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Abstract—Integration and exploitation of information

collection across a distributed network of assets usually

requires the establishment and maintenance of registration

of coordinates across the nodes of the network. Here “reg-

istration” covers a range of possibilities, including clock

synchronization and registration of frames of reference.

The registration problem is posed in terms of network

represented by a graph Γ with vertices corresponding

to the sensors. Attached to the edges of the graph are

noisy measurements of the “difference” between the two

coordinate systems. This “difference” is expressed in terms

of a member of a Lie group of coordinate transformations.

Effectively, the registration problem is specified in terms of

a connection on the edges, and becomes one of estimating

a gauge transformation to align the coordinate systems

across the network. The key descriptor of the difficulty

of the estimation problem, the Fisher information, can be

simply expressed in terms of the geometry of the situation

and provides a link between the homological chains and

cochains for the graph.

I. INTRODUCTION

Registration of data across a network is a ubiquitous

problem in distributed sensing. Over more than three

decades, much effort has been expended on development

of algorithms to provide time synchronization across

a distributed network; e.g., [1], [2], [3], [4], [5]. Syn-

chronization of this kind is important for distributed

parallel processing as well as data fusion across a sensor

network. It is typically the case that the network is not

complete; i.e., each node does not communicate with

every other node. A large fraction the approaches de-

scribed in the literature produce algorithms to minimize

an error or objective function based on least squares,

often within power or other resource constraints. Leaving

aside the latter issue, the problem in this setting is to

assign an adjustment to the datum at each node based on
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knowledge of the differences, generally noisy, between

the values at some pairs of nodes in the network. Even

if difference measurements are available for every pair

of nodes in the network, the presence of noise still raises

consistency considerations; e.g., the true offsets must

sum to zero around any closed cycle.

The domain of practical network synchronization

problems is by no means limited to situations in which

the natural measurement space is the real line. Individual

nodes may possess multiple data to be registered across

the network, and the noise affecting such vector data

may be correlated across its components. Research in

this arena has led to sophisticated distributed algorithms

for estimation problems that apply beyond the realm of

network alignment [6], [7], [8], [9], but little attention

has been given to situations in which the natural mea-

surement space is a Lie group [10], [11] rather than a

linear space. In phase synchronization, for example, typi-

cal data could be measurements of the phase differences

between local oscillators at the nodes. In this setting,

the natural measurement space is the circle T = R/2πZ
rather then the real line R. If several local oscillators

are involved, measurements might lie on the torus T
n.

Another important practical example where the measure-

ment space is a nonlinear multi-dimensional manifold is

registration of local coordinate systems, for which the

natural setting in the special orthogonal group SO(3).
In the context of clock synchronization, if both offset

and clock speed are adjustable locally then the offsets are

elements of the affine group A. These examples illustrate

that practical problems can entail data on Lie groups

that are compact (e.g., T or SO(3)), non-compact (Rn),

abelian (Rn, T), or non-abelian (SO(3) or A).

It is common to represent networks in terms of graphs.

In this setting, the network nodes that provide data to be

registered or synchronized are represented by vertices

labeled with their associated parameters, such as local

clock time or local coordinate system. Each pair of

vertices corresponding to a pair of nodes that are in direct

communication are joined by an edge. Information is
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shared between vertices along such edges, each of which

is labeled by a noisy measurement of the coordinate

transformation needed to take a value from the vertex

at the start of the edge into the coordinate system of the

vertex at the end. A goal of this paper is to show how

such sensor network registration problems are naturally

formulated in terms of what is called gauge theory in

physics or the theory of connections on principal bundles

in mathematics [12], [13], and how gauge invariance of

statistical models can be exploited to better understand

the statistical limits of network registration.

The work of Amari and others [14] on the use of

methods of Riemannian geometry to analyze statisti-

cal estimation problems is of increasing interest to re-

searchers in signal processing. This methodology, known

as information geometry, provides a rigorous geometric

framework for measuring the power of data to discrim-

inate values of parameters. These ideas date back to

Rao [15], who showed that the Fisher information of a

likelihood used in an estimation problem can be seen as

a Riemannian metric on the parameter manifold. This

paper elucidates the implications of gauge invariance

in the information geometry of statistical estimation

problem associated with sensor network registration.

