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Abstract – Track-to-track association and sensor bias 

estimation are two important problems in multi-target 

multi-sensor tracking system. Track-to-track association 

becomes more complex in the presence of sensor bias 

and incorrect track association will lead to poor bias 

estimation results. Solving these two problems jointly 

would be attractive. This paper proposes a recursive joint 

track-to-track association and nonlinear bias estimation 

algorithm based on the generalized Bayes risk. The 

proposed algorithm and the conventional 

association-then-estimation algorithm are compared 

with the Monte-Carlo simulation. Simulation results 

show that the proposed algorithm has better track 

association and bias estimation performance than the 

conventional algorithm. 

 

Keywords: generalized Bayes risk, recursive, 

track-to-track association, sensor bias estimation, joint 

decision and estimation. 

 

1 Introduction 

Track-to-track association and bias estimation, which 

are generally tightly coupled, are of great importance in 

multi-target multi-sensor tracking system. The coupling 

gives rise to the difficulties.  

Much work has been carried out on solving these two 

problems separately. The “association-then-estimation” 

strategy solves the bias estimation problem and assumes 

the association was completely correct. The 

“estimation-then-association” strategy solves the 

association problem and assumes the bias estimation was 

done. These two problems may affect each other and 

should be considered jointly. 

Several studies have been conducted on joint 

track-to-track association and bias estimation problem 

(JAE). [1] and [2] proposed a joint MAP bias estimation 

and data association algorithm while this algorithm 

describes the problem as an nonconvex mixed integer 

nonlinear programming problem which is very hard to 

solve. A joint association, registration, and fusion 

approach based on expectation-maximization (EM) was 

proposed in [3]. However it has a drawback that 

expectation-maximization algorithm is a batch iterative 

algorithm of which the convergence speed is slow when 

solving complex cases. [4] proposed an extended product 

multi-sensor cardinalized probability hypothesis density 

(PM-CPHD) filter for spatial registration and data 

association, which leads to a more difficult problem. 

The optimal Bayes joint decision and estimation (JDE) 

algorithm was proposed in [5] and was used to solve joint 

tracking and classification problem in [6]. Moreover, the 

optimal Bayes JDE algorithm was improved to recursive 

JDE (RJDE) algorithm in [7]. Optimal Bayes JDE 

algorithm was applied to solve JAE problem in [8]. 

However [8] used batch JDE rather than RJDE algorithm, 

and only solved linear measurement problem. 

In many applications, measurements are obtained 

sequentially. So the computational demands of the batch 

JDE algorithm will increase with an increase of data. Thus 

RJDE algorithm would fit the problem more naturally. In 

this paper, we try to apply RJDE algorithm to solve JAE 

problem with nonlinear measurement and make it closer to 

reality. 

This paper is organized as follows. In Section 2 we 

briefly describe the sensor bias model and association 

problem. Section 3 gives a brief introduction to the RJDE 

algorithm. The contribution of this paper is presented in 

Section 4, where we use the RJDE method to solve JAE 

problem with nonlinear measurement. Section 5 presents 

simulation results. Finally, the concluding remarks are 

given in Section 6. 

2 Problem formulation 

In this section, we present the association problem and 

the bias estimation problem. 
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2.1 Sensor bias model 

Consider two independent sensors, 1, 2s = , tracking 

targets in space. Each sensor provides a set of range and 

azimuth measurement { }, , 1
,

sn
m m

s i s i i
r θ

=
, where s

n is the number 

of the targets which are detected by sensor s with no 

clutter.  

Range ,

m

s ir and azimuth ,

m

s iθ , for each 1, , si n= A , 1, 2s =  

can be modeled by 

 , , +m

s i s i bs sr r r r= + #   (1) 

 , ,
+m

s i s i bs s
θ θ θ θ= + #   (2) 

In the above, ,

m

s ir and ,

m

s iθ  are the measured range and 

azimuth; ,s ir  and ,s iθ are the true range and azimuth; bsr  

and bsθ  are the sensor biases for the range and azimuth, 

which do not change over time; the measurement noises 

sr#  and 
sθ# are zero-mean Gaussian random white noise 

with corresponding variances 
2

,r sσ and 
2

,sθσ , and are 

assumed mutually independent of each other. 

