmap excerpts for vehicle self-
localization can be regarded as an image registration task.
This paper therefore presents a new, efficient image registration
approach, which is suited to radar gridmaps. It does not require
sharply structured input images and is applicable to all image
pairs that can be aligned by a Euclidean transformation. Few
line-shaped parts of the reference image are used for description.
The similarity of a test image to these reference lines is calculated
in a fast Hough transform based computation scheme.
Experiments on radar gridmap excerpts derived from two
different test drives demonstrate the low rate of false matches and
low registration error of this algorithm. The short computation
time shows the suitability of this algorithm for real-time
application in a vehicle self-localization setup.

I. INTRODUCTION

The rising degree of intelligence in future vehicles presents

heavy requirements on the vehicle self-localization, cf. [1].

Driver assistance functions which are increasingly autonomous

must constantly know the vehicle’s accurate pose (i.e. position

and orientation). Neither the strict accuracy nor constant

availability requirements are achieved by current satellite

based positioning systems such as GPS, cf. [2]. Therefore,

new ways of vehicle self-localization must be developed and

incorporated into a fused overall self-localization system.

We pursue an approach that uses the aggregated observations

of the vehicle’s radar sensor for self-localization. While a

vehicle is driving along a road, all observations of every

radar snapshot are accumulated into one local map, taking into

account the vehicle movement between two snapshots, cf. [3].

This local map (called gridmap in the following) represents a

2D bird’s eye view radar map of the scene currently being

passed through, cf. Fig. 1. Because it is based on radar

data, it shares the beneficial characteristics of radar, i.e. high

robustness against changing light or weather conditions.

A radar gridmap can be regarded as a gray-scale (single

channel) image. Compared to camera images, it looks rather

blurred. Sharp edges or corners are rare. For the transformation

between two different observations of the same object in

gridmaps, no expansions, shear nor nonlinear distortions

are assumed. Furthermore, given a fixed cell size ccell

of each pixel, no scaling of the gridmap needs to be
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Fig. 1. Radar gridmap on the right for the setting shown on the left
(examples of possible landmarks circled, aerial image taken from
GoogleEarth, ©2009 GeoBasis-DE/BKG)

considered (ccell = 0.2m throughout this paper). Therefore,

solely Euclidean transformations (i.e. rotation and translation)

are regarded.

In this paper, small, prominent and characteristically structured

excerpts of the radar gridmap along a road are regarded as

landmarks for self-localization, cf. the circled portions in

Fig 1. These excerpts are stored in a global database and

exact information of their global pose is added. Now, a vehicle

on that road can deduce its own global pose by recognizing

currently observed excerpts from the gridmap that match the

landmarks in the database and by calculating its relative pose

with respect to that landmark through a registration of these

two images.

This image registration needs to be carried out in the

moving vehicle in real-time, which leads to three functional

requests. First, the registration operation needs to be quick1

(Treg � 1 s) to avoid continually-increasing queues of image

pairs waiting to be registered. Second, for scheduling reasons

the processing time should be approximately predictable.

Therefore, registration algorithms with a fixed number of

operations (avoiding iterative optimizations) are favorable.

1at least quicker than the mean expected traveling time between two
consecutive landmarks along a road
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Third, because the vehicle needs to either have a local copy of

the landmark database on board or receive information about

close landmarks via mobile data services, the description of

each individual landmark should be strongly compact to keep

the data load low. All three requests are met by the image

registration algorithm proposed in this paper, as will be shown

in the following.

A. Notation

The following notation is used throughout this paper: Scalars

are designated by plain characters (e.g. c), vectors by bold

lowercase characters (e.g. v), matrices and tensors by bold

capital characters (e.g. A) and sets by blackboard bold

characters (e.g. T). Single subscript indices (xi, xj , or xk) fix

the corresponding variable to a specific value. Subscript words

further specify the variable name without changing its mode

(Itest). Superscript information indicates the used coordinate

system (H(α,x,y)) where necessary.

II. IMAGE REGISTRATION

There is a broad body of work on image registration. An

extensive survey of different modes and approaches is given

in [4]. Another more recent overview can be found e.g. in [5].

This paper follows the definitions and classifications of [4].