II. NETWORK REGISTRATION AND GAUGE

TRANSFORMATIONS

The basic model represents a sensor network by a

graph Γ with vertex set V (Γ) indexing the sensors and

edge set E(Γ), as defined below. Each sensor makes

observations that are represented in some local coordi-

nate system. There exists a group G of transformations

that convert between alternate coordinate systems. This

group is referred to as the gauge group. A priori, there

is no preferred choice of coordinate system or even

a preferred reference coordinate system. The act of

choosing a reference coordinate system at each node

in the network is called choosing a gauge (or trivial-

ization in mathematics). Having chosen a gauge, the

state of the sensor network, in terms of the coordinate

system chosen, can be represented as a point in the

Cartesian product V (Γ)×G; i.e., the state of each node

is represented by the group transformation that takes

its reference coordinate system to the one in use. It

is possible to mathematically describe the state of the

network without a choosing a specific gauge in terms of

a principal G-bundle with discrete base space V (Γ) [12].

The state of the network is a section of this bundle.

Each pair of vertices corresponding to a pair of nodes

that are in direct communication are joined by an edge

in Γ. Information is shared between vertices along such

edges, each of which, in the absence of noise, is labeled

by the map taking the state of the vertex at the start of the

edge to the state of the vertex at the end. The collection

of such maps over E(Γ) is called a connection.

In the network registration/alignment problem it is

assumed that there exist global common, or aligned,

coordinate systems; i.e., that there are choices of gauge

such that, when each of the nodes is using the reference

coordinate system, the value of the connection on all

edges is the identity transformation in G. Such a net-

work will be called alignable. When the network is not

aligned, its state in this gauge is an element of V (Γ)×G,

where each node is associated with the transformation

that takes the common reference coordinate system to

the coordinate system of the node.

A gauge transformation is separate change of co-

ordinate system at each node in the network. In a

particular gauge, such a transformation is an element of

V (Γ)×G. In the case of a noise free-observation of the

connection, network registration for an alignable network

corresponds to finding a gauge transformation that takes

the observed connection to the identity connection.

In problems considered in this paper, the observation

of the connection is noisy. So the network registration

problem becomes one of estimating a gauge transforma-

tion that aligns the network. That is, finding a gauge

transformation for which the resulting connection is a

close as possible, by some statistical measure, to the

identity connection. It will be shown in Section IV that,

for a natural noise model, this problem becomes a gauge-

invariant estimation problem. Before this, some general

results for invariant estimation on Lie groups will be

derived.

III. INFORMATION GEOMETRY ON LIE GROUPS

In this section we develop some general results for

invariant estimation on Lie groups which we will need

subsequently. Suppose that X is a random variable with

sample space X and that G is a Lie group such that

1) There is a left action of G on X
2) There is a left G-invariant measure µ on X

We are given a parameterized set of possible statistical

models for an observation of x ∈ X , S = {f(x|g) | g ∈
G}, where the f(x|g) are probability densities relative to

µ. These densities are assumed to be smooth as functions

on G. The statistical problem is estimation of g ∈ G
given a realization of the data x ∈ X .
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Definition 1: A family of densities S is said to be

invariant under a group G, if for every g, h ∈ G, Y =
hX has density f(y|hg).
We will assume in what follows that the family S is

invariant under G and consider the problem of estimating

the value of the parameter g ∈ G given a observation of

X .

The Kullback-Leibler divergence D : G × G → R
+

measures how good our measurement is expected to be

at distinguishing two values g and g′ of the parameter,

given that the value is really g. For this estimation

problem

D(g‖g′) =

∫

X
f(x|g) log

f(x|g)

f(x|g′)
dµ(x)

where we make the additional assumption on the densi-

ties that this integral exists, is finite for all g, g′ ∈ G, and

is C2 in each variable. This is a mild extra assumption

that is satisfied for statistical distributions of practical

interest. Invariance under G implies that

D(hg‖hg′) = D(g‖g′) (1)

for all h ∈ G and, in particular, that

D(g‖g′) = D(id‖g−1g′) = D(g′
−1

g‖id)

where id denotes the identity element of G.

