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Abstract—This paper considers the problem of tracking a tar-
get — which might or might not exist — from a platform whose
position is not known perfectly and might contain substantial
time dependencies.

Most single and multi-target tracking algorithms implicitly or
explicitly assume that the location of the sensor platform system
is known perfectly. However, in practice the location of sensing
platforms is often estimated, usually by fusing a set of sensor
measurements from different sources. As a result, the error in the
platform estimates could be significant and time correlated. These
difficulties are compounded in single and multi-target tracking
problems when the existence of a target is not guaranteed.

In this paper, we consider the problem of tracking at most
a single target from a poorly-localized UAV. We develop a
formulation of the Bernoulli filter which incorporates both the
target state and the state of the platform. However, because the
dimension of the state is relatively large, we develop a suboptimal
algorithm which, through neglecting the use of track information
to improve the quality of the platform estimate, scales in a
manner very similar to that of a conventional Bernoulli filter.

The implementations of the different algorithms are tested in
a simulation scenario of a UAV performing safety monitoring of
a convoy.

I. INTRODUCTION

In many operational contexts, understanding the location

of potential threats is extremely important. By understanding

where threats might be found, commanders can plan and

execute missions to minimise hazards, either by neutralising

or by avoiding threats. Consider, for example, the problem

illustrated in Figure 1 — a convoy has been tasked to move

through an urban environment, avoiding potential threats. One

way to develop situation awareness is to deploy a low altitude,

agile UAV such as a quadrotor which could explore the area

immediately around the convoy to ensure that the area is free

of potential hazards. To achieve this goal, the system must be

able to carry out multi-target tracking from a moving platform.

The challenges of target-tracking are well-known: uncer-

tainties in the numbers and locations of the targets, together

with the association between target and sensor returns, leads

to a problem which scales factorially. Many approaches have

been developed, including those based on multiple hypothesis

tracking [3] and those based on Random Finite Sets (RFS) [4].

In this work, we concentrate on the RFS formulation. An RFS

encodes the uncertainty in both the numbers and locations of

the targets. Although the full RFS formulation is intractable,

tractable solutions for the single target case exist [4], [5]. In

Fig. 1. The reference scenario, implemented in a high-resolution quadrotor
simulator [1]. The brown boxes are footprints of buildings. The blue square is
a simulation of a likelihood-based observation model for detecting targets [2].

addition, many suboptimal algorithms — including the PHD

Filter [6], the CPHD Filter [7], the Bernoulli Filter, the multi-

Bernoulli [8] Filter and the Labelled Bernoulli Filter [9] —

have been developed. These have been shown to be highly

effective in some cases, especially when the clutter rate or the

density of targets is relatively high.

In our reference scenario, the tracking sensor (a camera) is

fixed to a mobile platform. When the state of the platform, its

effects can be modelled as a parameter or control input which

typically enters into the observation model [4] where it can be

treated in a similar manner to a bias parameter [10]. However,

in many situations, the state of the platform itself must be

estimated from a sequence of sensor measurements using some

kind of recursive filter. This introduces time correlated errors

which will directly enter into the target estimates. As a result

the estimates of different target tracks are not independent

of one another. Potential issues include loss of covariance

consistency and challenges with data association [11], [12].

Therefore, approaches to overcome the effects of time corre-

lated platform errors must be addressed.

Within target tracking, most work has tended to focus on

estimating static errors, such as sensor biases, which do not

change over time. Approaches include the use of maximum

likelihood [5], [13]–[15], as well as pseudomeasurements [16].

Within the robotics community, dynamic errors due to plat-
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form uncertainty are widely studied the context of Simulta-

neous Localisation and Mapping (SLAM) in which a mobile

robot estimates the structure of the environment and uses this

estimate to improve its estimate of its own position. Although

SLAM traditionally considered the problem of just stationary

features, it has been extended to handle both stationary and

moving objects as the so-called Detection and Tracking of

Moving Objects (DATMO) problem.