2.2 Definition of association 

Using converted measurement Kalman filtering 

(CMKF) to estimate targets state individually, we get two 

sets of tracks { }
1

sn

si i
τ

=
, 1, 2s = .Each track si

τ  is composed 

of a set of ( )ˆˆ ,si six P  pairs, where ˆ
si

x  is a target state 

estimate vector, and ˆ
si

P  is a state estimation error 

covariance matrix. 

Given the two sets of tracks, { }
1

sn

si i
τ

=
, 1, 2s = , a 

track-to-track association hypothesis a  could be defined 

as a one-to-one function ( )Dom a  with { }1
1, ,nA  as it 

definitional domain and { }2
1, ,nA  as it value domain. 

( )j a i=  means that the -thi  track from sensor 1 and 

the -thj  track from sensor 2 share the same origin. 

( )Domi a∉  means that the -thi  track from sensor 1 is 

not detected by sensor 2, and ( )Imj a∉  means that the 

-thj  track from sensor 2 is not detected by sensor 1. The 

set of all the association hypotheses is defined as 

( ) { } ( ) { }{1 2 2 1, : 1, , Dom 1, , ,A n n s D n D a n→ = ⊆5 A A

( )( ) ( )}# Im #a D=  where ( )# A  is the cardinality of the 

set A . 

3 Recursive joint decision and 

estimation 

The conventional Bayes risk for decision is as follows. 

 
, 1

{" " | } { }
N

D ij i j j

i j

R c P H H P H
=

= ∑   (3) 

where { }
j

P H  is the prior probability of j
H  and ij

c  is 

the cost of deciding on hypothesis i
H  while j

H  is true. 

In the Bayesian approach, the optimal decision is the one 

that minimizes D
R . The optimal Bayes decision decides 

on i
H  if its posterior cost ( ) { | }i ij jj

C z c P H z=∑  is 

the smallest, i.e., ( ) ( ),
i k

C z C z k≤ ∀ . 

The conventional Bayes risk for estimation is 

[ ( )]
E

R E C x= # , where E
R  is the expectation of a cost 

function of the estimation error x# . An optimal Bayes 

estimator is a function of measurements z  that 

minimizes the Bayes risk, that is, ˆ( )
ˆ arg min [ ( )]

x z
x E C x= # . 

For the JDE problem, [5] proposed an optimal algorithm 

based on the following generalized Bayes risk 

 
1 1

ˆ( [ ( , ) | , ]) { , }
M N

ij ij ij i j i j

i j

R c E C x x D H P D Hα β
= =

= +∑∑   (4) 

where i
D  is the -thi decision in other words { }i

z D∈ ;

ij
c  is the cost of decision i

D  while the hypothesis j
H  

is true; ( )ˆ,C x x  is the estimation cost function; 

( )ˆ, | ,i jE C x x D H⎡ ⎤⎣ ⎦  is the expected cost conditioned on 

the case that i
D  is decided while j

H  is true; ij
α  and 

ij
β  are nonnegative weights of decision and estimation 

costs, respectively, which is variable to different cases. 

This new Bayes risk R  generalized conventional 

Bayes risk for decision and conventional Bayes risk for 

estimation, and expressed the inter-dependence between 

decision and estimation. 

The generalized Bayes risk provides an approach to JDE 

problem. While various ( )ˆ,C x x  is available, [7] chooses 

mean square error (MSE) ( )ˆ,C x x x x′= # #  as estimation 

cost criterion. 