The Fisher information metric can be defined as

Fg = ∇2D(·‖g′)
∣

∣

g=g′
= ∇2D(g′‖·)

∣

∣

g=g′

=

∫

X
(d log f)g ⊗ (d log f)g f(x|g)dµ(x).

(2)

where ∇ is any covariant derivative on G (all give the

same result). This quantifies how good a measurement

at distinguishing “infinitesimal” changes in the parameter

g.

For the invariant estimation problem the Fisher metric

on G is left invariant; i.e.,

Lh
∗F = F

where Lh is the left action of h ∈ G on G. Here Lh
∗

denotes the pullback corresponding to Lh.

A special case arises when f is a fixed distribution

on X and the family of distributions is defined by

f(x|g) = f(g−1x). It is easily checked that this is an

invariant family. The corresponding Fisher Information

is called the distributional Fisher Information of f , and

quantifies the ability of a measurement to distinguish

“infinitesimal” shifts in the distribution by the group

action of G on X . This concept has been widely studied,

albeit typically in less generality than described here;

see, for instance, [16].

The Cartan-Maurer one-form σ is a g-valued one form

on G, where g denotes the Lie algebra of G. Its value

at g ∈ G, σg : TgG → TidG = g associates with any

u ∈ TgG, the element of g corresponding to the unique

left invariant vector field on G whose value at g ∈ G
is precisely the given tangent vector u. For any pair

of vector fields U and V on G, σ satisfies the Cartan-

Maurer equation

dσ(U, V ) + [σ(U), σ(V )] = 0.

A consequence of the invariance of the Fisher infor-

mation metric is that, for vector fields U and V on G,

F (U, V ) = Fid(σ(U), σ(V )).

Thus, we need only compute the Fisher information at

the identity element of G. Choose a basis (Ea)
dimG
a=1 for

g regarded as the left invariant vector fields on G. Then

the one-form σ can be written as

σ =

dimG
∑

a=1

σaEa

where the coefficients σa ∈ T ∗G are regular one-forms

on G. The Fisher metric takes the form

F =

dimG
∑

a,b=1

Fab σa ⊗ σb

where the coefficients Fab = Fid(Ea, Eb) are constant.

IV. ALIGNMENT FOR UNIMODULAR LIE GROUPS AS

GAUGE THEORY ON GRAPHS

A. Gauge Theory on Graphs

We now come back to the network alignment problem.

We will assume that the group G is unimodular: that

is, its left and right Haar measures are identical. This

property holds for all compact groups and all abelian

groups, as well as many others. The network is rep-

resented by a graph Γ with edge set E(Γ) and vertex

set V (Γ), as described above. In this section we give

a summary of Baez [17], who formulated gauge theory

on graphs in relation to spin networks in physics. In

subsequent sections we show how this formalism can be

used to develop a theory of gauge invariant estimation

for sensor network alignment.

Define P as a principal G-bundle over V (Γ), re-

garding V (Γ) as a topological space with the discrete

topology. This is a fiber bundle π : P → G along with a

continuous right action of G on P which preserves the
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fibers of P and acts freely and transitively on them. For

v ∈ V (Γ) denote by Pv the fiber over v, that is, the set

of elements of p ∈ P satisfying π(p) = v. Since V (Γ)
is discrete P is globally trivializable, that is, one can

chose a global gauge or fixed reference element for each

fiber so that P = V (Γ)×G. Thus, trivialization allows

identification of the fibers Pv with copies of G. However,

for the moment we leave the gauge unspecified.

For an edge e ∈ E(Γ) define Ae the space of

smooth maps (coordinate transforms) a : Ps(e) → Pt(e),

compatible with the right action of G on P

a(xg) = a(x)g

Here s : E(Γ) → V (Γ) and t : E(Γ) → V (Γ) give

the source and target nodes of edge e. The space of

connections is

A =
∏

e∈E

Ae

Trivialisation allows identification of each Ae with a

copy of G having elements as maps from Ps(e)
∼= G

to Pt(e)
∼= G. This allows the identification of A with

GE . Thus, the space of connections A has the the

structure of a smooth manifold. Furthermore, it inherits

an invariant measure: the product of |E(Γ)| copies of the

Haar measure on G. This manifold structure and measure

are independent of trivialization.