There are two major classes of image registration approaches:

feature- and area-based approaches.

Feature-based approaches use manually or automatically

selected prominent points (key points) in both images. They

find corresponding key points in the different images by the

specific geometric alignment of the points in each image

and/or by a descriptor of each point’s neighborhood, cf. [4].

Feature-based approaches usually offer very computationally

efficient solutions that are comparably robust against minor

changes in the image intensity. However, they require the

regarded images to be strongly structured in order to find

appropriate key points. This is usually not the case for

the rather coarse image excerpts of radar gridmaps in our

application.

Area-based approaches operate on the raw intensity values of

the whole input images or certain selected excerpts optimizing

some similarity measure or the mutual information of these

two images, cf. [6]. On the one hand, this offers the full

image information for registration. Additionally, no detection

of key points is necessary, so area-based approaches usually

are also applicable to less structured images. This happens

by taking into account general courses of intensity values

in the area rather than single outstanding points. On the

other hand, these approaches require the input images to have

roughly similar intensity ranges (this constraint is fulfilled

for radar gridmaps), or at least some statistical dependence

of different intensity levels. Furthermore, these approaches

impose much stronger computational work loads than feature-

based approaches, which in many cases prohibits real-time

application, cf. [4].

Given increasing computation power, in recent years a

slight movement from more feature-based to more area-based

approaches has been observed. For example in [7] Carpin

presents a method for fast registration of robotic maps of

the same environment. Using Hough spectra, the difference

in orientation of two maps is computed. Subsequently,

the translational displacement is determined by the cross-

correlation of the intensity projections onto the image axes. In

Carpin’s application, large maps (∼ 250.000 cells) of limited

environments are registered. Our application requires global

databases, therefore we want to limit the gridmap excerpt size

of one landmark to only a couple of thousand cells (∼ 3.600).

A. Contribution

In this paper we develop an efficient algorithm for online

image recognition and registration of structured gridmap

excerpts. Regarding the classification of image processing

algorithms in [4], it is an area-based approach operating

only on a small subset of pixels of the reference image.

It accepts input images that are subject solely to Euclidean

transformations. Apart from radar gridmaps as in our

automotive application, e.g. cameras with a fixed distance

to their targets in a perpendicular plane deliver images with

these characteristics. Such cameras for example are used in

industrial visual quality assessment applications.

B. Concept

In radar gridmaps, many pixels contribute very little to the

overall image information for two reasons. First, image areas

are not equally important. There are some very relevant image

parts showing the core of the image content and there are much

less relevant image areas showing only background. These

large connected background areas with constantly low pixel

values allow neither recognition nor registration, because they

are not characteristic.

Second, neighboring pixels are strongly correlated. If one pixel

holds a certain value, it is very likely that its neighboring pixels

hold similar values. Therefore, a gridmap image contains a lot

of redundancy. For a distinct description of a gridmap excerpt,

it is sufficient to regard a small subset of pixels that are spread

out over the relevant image parts.

Our approach defines a mask consisting of several straight

line segments that are pairwise parallel or orthogonal to each

other. Each straight line segment has a width of one pixel

and an individual length of several pixels. For the description

of a radar landmark, only the image pixels masked by these

line segments are regarded, cf. Fig. 2. The expression line

segment in this context only indicates the shape of the single

set elements. It does not imply that the reference image shows

actual lines along these selected segments.
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Fig. 2. Visualization of the RoughCough principle: The second to left image shows the reference image with the selected set of describing line segments
framed. The second to right image shows the reference image masked by this line set. These pixels are the only information about the reference image given
to our algorithm. The right-most image shows a registered test image. The closest match to the reference line set as detected by our algorithm is framed, again.
The left-most aerial image shows the regarded setting (taken from GoogleEarth, ©2009 GeoBasis-DE/BKG). In all images axis values are pixel numbers.

Recognition and registration of this landmark with a test

image is performed by calculating the similarity of these

masked pixels with the corresponding pixels in the test

image, assuming a set of all possible hypothetical Euclidean

transformations. If no transformation results in a high

similarity measure, the reference image is regarded as

unrecognized in the test image. Otherwise, the Euclidean

transformation leading to the highest similarity is regarded as

the registration result for a matching pair of reference and test

image, cf. Fig. 2.