For given ( )ˆ, | ,i jE C x x D H⎡ ⎤⎣ ⎦ , to minimize R of 

Eq.(4), the optimal decision D  is 

  if   ( ) ( ),
i i k

D D C z C z k= ≤ ∀   (5) 

where, the posterior cost is given by 

 ˆ( ) ( [ ( , ) | , ]) { | }j ij ij ij i j j

j

C z c E C x x D H P H zα β= +∑   (6) 

Given a set of decision regions { }1
, ,

M
D DA  as a 

partition of the data space, the optimal estimator for (4) 

with MSE criterion is the following generalized posterior 

mean 

 
,

ˆ ˆ { , | }ij i j

i j

x x P D H z=∑   (7) 

where, for i
z D∈   

ˆ ˆ| , , | ,ij i j j jx E x z D H x E x z H⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦   
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{ }
{ }

{ }

{ }
( ) { }

,

,

, |
, |

, |

|

1 ; |

ij i j

i j

lk l kl k

ij j

l lk kl k

P D H z
P D H z

P D H z

P H z

z D P H z

β

β

β

β

=

=

∑
∑

  

( )
1,    

1 ;
0,    else

i

i

z D
z D

∉⎧
= ⎨⎩   

{ } { }| , |j i jP H z D P H z=   

Moreover, these quantities are not defined if i
z D∉ . If

i
z D∈  means ,

i
z D k i∉ ∀ ≠ , Eq.(7) can be simplified to 

 ˆ 1( ; )i i

i

x z D x=∑ %
  (8) 

where, for iz D∈  

[ ] { }ˆ| |i j j

j

x E x z x P H z= =∑%
  

{ }
{ }

{ }

|
|

|

ij j

j

ik kk

P H z
P H z

P H z

β

β
= ∑   

and these quantities are not defined if i
z D∉ . 

The RJDE algorithm tries to find a JDE solution 

recursively based on sequential data. The batch JDE 

algorithm computes the decision partition of the space kZ  

of all past data 1 2
{ , , , }

k
z z zA . While in the recursive JDE 

algorithm, only the space k
Z  of the current data k

z  is 

partitioned conditioning on all previous data 1kZ − . And 

the RJDE algorithm is shown as follows, which could be 

proved convergent. 

1) Initialize the parameters 0k = ,
0

ij
ε  and { }

j
P H . 

2) Compute the posterior cost at time k  

 ( ) ( ) { | }k k k k k

i ij ij ij ij j

j

C Z c P H Zα β ε= +∑   (9) 

3) At time 1k + , update 
( ) ( )

1
ˆ ˆ[ | , ]j k j

k k j k
x E x Z H x +→5  

1{ | } { | }k k

j j
P H Z P H Z +→  

These quantities are the functions of measurement 

1k
z +  and could be obtained once 1k

z +  is available. 

4) Compute the intermediate cost ( )1|
k k

i kC z Z+  by 

replacing { | }k

j
P H Z  in Eq.(9) with

1{ | }k

j
P H Z +

. 

5) Based on the newly updated ( )1|
k k

i kC z Z+ , update 

the decision partition 
1{ | }k kD Z+

. 

6) Based on decision partition 
1{ | }k kD Z+

 calculate the 

conditional expected estimation cost 
1 1

1
ˆmse( | , , )k k k

ij k i j
x Z D Hε + +

+5   

7) Replace 
k

ij
ε  with 

1k

ij
ε +

 to update ( )1|
k k

i kC z Z+  to

( )+1

1|
k k

i kC z Z+ . 

8) Based on the newly updated ( )+1

1|
k k

i kC z Z+ , update 

the decision partition 
1{ | }k kD Z+

. 

9) Go to step 6 until the termination conditions are 

satisfied. Output the RJDE solution of time 1k + . 

10) The posterior cost ( ) ( )1 1 1

1 |k k k k

i i kC Z C z Z+ + +
+=  at 

time 1k + is obtained by taking the latest 

measurement 1k
z +  into account. Set 1k k= +  

and go to step 2. 

4 Recursive joint track-to-track 

association and bias estimation 

Consider two independent sensors, 1, 2s = , which track 

targets in surveillance region. The sensors provide the 

range and azimuth { }, , 1
,

sn
m m

s j s i i
r θ

=
of targets, where s

n is the 

number of the targets which are detected by sensor s with 
no clutter. 

We suppose that the dynamic equation of the targets is 

 1k k
X FX Gw+ = +   (10) 

where state transition matrix

1 0 0

0 1 0 0

0 0 1

0 0 0 1

T

F
T

⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦
; 

and noise gain matrix 

2

2

0 0
2

0 0
2

T

T
T

G
T

T

⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦
. 