Define the group of gauge transformations on P by

T =
∏

v∈V

(Pv ×Ad G) .

where ×Ad means that we take (ph, h−1uh) ∼ (p, u),
for all h ∈ G, p ∈ Pv and u ∈ G. Trivialization of P
lets us identify T with GV . To see this, we note that by

trivialization gv ∈ Pv ×Ad G can be written as

((v, g), u) ∼ ((v, id), g−1ug) (3)

for some g and u in G.

The group T acts on the space of connections as

follows. Write gv for value of g ∈ T at v. Then,

regarding gv as a map from Pv to itself, T acts on A by

(gA)e = g
t(e)Aeg

−1
s(e).

B. Gauge Invariant Estimation

We now show how gauge theory on graphs can be

used to formulate the network registration problem as

a gauge invariant estimation problem and discuss some

consequences of this.

In terms of the alignment problem the state of the

sensor network is a section of P . This state is never

directly observed.

What is observed, ideally, is the connection r ∈ A.

This is assumed to be achieved by a pair-wise compari-

son of the nodes in the network by some means such as

comparing observations of some specified collection of

objects. However, in practical situations, observations are

always contaminated by noise. Each pair of nodes which

have been compared are taken to be joined by an edge

labeled by the observed connection value. A network is

alignable if the noise free connection is flat. That is,

if there is a gauge transformation that takes noise free

connection to the identity connection.

We take the noise on the measurements to be a random

variable taking values in ε ∈ A with probability density

p(ε) with respect to the above-mentioned normalized

invariant measure on A. The measurement on the edge

e takes the form

re = g
t(e)εeg

−1
s(e)

Consequently, the probability density for the measured

connection is

f(r|g) = p(g−1r) (4)

Our problem now becomes one of estimating a gauge

transformation g ∈ T given a noisy measurement of

the connection r ∈ A. We need to be a careful here

with regard to parameterization and observability. For

example, if the noise on the connection is independent

between edges then

f(r|g) =
∏

e∈E(Γ)

pe(gs(e)reg
−1
t(e)) (5)

where the pe are the probability densities for each edge.

If G is abelian or if the densities pe are class functions of

the G then certain subgroups of T do not change f(r|g).
In this case, g can only be estimated up to a subgroup

T0 and the parameter space is T /T0. Here we will

assume that the f(r|g) does not have such symmetries

and take the parameter space to be T , however, we shall

come back to this point when we consider abelian gauge

groups G in a later section.

We have a gauge invariant estimation problem; i.e.,

1) A left action of the group T on A
2) A left T -invariant measure on A
3) The probability density f(r|g) in (4) is T -

invariant.

By the results of Section III the Fisher information metric

on T is invariant under the left action of T on itself

L∗
hF = F (6)
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for all h ∈ T . Thus for vector fields U and V on T ,

F (U, V ) = Fid(σ(U), σ(V ))

where σ is the Cartan-Maurer one-form on T and

Fid =

∫

A
d log f(r|.)|id ⊗ d log f(r|.)|id f(x|id) dµ(r)

and µ denotes the T -invariant measure on A.

If the noise connection is independently distributed

on edges, so that f(r|g) takes the form (5) then F can

be further decomposed. Define the incidence projection

De : T → Te by

De(g) = (gs(e), gt(e)). (7)

Then the Fisher metric at id ∈ T is

Fid =
∑

e∈E

D∗
e F

e
id.

So, for vector fields U, V ∈ T ,

F (U, V ) =

(

∑

e∈E

D∗
e F

e
id

)

(σ(U), σ(V )) (8)

where F e
id ∈ T ∗

idTe ⊗ T ∗
idTe is a Fisher information

associated with edge e given by

F e
id =

∫

Ae

d log pe(g2reg
−1
1 )|id ⊗ d log pe(g2reg

−1
1 )|id

× pe(g2reg
−1
1 )dµ(re).

C. Abelian Lie Groups

As remarked above, the case of an abelian gauge group

G is a little different. We will assume that the noise

on the connection is independent on each edge. The

probability density for the observed noisy connection is

f(r|g) =
∏

e∈E(Γ)

pe(regs(e)g
−1
t(e)).