In the following this registration algorithm is described in

detail. It is calculated as an extension of the classical Hough

transform and uses similar data fields. Therefore, identically

to the Hough transform, it can be easily run in parallel and

requires a fixed number of operations. Because it regards only

a small subset of pixels of the reference image, its performance

is fast.

III. ROUGHCOUGH

RoughCough, our approach to image recognition and reg-

istration, can be regarded as an extension of the classical

Hough transform for detection of straight lines, cf. [8]. The

relationship between these two algorithms will be examined

in Subsection III-A. Thereby, the registration of one given

reference line segment in a given test image will be described.

Subsequently, Subsection III-B will cover the geometric

relations between multiple reference line segments and derive

a simple rule to combine the results of the individual segments.

These are the two core elements of RoughCough.

A. Registration of one line segment

The classical Hough transform detects straights in a binary

input image B, cf. [8]. It uses the Hesse normal form for

representation of straights:

dhough = x · cosαhough − y · sinαhough, (1)

where αhough and dhough represent the angle and the distance

to the origin of a straight and x and y describe the pixel

coordinates along this straight. Here, the direction of αhough

has been chosen clockwise and the coordinate origin in the

center of the regarded image.

For every hypothesis of a straight in the input image B, the

Hough transform accumulates all one-pixels
(

B (xi, yi) = 1
)

along this line. The hypothesis space is spanned by the

regarded variations of dhough and αhough. Typically, dhough and

αhough both are linearly sampled between a minimum and a

maximum value with a given resolution. The resulting two-

dimensional Hough space matrix H can be regarded as the

similarity of every hypothesis
(

αhough,j , dhough,j

)

to an ideal

straight in the original binary image B.

For our image registration approach, a finite straight line

segment v in a gray-scale test image T is searched for,

instead of a straight in a binary input image, cf. Fig. 3. The

line segment v is described by a given course of line values

[v1, v2, . . . , vl] with an individual length l, cf. Fig. 4. These

line values are assumed to have the same spacing as the

horizontal and vertical pixel spacing of the test image.

In addition to the two classical Hough parameters αhough and

dhough, a third parameter is needed to fix the finite line segment

on the infinite straight, in order to describe the location of

each hypothetical line segment in the test image. We use

the base bhough to describe the index of that element of the

line segment that is positioned at the perpendicular base

point of this straight, cf. Fig. 3. In accordance with the two

classical parameters, for the base bhough a range of equally

spaced hypotheses is assumed. Therefore, the resulting Hough

space H in this case will be a three-dimensional tensor.

In the classical Hough transform, the range of αhough is usually

set to [0◦, 180◦) and dhough can be positive or negative, or

the range of αhough is set to [0◦, 360◦) and dhough can only

be positive. For the case of this extension, not only the

orientation, but also the direction of the straight line segment is

relevant. Therefore, the range of αhough is set to [0◦, 360◦) and

dhough can still be positive and negative. To avoid ambiguities,

we further define the vectors along the directions of dhough,
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bhough and the normal vector pointing out of the picture plane

according to the right-hand rule, cf. Fig. 3.

The resulting value of a hypothesis
(

αhough,j , dhough,j , bhough,j

)

describes the similarity between the element values of the

line segment v and the (interpolated) image values along

the respective hypothetical straight line segment in the test

image T. Any similarity measure returning a scalar value

for two input vectors is possible. We use a measure that

accumulates all element similarities along the straight segment

by a quadratic exponential function:

cj ∝
l

∑

i=1

exp

(

−w ·
(

T
(

pj,i

)

− vi

)2
)

(2)

with the pixel coordinates pj,i in the test image T

pj,i =

[

xj,i

yj,i

]

=

[

x
(

αhough,j , dhough,j , bhough,j , i
)

y
(

αhough,j , dhough,j , bhough,j , i
)

]

= dhough,j ·
[

cos
(

αhough,j

)

−sin
(

αhough,j

)

]

+
(

i− bhough,j

)

·
[

sin
(

αhough,j

)

cos
(

αhough,j

)

]

(3)

and w ∈ R
+ a parameter defining the strictness, with which

bad agreement between the elements of the test image T

and the line segment v is punished. This parameter helps

to tune this measure to the specific value ranges of different

applications.