Moreover, we suppose that the set of hypotheses and the 

set of decisions are defined as  

 1 2
{ , 1, , } ( , )

j
H j N A n n= =A   (11) 

 1 2
{ , 1, , } ( , )

j
D j M A n n= =A   (12) 

where, j
H  is the -thj  hypothesis; i

D  is the -thi

decision; M N=  is the cardinality of the set ( )1 2
,A n n  

which stands for the number of track-to-track association 

cases, i.e., the decisions and the hypotheses are one-to-one 
correspondent.  

We suppose that the initial probabilities of hypotheses 

are equal, i.e., we do not have any idea of which 

hypothesis is closer to the right one. 

 
1

{ } , 1, ,jP H j M
M

= = A   (13) 

4.1 Estimate sensor bias ( )ˆ j

k
ζ  

Under the condition that hypothesis j
H  is true, 

suppose ( )j a i= . Equations are given as follows 

 
1, 1 1 1, 1 1 1

2, 2 2 2, 2 2 2

( ) cos( )

( ) cos( )

m m

i b i b s

m m

j b j b s

r r r x

r r r x

θ θ θ

θ θ θ

− − − − +

= − − − − +

##
##

  (14) 
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1, 1 1 1, 1 1 1

2, 2 2 2, 2 2 2

( )sin( )

( )sin( )

m m

i b i b s

m m

j b j b s

r r r y

r r r y

θ θ θ

θ θ θ

− − − − +

= − − − − +

##
##

  (15) 

where, the location of sensor 1 and sensor 2 is 1 1
( , )

s s
x y  

and 2 2
( , )

s s
x y , respectively. 

Using Taylor series expansion, we expand Eq.(14) and 

(15) at 1 2 1 2
0, 0

b b b b
r r θ θΔ = Δ = Δ = Δ = , and obtain 

 

1, 1, 1

1, 1, 1 1

11, 1,

2, 2, 2

2, 2, 2 2

22, 2,

cos
( , )

sin

cos
( , )

sin

m m

i i sm m

i im m
si i

m m

j j sm m

j jm m
sj j

r x
J r v

yr

r x
J r v

yr

θ
θ ζ

θ

θ
θ ζ

θ

⎡ ⎤ ⎡ ⎤
+ + +⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
= + + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

  (16) 

where, sensor bias of sensor 1 and sensor 2 is 
1

1

1

b

b

r
ζ

θ

⎡ ⎤
= ⎢ ⎥⎣ ⎦  

and 
2

2

2

b

b

r
ζ

θ

⎡ ⎤
= ⎢ ⎥⎣ ⎦ , respectively; 

cos sin
( , )

sin cos

r
J r

r

θ θ
θ

θ θ

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦  ; 

1

1

1

m

m

x
v

y

⎡ ⎤
= ⎢ ⎥⎢ ⎥⎣ ⎦

#
#

 and 
2

2

2

m

m

x
v

y

⎡ ⎤
= ⎢ ⎥⎢ ⎥⎣ ⎦

#
#

 are independent zero-mean 

random noise with corresponding covariance 

1 11 1, 1,
( , , , )m m

i i r
R r θθ σ σ  and 

2 22 2, 2,
( , , , )m m

j j r
R r θθ σ σ . Where 1

R  

and 2
R  are covariance matrixes of convert measurement 

noise  

 

( )
2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

, , ,

sin cos [ ]sin cos

[ ]sin cos cos sin

r

r r

r r

R r

r r

r r

θ

θ θ

θ θ

θ σ σ

σ θ σ θ σ σ θ θ

σ σ θ θ σ θ σ θ

⎡ ⎤+ −
= ⎢ ⎥

− +⎣ ⎦
  (17) 

Eq.(16) could be simplified as 

 