The parameter space in this case is

T̃ = T /T0

where T0 ⊂ T is the subgroup of uniform gauge

transformations; i.e., gauge transformations in which the

same element of G is applied to each node in Γ. Since

G is abelian, T0 is a normal subgroup of T . Thus, the

results of the previous section apply with the group T̃
replacing T . In fact, letting ι : T̃ → T be the inclusion

corresponding to our choice of parametrisation of T̃ , the

Fisher metric at id ∈ T̃ is

Fid =
∑

e∈E

ι∗D∗
e F

e
id.

So, for vector fields U, V ∈ T̃ ,

F (U, V ) =

(

∑

e∈E

ι∗D∗
e F

e
id

)

(σ(U), σ(V )) (9)

where σ is the Cartan-Maurer one-form on T̃ . However,

in the case of an abelian gauge group there is an

illuminating relationship between the Fisher information

at the identity in T̃ and the topology of the graph which

we now discuss.

Define 0-chains as the space C0(Γ, g
∗) = g∗ ⊗

C0(Γ,R), where g is the space of invariant one-forms

on G, which is the dual of the Lie algebra g. A typical

element of C0(Γ, g) has the form

x =

|V (Γ)|
∑

i=1

xi ⊗ vi (10)

for xi ∈ g∗ for i = 1, · · · , |V (Γ)|, where vi denotes the

basis vector corresponding to the vertex vi. C0(Γ, g
∗) can

be identified with the Lie algebra of the group of gauge

transformations T . Similarly, C1(Γ, g
∗) is the real vector

space of 1-chains

z =

|E(Γ)|
∑

i=1

zi ⊗ ei (11)

for zi ∈ g∗ for i = 1, · · · , |E(Γ)|, where ei denotes the

basis vector corresponding to the edge ei.

The 1-boundary map ∂1 : C1(Γ, g
∗) → C0(Γ, g

∗) is

defined by its action on basis vectors: if the edge e =
(u, v) then

∂1x⊗ e = x⊗ (v − u) (12)

for all x ∈ g∗, and again can be extended to the whole

of C1(Γ, g
∗) by linearity. Associated with Γ is a chain

complex; that is a sequence of linear maps ∂i (i = 0, 1, 2)

for which ∂i∂i+1 = 0 for i = 0, 1, written as:

{0}
∂0←−−−− C0(Γ, g

∗)
∂1←−−−− C1(Γ, g

∗)
∂2←−−−− {0}

(13)

The 0-boundary map ∂0 maps all of C0(Γ, g
∗) to 0 by

definition. The j-cycle space is defined to be

Zj(Γ, g
∗) = ker ∂j ⊆ Cj(Γ, g

∗)

while the j-boundary space is

Bj(Γ, g
∗) = im ∂j+1 ⊆ Cj(Γ, g

∗)
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In this simple case, these spaces are, for Γ,

Z0(Γ, g
∗) = C0(Γ, g

∗)

B0(Γ, g
∗) = im ∂1

Z1(Γ, g
∗) = ker ∂1

B1(Γ, g
∗) = {0}

Because Γ is a graph, all the action pertains to the

1-boundary map ∂1. In what follows, we will drop the

subscript 1 when no confusion arises.

For i = 1, 2, the dual vector spaces of Ci(Γ, g
∗),

the vector spaces of real valued linear functions

on Ci(Γ, g
∗), are denoted by Ci(Γ, g∗). We have

Ci(Γ, g∗) = g ⊗ Ci(Γ,R), where Ci(Γ,R) is the dual

space of Ci(Γ,R). An element of Ci(Γ, g∗) is called an

i-cochain.

A basis for C0(Γ,R) consists of the functions v
j :

C0(Γ,R)→ R, j = 1, · · · , n defined by

v
j(vi) = δji (14)

and extended to the rest of C0(Γ,R) by linearity. An

element of C0(Γ, g∗) can be written as

µ =

|V (Γ)|
∑

i=1

µi ⊗ v
i (15)

where µi ∈ g, for i = 1, · · · , |V (Γ)|. The value of µ at

x of the form (10) is

µ(x) =

|V (Γ)|
∑

j=1

xj(µj). (16)

From this discussion, we distill the following theorem as

the first main point of this development.

Theorem 1: The space C0(Γ, g∗) can be identified with

the Lie algebra t of the group T .