Hence, the final result of this transformation is the three-

dimensional Hough space volume H that for every assumed

triple
(

αhough,j , dhough,j , bhough,j

)

contains the similarity of the

respective line excerpt of the input image and the given

line segment v. For example Fig. 5 shows the projections

onto the
(

αhough, dhough

)

- and the
(

αhough, bhough

)

-planes of the

corresponding Hough space for the test image of Fig. 3 and the

line segment of Fig. 4. This Hough space has been computed

with a quantization of 0.5 pixels for dhough and bhough and 1◦

for αhough.

If the line segment v has been derived as part of another

image R and if applied with image T, results in a high

similarity value for some triple
(

αhough,j , dhough,j , bhough,j

)

, it

can be deduced that image R (or at least parts of it) can

be recognized in image T. Additionally, the translational and

rotational displacement between these two images is returned.

This way, the two images R and T can be recognized and

registered by the extracted reference line segment v.

B. Geometric relation between multiple line segments

In general, recognition of a reference image R is more

distinct, when more than just one describing line segments

are used (even if the combined length of the segments is

kept constant). For example in Fig. 5, there are multiple

strong local maxima apart from the true (encircled) maximum.
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Fig. 5. Resulting Hough space H for the image T of Fig. 3
and the vector v of Fig. 4 projected onto the

(
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)

-

and the
(
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)

-planes

Adding more describing line segments could help suppress

these misleading local similarity maxima.

In the previous subsection, the resulting Hough space is

represented over the coordinates αhough, dhough and bhough:

H(αhough,dhough,bhough). For compatibility of the results of multiple

line segments, we want a representation of the Hough space

dependent on the rotational and translational differences αdiff,

xdiff and ydiff between the reference and the test image:

H(αdiff,xdiff,ydiff). αdiff, xdiff and ydiff are defined in the image

coordinate system of the reference image. Therefore, a coordi-

nate transformation
(

H(αhough,dhough,bhough) → H(αdiff,xdiff,ydiff)
)

is

necessary. This transformation is an angle shift between αhough

1536



chough

dhough

dhough

bhough

bhough

xdiff

ydiff

ydiff

xdiff

cdiff

chough

cdiff

opar

opar

oorth

oorth

Fig. 6. Transformations for RoughCough: In the top diagrams, a column segment is regarded, in the bottom diagrams, a row segment (both indicated by
the green arrows). The left hand diagrams show the Hough parameters in the test image (red), the center diagrams show the offsets in the reference image
(green). The right hand diagrams show these two images aligned by the recognized common line segments and the resulting parameters of the Euclidean
transformation between them.

and αdiff and a two-dimensional homogeneous transformation

for rotation and translation between the pairs
(

dhough, bhough

)

and (xdiff, ydiff) depending on the position and orientation of

each descriptive line segment in the reference image.

In aiming to achieve high computation speed for real-

time application of this image registration method, explicit

execution of this transformation should be avoided. This is

possible in two special cases: when the regarded line segment

is aligned with a column, or a row of the reference image.

If the line segment is aligned with a column of the reference

image, this transformation becomes

αdiff = 180◦ − αhough,

xdiff = oorth + dhough,

ydiff = opar − bhough,

(4)

and if the line segment is aligned with a row of the reference

image, the transformation becomes

αdiff = 90◦ − αhough,

xdiff = opar + bhough,

ydiff = oorth + dhough.

(5)

These equations are deduced from the geometry depicted in

Fig. 6. oorth represents the coordinate of each line segment

that is orthogonal to the line orientation and opar describes the

position of the first line element along the coordinate that is

parallel to the line orientation, both in the coordinate system

of the reference image. I.e. for column segments oorth equals to

the x-coordinate and opar to the y-coordinate of the coordinate

system of the reference image. Conversely, for row segments

oorth equals to the y-coordinate and opar to the x-coordinate of

the reference image.

For these two special cases of Equations (4) and (5) this

transformation becomes a trivial shift of variables. Thus,

the transformation can simply be performed by storing the

result H
(

αhough,j , dhough,j , bhough,j

)

computed according to the

previous subsection to the cell as defined by Equations (4)

or (5). Furthermore, considering that the coordinate system’s

orientation in the reference image can be chosen arbitrarily

before line selection, this constriction to line segments parallel

to a coordinate axis actually only means that selected line

segments need to be pairwise parallel or orthogonal to each

other.