2, 2, 1, 1,2 1

2 12, 2, 1, 1,

1, 1, 2, 2,

cos cos

sin sin

( , , , )

m m m m

j j i is s

m m m m
s sj j i i

m m m m

i i j j

r rx x

y yr r

H r r v

θ θ

θ θ

θ θ ζ

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟+ − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎝ ⎠⎝ ⎠
= +

  (18) 

where 
1

2

ζ
ζ

ζ

⎡ ⎤
= ⎢ ⎥⎣ ⎦  is the parameter vector we desire to 

estimate; 1, 1, 2, 2, 1, 1, 2, 2,
( , , , ) [ ( , ) ( , )]m m m m m m m m

i i j j i i j j
H r r J r J rθ θ θ θ= −  

is linearized measurement matrix; and v  is zero-mean 

random noise with corresponding covariance 1 2
R R R= + . 

For Eq.(18), the formulation on the left of the equal sign 

is pseudo measurement which is remarked as z  in this 

paper.  

We assume that the sensor bias does not change over 

time. Therefore the dynamic equation of sensor bias could 

be given as 

 1k k
ζ ζ+ =   (19) 

Extended Kalman filtering (EKF) is applied to estimate
( )ˆ j

k
ζ , while hypothesis j

H  is true. 

At the beginning, initialize the estimatee (i.e., the 

quantity to be estimated) ( )

0
ˆ 0jζ = and estimation error 

covariance ( ) 2

0
ˆ jP Iσ= , where σ  is a large positive real 

number. 

For time k , 

 
( ) ( ) ( ) ( )

1 1| 1 , 1 , 1|
ˆ ˆ ˆ( )j j j j

k k k k p k p k k
K z zζ ζ+ + + + += + −   (20) 

 
( ) ( ) ( ) ( ) ( )

1 1| 1 1 1
( )j j j j j

k k k k k k
P P K S K+ + + + +

′= −   (21) 

where,  
( ) ( )

1|
ˆ ˆj j

k k k
ζ ζ+ =   

( ) ( ) ( )

, 1| 1|
ˆˆ j j j

p k k k k k
z H ζ+ +=   

( ) ( )

1|

j j

k k k
P P+ =   

( ) ( ) ( ) ( ) ( )

1 1|

j j j j j

k k k k k kS H P H R+ +
′= +   

( ) ( ) ( ) ( ) 1

1 1| 1( ) ( )j j j j

k k k k kK P H S −

+ + +
′=   

4.2 The choice of ijc   

ijc  is the cost of the decision iD  while the hypothesis 

jH  is true. When i j≠ , it is the cost of an incorrect 

decision, while iic  is the cost of a correct decision. 

Therefore, ,ii ijc c i j< ∀ ≠  is needed to punish the 

incorrect decision. ijc  not only could be variable under 

different steps of algorithm, but also could be constant. In 

this paper we set 0, 1,ii ijc c i j= = ≠ . 

4.3 Compute 
1{ | }k

jP H Z +
  

Assume that the posterior probability of hypothesis jH  

at time k  is 
1{ | }k

jP H Z +
. Then at time 1k +   

 

, 11

, 1

( )

1 , 1

( )

1 , 1

( | , ) { | }
{ | }

( | , ) { | }

( ) { | }
                   

( ) { | }

k k

p k j jk

j k k

p k l ll

j k

k p k j

l k

k p k ll

f z Z H P H Z
P H Z

f z Z H P H Z

N z P H Z

N z P H Z

++

+

+ +

+ +

=

=

∑
∑

  (22) 

where 
( ) ( ) ( )

1 , 1 , 1 , 1| 1
ˆ( ) ( ; , )j j j

k p k p k p k k k
N z N z z S+ + + + +=   

4.4 Compute ˆ
k

ζ  

ˆ
k

ζ  is sensor bias estimation, which is given by 

 
( )ˆ 1( ; )k k i

k i k

i

z Dζ ζ=∑ %
  (23) 

where, for 
k k

iZ D∈   

( ) ( )ˆ= [ | ] { | }i k j k

k j

j

E Z P H Zζ ζ ζ=∑%
  

{ | }
{ | }

{ | }

k

ij jk

j k

ik kk

P H Z
P H Z

P H Z

β

β
= ∑   

and these quantities are not defined if 
k k

iZ D∈ . 
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4.5 Calculate estimation cost  