A basis for C1(Γ, g∗) consists of the functions e
j :

C1(Γ, g
∗)→ g∗, j = 1, · · · ,m defined by

e
j(ei) = δji (17)

and extended to the rest of C1(Γ,R) by linearity. An

element of C1(Γ, g∗) can be written as

ω =

|E(Γ)|
∑

i=1

ωi ⊗ e
i (18)

where ωi ∈ g, for i = 1, · · · , |E(Γ)| The coboundary

map ∂∗ : C0(Γ, g∗) → C1(Γ, g∗) is the adjoint of ∂
defined for µ ∈ C0(Γ, g∗), z ∈ C1(Γ, g

∗)

µ(∂z) = (∂∗
µ) (z) (19)

Associated with Γ is the cochain complex that is the

dualization of the chain complex in (13):

{0}
∂∗

0−−−−→ C0(Γ, g∗)
∂∗

1−−−−→ C1(Γ, g∗)
∂∗

2−−−−→ {0}

By duality, the maps ∂∗
j satisfy

im ∂∗
j ⊆ ker ∂∗

j+1

The j-cocycle space is defined to be

Zj(Γ, g∗) = ker ∂∗
j+1 ⊆ Cj(Γ, g∗)

while the j-coboundary space is

Bj(Γ, g∗) = im ∂j ⊆ Cj(Γ, g∗).

These spaces are:

Z0(Γ, g∗) = ker ∂∗
1

B0(Γ, g∗) = {0}

Z1(Γ, g∗) = C1(Γ, g∗)

B1(Γ, g∗) = im ∂∗
1

As in the “chain” case, the simplicity of this situation

allows us to make the following identifications

C0(Γ, g∗) ∼= t

Z0(Γ, g∗) ∼= t0

C0(Γ, g∗)/Z0(Γ, g∗) ∼= t̃

B0(Γ, g
∗) ∼= t̃∗

The second main point of this development requires

the introduction of the distributional Fisher information.

In this context, (2) becomes, for each edge e ∈ E(Γ),
Ee ∈ g∗ ⊗ g∗

Ee =

∫

Ae

dg log pe(g
−1ǫ)|id⊗dg log pe(g

−1ǫ)|idpe(ǫ)dµ(ǫ).

This gives a pairing on C1(Γ, g∗):

〈

|E(G)|
∑

i=1

ωi ⊗ e
i,

|E(G)|
∑

i=1

ω′
i ⊗ e

i〉E =

|E(G)|
∑

i=1

Ee
i

(ωi, ω
′
i),

in terms of which we can define the map E :
C1(Γ, g∗)→ C1(Γ, g

∗) by

E(ω) =

|E(Γ)|
∑

j=1

Eej (·, ωj)⊗ ej

The Fisher information at id ∈ T̃ evaluated at

µ1,µ2 ∈ t, can be written in terms of the distributional

Fisher information on the edges as

Fid(µ1,µ2) = (∂E∂∗(µ2)) (µ1) (20)
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The Fisher information at id ∈ T̃ can be regarded as a

map from t̃→ t̃∗ defined by

F̂id(µ) = Fid(·,µ)

for µ ∈ t̃. This discussion is summed up in the following

theorem.

Theorem 2: The structure of the Fisher information is

represented by the following commutative diagram

B0(Γ, g
∗)

∂
←−−−− C1(Γ, g

∗)/Z1(Γ, g
∗)

F̂id

x




E

x





C0(Γ, g∗)/Z0(Γ, g∗)
∂∗

−−−−→ B1(Γ, g∗)

V. CONCLUSION

Motivated by registration problems in networks, we

have developed mathematical foundations for a theory

of gauge-invariant estimation on graphs. In order to ac-

commodate networks whose nodal data are elements of a

Lie group, as occurs in many practical problems, we have

described the essential elements of information geometry

on Lie groups in some generality. We proceeded to de-

scribe how the registration problem can be expressed in

terms of a connection on the edges of the network graph,

thereby framing the problem of registration using noisy

data in terms of estimating a gauge transformation that

aligns local coordinate systems across the network. We

showed how the Fisher Information for this estimation

problem depends simultaneously on the geometry of the

Lie group on which the measurements are distributed and

on algebraic descriptors of the topology of the network

graph and explained how it provides a link between the

homological chains and cochains for the graph.
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