Summing up, using the extension of the Hough transform

introduced in the previous subsection and the quick in-place

variable transformation of this subsection, the content of a

reference image R can now be described by an arbitrary

number of row and column segments in order to recognize and

register this content in a set of test images T. This approach

– RoughCough stands for row- and column-Hough – is our

proposed new method for image registration. In the following,
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Fig. 7. Line selection results

the function

H = rghcgh (I, S) (6)

describes the application of the RoughCough algorithm to the

input image I and the set of line segments S. The result is

the Hough space tensor H over the coordinates αdiff, xdiff and

ydiff.

IV. LINE SELECTION

The recognition and registration performance of RoughCough

for a reference image is strongly dependent on an appropriate

set of descriptive line segments, so care should be taken when

selecting them. We regard the selection of line segments for

one reference image as an offline task, but the recognition and

registration of a true match using these line segments as an

online task with real-time constraints. That means, that while

for online image registration fast computation is a major issue,

for line selection it is not a priority.

An appropriate set of line segments should:

1) contain characteristic parts of the reference image,

2) have a small number and a small combined length of all

segments in order to keep computation time short,

3) be robust against slight intensity variations in a true

match,

4) ideally return one single narrow mode with steep slopes

in the Hough space for a true match in order to give a

distinct estimate for the rotation and translation of test

and reference images,

5) generally return low similarity values for all other test

images to clearly reject them.

These weak constraints are partially contradictory. Especially

the third constraint is in contrast to the forth and fifth ones,

which makes appropriate trade-offs necessary.

We now assume to have a set of nref reference images R =
{R1,R2, . . . ,Rnref

}, extracted from the radar gridmap of one

reference drive. The alignment to global coordinates of the

reference images is assumed to be known. Furthermore, we

also regard the case that additionally to the first set of reference

images a second similar set V = {V1,V2, . . . ,Vnref
} is also

available. This second set contains radar gridmap excerpts of

the same image content and with the same alignment as the

first one, but is taken from gridmaps generated from different

radar observations than the first one. If available, this second

reference set can be used for validation.

While there are various possible strategies for line selection,

in this section we present one automated method. We chose

a set of line segments for a reference image in two main

steps. First, we quantify the image representation quality of

any possible line segment in this image. Then, we optimize

for a combination of these segments that best fulfills the given

constraints using a fitness function.

A. Line evidence

A line segment (column or row) in an image is a connected

set L of pixels p. The quality, to which a line segment can

represent the image it has been derived from is called line

evidence qev, here. Generally, segments with high accumulated

absolute values of the first derivative and large spreads of the

image values are more characteristic than others, because they

represent highly dynamic image parts. Also, we prefer shorter

segments to larger ones in order to save computational power.

Therefore, we have defined a quality function for column

segments in an image I as

qev, col = h2
L
·
∑

p∈L

∣

∣

∣

∂
∂y

I (p)
∣

∣

∣

log
(

|L|
) (7)

with hL the value spread along the segment

hL = maxp∈L

(

I (p)
)

− minp∈L

(

I (p)
)

. (8)

The quality function for row segments is defined accordingly.

Every possible line segment in a reference image is evaluated

with regard to its line evidence. All locally maximal segments

are stored for further processing. A line segment is called

locally maximal if neither varying its line coordinate, nor its

starting or ending pixel within that line by one, leads to another

line segment with higher line evidence.

For a typical 60x60 reference image of our radar self-

localization application, this procedure usually leads to a set of

50 to 150 locally maximal line segments Sall. These segments

usually are fairly well distributed in length, position and kind

(row or column), cf. the example in the left plot of Fig. 7.

B. Selection of a set of lines

The goal of the second step for line selection is to find an

optimal subset of line segments Sopt ⊆ Sall that fulfills possible

hard constraints (e.g. hard limits on the number or combined

length of all segments) and represents an optimal compromise

for the weak constraints enumerated at the beginning of

Section IV.