Based on 
1 1k k

iz D+ +∈ , to calculate the conditional 

expected estimation cost, we have  
+1 1 1

1 1

1 1

1

( ) 1 1 1

1

( ) 2 1 1

1 1

( ) 1 1 1

+1

(

+1

ˆ[ ( , ) | , , ]

ˆmse( | , , )

ˆmse( | , , ) | , ,

ˆ ˆ[( ) | , , ]

ˆmse( | , , ) | , ,

ˆ[(

k k k

ij k k i j

k k

k i j

ij k k k k

k i j i j

ij k k

k k i j

j k k k k

k i j i j

j

k

E C D H Z

D H Z

E D H Z D H Z

E D H Z

E D H Z D H Z

E

ε ζ ζ

ζ

ζ

ζ ζ

ζ

ζ

+ +
+ +

+ +
+

+ + +
+

+ +

+ +

+ + +

=

⎡ ⎤= ⎣ ⎦
+ −

⎡ ⎤= ⎣ ⎦
+

5

) ( ) 2 1 1

+1) | , , ]i k k

k i jD H Zζ + +−
%

 

where ( )( ) 1 1 ( )

+1 +1
ˆmse( | , , ) trj k k j

k i j kD H Z Pζ + + =  is given in 

Eq.(21). 

Assume that  
+1 ( ) ( ) ( ) ( ) 1 1

+1 +1 +1 +1
ˆ ˆ[( ) ( ) | , , ]k j i j i k k

ij k k k k i j
E D H Zε ζ ζ ζ ζ + +′− −

% %
# 5 . And

( )( )

+1tr j

kP  is independent from 1kZ + , so we could obtain  

 
( )

( )

1 ( ) 1

+1

( ) +1

+1

tr | , ,

tr

k j k k

ij k i j

j k

k ij

E P Z D H

P

ε

ε

+ +⎡ ⎤= ⎣ ⎦
= + #

  (24) 

Based on 
1 1k k

i
z D+ +∈ , 

1
( ) ( ) ( ) ( )

+1 +1 +1 +1 1

( ) ( ) 1

+1 +1

1

{ | }ˆ ˆ ˆ
{ | }

ˆ ˆ( ) { | }
          

{ | }

k
j i j r ir r

k k k k k
r il ll

j r k

k k ir rr

k

il ll

P H Z

P H Z

P H Z

P H Z

β
ζ ζ ζ ζ

β

ζ ζ β

β

+

+

+

+

− = −

−
=

∑ ∑
∑ ∑

%

  

Therefore 

1
1

+1 ( ) ( ) ( ) ( ) 1 1

+1 +1 +1 +1

( ) ( ) ( ) ( ) ( )

+1 +1 +1 +1 1

ˆ ˆ[( ) ( ) | , , ]

ˆ ˆ ˆ   ( ) ( ) ( | , )
k

k i

k j i j i k k

ij k k k k i j

j i j i j

k k k k k k j
z D

E D H Z

dF z H

ε ζ ζ ζ ζ

ζ ζ ζ ζ ζ
+

+

+ +

+
∈

′− −

′= − −∫
% %

# 5
% %  

We could approximate 
+1k

ij
ε#  numerically by the Monte 

Carlo method 
+1k

ij
ε## , since 

+1k

ij
ε#  is very hard to calculate 

 ( ) ( )
2

1 ( ) ( ) ( ) ( )

1 1, 1 1,

1

1 ˆ
i

i i

i

L
k j m ij i m ij

ij k k l k k l

li

z z
L

ε ζ ζ+

+ + + +
=

⎡ ⎤≈ −⎣ ⎦∑ %##   (25) 

where, 
( )

1,
( 1,2, , )

i

m ij

k l i i
z l L+ = A  are the simulated 

measurements from the distribution 
( )

1
ˆ( | , )m j

k k j
f z x H+  

that lie inside the decision region 
1k

i
D +

, while ii
L L∑5 . 