Therefore, we use a Binary Particle Swarm Optimization

(BPSO) as described and parameterized in [9] to optimize for
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Fig. 8. Examples of registered images in all environments:
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such a (possibly local) solution. The dimension of the particle

space corresponds to the set size of all line segments |Sall|.
The single binary dimensions correspond to one specific line

segment being chosen (true) or not being chosen (false) for a

specific solution Si. The applied fitness function of the BPSO

for the k-th reference image Rk and the i-th subset of line

segments Si is:

qfit,k,i =
m2

V · exp
(

−α2
diff,V − x2

diff,V − y2diff,V

)

m4
other · µref ·

√
lcomb · nlines

(9)

with:

mother = maxj �=k

(

maxαdiff,xdiff,ydiff

(

rghcgh
(

Rj , Si
)

)

)

(10)

the maximum returned value of any RoughCough operation

applied to this subset Si and a different reference image Rj

(false match), and lcomb the combined length and nlines the

number of all selected line segments in Si. µref is the average

of Href with

Href = rghcgh (Rk, Si) (11)

the result of the RoughCough operation applied to this exact

subset Si and reference image Rk.

For the case that a validation set V is available,

mV, αdiff,V, xdiff,V and ydiff,V are defined as

mV = maxαdiff,xdiff,ydiff
(HV) , (12)

[

αdiff,V, xdiff,V, ydiff,V

]

= argmaxαdiff,xdiff,ydiff
(HV) , (13)

with

HV = rghcgh (Vk, Si) . (14)

If no validation set is available, the numerator in Equation (9)

is set to one.

This numerator in Equation (9) ensures robustness of an

optimal solution Sopt against slight intensity variations in a

true match due to measurement noise (weak constraint 3).

If no validation set is available, this weak constraint cannot

specifically be dealt with. The term mother in Equation (9) leads

total urban highway rural

RoughCough for line sets selected without validation information

selected images 548 186 122 240

matches 213 (38.9%) 94 (50.5%) 13 (10.7%) 106 (44.6%)

false matches 11 (5.2%) 0 (0%) 2 (15.4%) 9 (8.5%)

RoughCough for line sets selected with validation information

selected images 610 328 58 224

matches 268 (43.9%) 166 (50.6%) 12 (20.7%) 90 (40.2%)

false matches 16 (5.9%) 3 (1.8%) 2 (16.7%) 11 (12.2%)

TABLE I
RECOGNITION PERFORMANCE OF ROUGHCOUGH

to strong suppression of false matches (weak constraint 5).

The factors lcomb and nlines counteract high computational cost

(weak constraint 2) and the factor µref suppresses wrong or

inaccurate translation and rotation results for a true match

(weak constraint 4). The exponents in Equation (9) are used to

weight the single terms. The result of one such optimization

of all lines given in the left-hand plot of Fig. 7 can be seen

in the right-hand plot of that figure.

V. EXPERIMENTS

Two measurement drives (one reference drive and one test

drive) along the same route were completed, in order to

evaluate the performance of our algorithm. The route is 9 km

long altogether and includes urban areas (1.6 km), highways

(2.2 km) and rural roads (5.2 km). The test vehicle was

equipped with two experimental 77 GHz-radar sensors at both

front vehicle corners and a real-time kinematics unit (RTK)

for precise ground-truth measurement of the vehicle pose. The

radar sensors have a bandwidth of 600 MHz, a maximum range

of 42 m and an angular field of view of ±60◦. The sensors’

standard deviation of the range measurement is about 0.25 m

and the angular standard deviation about 1◦.

For offline evaluation, the radar observations of the reference

drive were accumulated to amplitude-gridmaps according

to [3] in two different ways. In one way, the observations of

both sensors were accumulated into the same gridmap. In the

other way, the observations of each sensor were accumulated

into a separate gridmap each, leading to two different, however

perfectly aligned gridmaps. In this second case, a validation

set V is available for line selection according to Equation (9).

In these reference gridmaps, characteristically structured areas

were automatically searched for as gridmap excerpts of 60x60

pixels that lead to high fitness values of the final selected

reference line set in an optimization according to Section IV.