In addition, 
( )ˆ j

k
x are the estimated target states while 

hypothesis j
H  is true. While the target states and the 

sensor measurements are independent from the association 

hypotheses, 
( )

1
ˆ( | , )m j

k k j
f z x H+  should be given as 

1
ˆ( | )m

k k
f z x+  or 1 1|

ˆ( | )m

k k k
f z x+ + . 

And  

( )( ) ( ) ( )

1 1, 1 1,
ˆ [ | , , ]

i i

j m ij m ij k

k k l k k l jz E z Z Hζ ζ+ + + +=   

( ) ( )

( )

( ) ,( ) ( ) ,( ) ,( )

1 1, 1 1, 1,

,( )

1,( ) ,( )

1 1, ,( )

1,

ˆ { | , }

{ | , }
ˆ=

{ | , }

i i i

i

i

i

i m ij j m ij m ij k

k k l k k l j k l

j

m ij k

ij j k lj m ij

k k l m ij k
j il l k ll

z z P H z Z

P H z Z
z

P H z Z

ζ ζ

β
ζ

β

+ + + + +

+

+ +

+

= ×

×

∑
∑ ∑

%

 

could be calculated by the Kalman filtering. If some 
+1k

i
D  

are empty, ( )( ) ( )

1 1,
ˆ

i

j m ij

k k lzζ + +  and ( )( ) ,( )

1 1, i

i m ij

k k lzζ + +

%
 could be 

replaced by predictions. 

4.6 Algorithm description 

The recursive joint track-to-track association and bias 

estimation algorithm could be described as follows: 

1) Initialize 0k = ,
0

ij
c ,

0

ij
ε , 0 1

{ | }jP H Z
M

= , 1, ,j M= A . 

2) For time k , calculate posterior cost 

 ( ) ( ) { | }k k k k k

i ij ij ij ij j

j

C Z c P H Zα β ε= +∑   (26) 

where, kZ  is the space of all past data. 

3) For time 1k + , update 
( ) ( )

1
ˆ ˆ[ | , ]j k j

k k j k
E Z Hζ ζ ζ +→5   

1{ | } { | }k k

j j
P H Z P H Z +→   

In addition, these quantities are functions of 1k
z + . 

4) Based on ( )

1
ˆ j

k
ζ +

, calculate association cost 
1k

ij
c +

. In 

this paper, we set 0, 1,k k

ii ii ij ij
c c c c i j= = = = ≠ . 

5) Replace { | }k

j
P H Z  with updated 

1{ | }k

j
P H Z +

 

and replace 
k

ij
c  with 

1k

ij
c +

 in Eq.(26) to calculate 

intermediate cost 

 ( ) 1 +1

1| ( ) { | }k k k k k

i k ij ij ij ij j

j

C z Z c P H Zα β ε+
+ = +∑   (27) 

and ( )1|
k k

i kC z Z+  are functions of 1k
z + . 

6) Based on Eq.(27), we could determine the decision 

partition of current data 1k
z +  space 1k

Z + . 

{ } { }1 1 1

1| , , |
k k k k k

MD Z D D Z
+ + += A  

( ) ( ){ }1 1 1
: ,

k k k

i i mD z C z C z m
+ + += ≤ ∀  

7) Based on the current available partition of 1k
Z + , 

compute the conditioned expected estimation cost 

 
1 1 1

1
ˆmse( | , , )k k k

ij k i j
D H Zε ζ+ + +

+5   (28) 

8) Replace 
k

ij
ε  in the Eq.(26) with formulation (28), in 

order to update the intermediate cost ( )1|
k k

i kC z Z+  

to the posterior cost ( )+1

1|
k k

i kC z Z+  

 ( )+1 1 1 +1

1| ( ) { | }k k k k k

i k ij ij ij ij j

j

C z Z c P H Zα β ε+ +
+ = +∑  (29) 

And ( )+1

1|
k k

i kC z Z+  is also a function of 1k
z + . 
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9) Recalculate the decision partition { }1 1

1
, , |k k k

M
D D Z+ +A , 

based on newly updated ( )+1

1|
k k

i kC z Z+ . 