Structured areas in the neighborhood (closer than 40 m)

of each regarded excerpt were used as excerpts of false

matches Rj in Equation (10), necessary to optimize for good

suppression of false matches. For the case without validation

information, 548 reference images were selected, and 610
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total urban highway rural

RoughCough for line sets selected without validation information

true matches 202 94 11 97

µerr,X 12.4 cm 7.9 cm 11.6 cm 16.9 cm

µerr,Y 15.4 cm 4.6 cm 5.1 cm 27.0 cm

µerr,α 0.39 ◦ 0.37 ◦ 0.33 ◦ 0.42 ◦

RoughCough for line sets selected with validation information

true matches 252 163 10 79

µerr,X 11.6 cm 7.1 cm 9.0 cm 15.0 cm

µerr,Y 11.0 cm 5.4 cm 6.7 cm 20.3 cm

µerr,α 0.42 ◦ 0.41 ◦ 0.61 ◦ 0.39 ◦

Mutual information registration

true matches 180 54 51 75

µerr,X 11.8 cm 12.9 cm 12.4 cm 10.7 cm

µerr,Y 11.4 cm 6.1 cm 6.5 cm 18.4 cm

µerr,α 0.59 ◦ 0.55 ◦ 0.45 ◦ 0.72 ◦

Carpin registration

true matches 196 50 38 108

µerr,X 37.9 cm 36.8 cm 29.1 cm 41.5 cm

µerr,Y 29.3 cm 37.6 cm 25.0 cm 26.9 cm

µerr,α 0.62 ◦ 0.60 ◦ 0.53 ◦ 0.66 ◦

TABLE II
REGISTRATION PERFORMANCE OF ALL METHODS

reference images for the case with validation information. The

mean combined length of line segments in the first case is

68 pixels, in the second case 71 pixels, the average number of

selected lines in the first case is 2.4, in the second case, 2.7.

The radar observations of the test drive were also accumulated

into a gridmap, and structured test excerpts were extracted

as structured image parts of these gridmaps. The size of test

images was chosen as 80x80 pixels to increase the probability

that the full content of a reference image is included in the

test image of a true match.

The ground truth pose from the RTK was stored for both,

reference and test images. The ground truth mean expected

position error was 2.2 cm and the orientation error 0.03◦. This

ground truth position of reference and test images was used

to pre-select the test image candidates to be registered with

each reference image. Only test images that are closer than

40 m to each reference image were regarded. This pre-selection

simulates the effects of a rough localization given in a vehicle

through GPS or a prior pose estimate. With this processing

method, on average 100 test images were selected for each

reference image.

Matching and registration of the reference images with their

set of test images was done with the following standard

parameters:

Hough space: Rotations between −5◦ and 5◦ around the

expected angle were regarded. This angular limitation is

motivated by our application. Bound by the road surface,

vehicles on roads in general do not have arbitrary orientations,

but rather those roughly similar to the roads themselves.

Translations, both in x- and y-direction, are regarded in the

range of -10 to 10 pixels. That is just the displacement for

which the smaller area of the reference image is still fully

covered by the test image area.

Resolution: The standard resolution was chosen as 0.2◦ in

rotation and 0.2 pixels in translation. These values were varied

between 0.1 and 0.5 without major effects on the results.

Additional parameters: The strictness factor w in Equa-

tion (2) was chosen as 3.6 · 10−7, which is appropriate for

the dynamic range of our input images (unsigned 16 bit). The

proportionality factor for the result of Equation (2) is chosen

as 1/lcomb for each reference line set specifically. This way the

RoughCough result is bound to the interval [0; 1].

If the highest maximum RoughCough value returned by one

of these test images is higher than θRC = 0.6, we consider

this test image to match the reference image. This threshold

value represents an appropriate trade-off between reliability

(low percentage of false matches) and number of detected

matches in our application. If no test image returns a maximum

value higher than θRC we regard the reference image as

unrecognized within the test set. The αdiff, xdiff and ydiff

coordinates of this maximum value in the Hough space are the

calculated registration between this matched pair of reference

and test image. If the remaining ground truth distance between

this pair is greater than 1 m, this specific match is regarded as

a false match.

For comparison, registration has also been done using

the implementation of mutual information registration by

Matthew Sochor, publicly available at [10], and with a re-

implementation of Carpin’s method presented in [7]. The

mutual information registration applies the joint histogram

approach of [6]. This code is based on [11]. For optimization

Powell’s direction set method is used [12]. Carpin’s method

originally is intended for large binary maps (pixel free or

occupied), cf.[7]. It has been adapted to small excerpts of gray-

scale maps. Since both implementations of the comparative

algorithms require the input images to be the same size, the test

images have been set to 60x60 pixels for these registrations.

These comparative methods have been applied instead of

RoughCough in our processing chain. However, because this

processing chain has been designed for the application with

RoughCough, the recognition performance (i.e. the ratio of

detected matches for all reference images and the ratio of true

matches in all detected matches) of these methods turned out

to be much worse than the performance of RoughCough. This

should not be considered as a flaw of the comparative methods,

but as an implication of the regarded application. Therefore,

we will compare the registration performance (i.e. mean

registration errors in translation and rotation) of RoughCough
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and the comparative methods only on the detected true matches

of each individual method.

An example of typical, matched pairs for each environment

is shown in Fig. 8. The recognition results of RoughCough

for both regarded cases are given in Table I. The ratio of

only about 5% false matches in both cases shows the high

reliability of the RoughCough matching result. The percentage

of recognized matches of RoughCough is better for the line

sets extracted with validation information than without (43.8%

compared to 38.9%). However, this rate of less than 50% in

both cases is still rather low. We assume that using validation

information of a completely different drive could further raise

this rate, as then not only disturbances due to sensor noise,

but also due to the specific situation could be avoided (e.g.

parked cars or field of view limitations due to other vehicles

driving ahead).

The registration results of all regarded algorithms are presented

in Table II. RoughCough performs well on the test data

for both kinds of line segments (distance error ∼ 12 cm,

angular error ∼ 0.4◦). The distance uncertainty is better

for the line sets extracted with validation information. This

shows that the nominator in Equation (9) actually does

improve the robustness of the selected line set. Therefore, if

available, this form of validation information should be used.

Regarding the mean distance and angular errors, the mutual

information registration performs equally well on the test set

as RoughCough. Carpin’s method also leads to low angular

errors. However, the mean distance errors of Carpin’s method

with around 30 cm in one direction are significantly worse than

the errors of RoughCough. The performance of all algorithms

is worse in rural and highway environments than in urban

environments. This is plausible, because in urban scenarios

objects along the roads are more distinct, cf. Fig. 8.

On a computer with an Intel Core i7 X990 CPU and an

Nvidia GeForce GTX 570 GPU, the RoughCough algorithm

for one reference line set and one test image on average

took 14 ms, using the standard parameters given above. Our

implementation exploits parallel computation on a GPU. The

mutual information registration on average took 980 ms and

Carpin’s registration 75 ms. The Hough transform used by

Carpin’s method also ran on a GPU. Therefore, in comparison

with the two other regarded algorithms, RoughCough is the

only registration method that yields both high accuracy of the

registration results and low computation time.

VI. CONCLUSION

This paper has presented RoughCough, a new image regis-

tration algorithm, suitable for radar gridmaps. The suitability

of RoughCough for radar based self-localization has been

demonstrated in experiments on test data collected in test

drives in real traffic scenarios. For the test data RoughCough

returned more accurate results in shorter computation time

than the two regarded comparative algorithms. It fulfills the

functional requests of a low and approximately predictable

processing time and of a compact representation of the

reference image in the landmark database.

RoughCough was used with a limited range of hypothesized

rotations for fast operation in this paper. However, if no rough

prior estimate of the image rotation is available, it can be used

with a full range of hypothesized rotations and then detect

arbitrary Euclidean transformations.

Movable objects, such as parked cars, still represent a

challenge for this algorithm because they look highly

structured in a gridmap and therefore often are selected as

bad landmark reference images. This can be avoided by

multiple drives for landmark selection or by incorporating a car

detection as proposed in [13] into the reference line selection

process of Section IV.

In future work, new line selection methods will be investigated

for raising the percentage of landmark images that are

recognized in a test drive. Furthermore, RoughCough will

be applied with a particle filter for self-localization. In such

an application, the Hough space has to be evaluated for the

particle locations, only.
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