10) Go to step 7 until the termination conditions are 

satisfied. The termination conditions are: a) the 

decision does not change between two iterations; b) 

the change of the expected estimation cost is 

smaller than a threshold. 

If termination conditions are satisfied, output 

track-to-track association and bias estimation result 

of time 1k + .  

 +1 +1

+1
ˆ ={D :z D }k k

i k i
D ∈   (30) 

 

+1

( ) ( )

+1 +1 +1 +1

{ | }
ˆ ˆ= =

{ | }

k

ij ji j

k k k k
j il ll

P H Z

P H Z

β
ζ ζ ζ

β
∑ ∑%

  (31) 

11) Record ( )+1

1|
k k

i kC z Z+  as ( )+1 +1k k

iC Z . Then set 

1k k= + , and go to step 2. 

The recursion of steps 7–10 is guaranteed to converge, 

which can be proved similarly as the case of RJDE. 

Since measurements are coming sequentially, the 

proposed algorithm may determine association 

relationship and estimate sensor biases in real time. 

5 Simulation  

In order to compare the performance of our algorithm 

and association-then-estimation algorithm, we chose a 

two-dimensional two-sensor scenario.  

In the association-then-estimation method, we used 

nearest-neighbor algorithm to obtain association 

relationship, and then estimated sensor bias based on the 

obtained association relationship. 

In our simulation, three targets from different location 

move from left to right with a constant velocity, as shown 

in Figure 1. The lines represent the trajectories of targets, 

which move together and then apart. The overall time is 

100s. Figure 2 illustrates the sensor measured target 

trajectories. 

 

Figure 1. Target trajectories. 

 

Figure 2. Sensor measurements. 

 

The sensor location of sensor1 and sensor2 is (0m,0m)  

and (6000m,0m) , respectively. The sensor bias of sensor1 

and sensor2 is ( 80m,0.9 )− c
 and ( 40m,0.5 )− c

. The two 

sensors have random measurement noises whose standard 

deviation is (10m,0.1 )c
. The weights ij

α  and ij
β  of the 

algorithm were chosen by cases. While in this paper, we 

do not go into details and only give the results 1
ij

α = ,

1, 0.1,
ii ij

i jβ β= = ≠ . 

 

Figure 3. Association performance of the RJAE and the 

association-then-estimation algorithm. 
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(b) 

 

Figure 4. Bias estimation performance of the RJAE and 

the association-then-estimation algorithm. 

 

Figures 3-4 illustrate the results of 100 Monte-Carlo 

simulations. Figure 3 shows the probability of correct 

association and Figure 4 illustrates the root-mean-square 

error (RMSE) results of the bias estimation.  

In terms of the probability of correct association (PCA), 

it can be seen from Figure 3 that the 

association-then-estimation algorithm performs better than 

the JAE at the beginning of the simulation. This is because 

that the estimation of sensor bias of all hypotheses j
H  

need some time to converge at the beginning of the 

simulation. And then at the middle of the simulation the 

JAE performs better than the association-then-estimation 

algorithm which is caused by targets moving together. 

It can be seen from Figure 4(a)(b) that at the beginning 

of the simulation the bias estimation RMSE of both JAE 

and association-then-estimation algorithm is high and it is 

hard to say which performs better, because the bias 

estimation need some time to converge at the beginning. 

While, with the targets moving together, the PCA of the 

association-then-estimation algorithm does not perform 

well. And it can be seen that the RMSE of the JAE 

performs better than the association-then-estimation 

algorithm. 

6 Conclusion 

In this paper, we apply RJDE algorithm to the JAE 

problems which fits the dynamic JAE problems better 

since measurements usually come sequentially. And this 

method provides an approach to JAE problems based on 

generalized Bayes risk. Proposed algorithm outperforms 

the basic association-then-estimation algorithm in terms of 

the PCA and the bias estimation RMSE. In this study, it is 

assumed that the hypotheses and the decisions are 

one-to-one correspondent ( )M N= . But proposed method 

could be generalized to M N≠  cases in order to reduce 

computation, which is considered as part of future work. 
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