Although these works are highly relevant for the problem

we seek to address, these algorithms were largely developed

by extending tractable approximations to RFS to include the

effects of moving platforms. In this paper, we consider the

problem from a more fundamental point of view directly in

terms of the elements of random sets. Rather than tackle the

full multi-target problem directly, in this paper we investigate

the problem for the case of at most a single target. Although

this could be argued to be a trivial problem, we believe

it is both practically useful in its own right, and lays the

theoretical foundation for considering how platform movement

can be incorporated in more general formulations of multi-

target tracking, such as the multi-Bernoulli filter.

The structure of the paper is as follows. In Section II,

the problem statement is described and two key problems —

dependent tracking of targets and tracking with occlusions

— are identified. Section III develops the formulation for

the Bernoulli filter to account for correlations in the targets

and proposes a full particle implementation of the algorithm.

However, the resulting state space is rather large because the

target and platform states have to be estimated simultaneously.

To overcome this limitation, in Section IV we propose a

decoupled implementation in which correlations from the

platform estimate are used to propagate the track information,

but the track information is not used to improve the quality

of the platform estimate. Section V evaluates the solution in a

simulation scenario. A summary and conclusions are presented

in Section VI.

II. PROBLEM STATEMENT

A. Scenario Description

We consider the problem illustrated in Figure 1. The fol-

lowing assumptions are made:

1) The environment can contain at most one target.

2) The birth, death and time evolution of the target is

independent of the platform.

3) All measurements can be classified into two types: those

which provide information about just the platform, and

those that provide information about the platform and

the target.

Given these assumptions, we now analyse the behaviour of

the platform and the target.

B. Platform System Description

The state of the platform at time k is
∗
xk. It evolves

according to the discrete time process model

∗
xk =

∗

f

[

∗
xk−1,

∗
uk−1,

∗
vk−1

]

, (1)

where
∗
uk are the control inputs and

∗
vk is the process noise,

which is not necessarily injected in a linear manner. The

associated state transition probability is
∗

φk+1|k

(

∗
x|

∗
x
′
)

.

The state of the platform is directly measured by onboard

sensors such as a GPS, an Altitude Heading and Reference

System (AHARS) or potentially even a visual mapping system.

In all cases, the sensor likelihood model is of the form

∗
zk =

∗

h

[

∗
xk,

∗
uk,

∗
wk

]

, (2)

where
∗
wk is the observation noise which is not necessarily

additive. The important thing to note is that this type of

observation is only a function of the platform’s state and has

no dependency on the state of the target. The corresponding

likelihood model is
∗
ϕ
(

∗
zk|

∗
xk

)

.

C. Target System Description

1) Probability Distribution: The environment is populated

by a time-varying set of targets. At time k, suppose there are

Tk. This can be represented by the random set Xk [4],

Xk = {x1, . . . ,xTk
.} (3)

In this paper we consider the case that there is at most a

single target at any given time. Therefore, the FISST PDF is

π(Xk) =











1− rk if Xk = ∅

rk·s(xk) if Xk = {xk}

0 if |Xk| ≥ 2.

(4)

where rk is the probability that the target exists and s(·) is the

spatial distribution if it does exist. s(·) is a standard probability

distribution, and so
∫

s(xk)dxk = 1. (5)

2) State Transition Equations: The transition equations

account for target birth, target death and the time propagation

of persistent targets. The state transition densities are1

φk|k−1 (X|∅) =











1− pb if X = ∅

pb·bk|k−1 (x) if X = {x}

0 if |X| ≥ 2.

φk|k−1 (X| {x′}) =











1− ps if X = ∅

ps·πk|k−1 (x) if X = {x}

0 if |X| ≥ 2,

(6)

where pb is the birth probability, ps is the survival probability,

bk|k−1 (x) is the birth process and πk|k−1 (x) is the state

transition of the target if it persists.

1For simplicity, we present the cases where probability of survival, prob-
ability of birth, probability of detection and clutter rate are all independent
of target state and the environment. However, in general this is not true [2],
[17]. The approach can be readily extended to include these dependencies.
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3) Measurement Likelihood Equations Model: At each up-

date time step, the camera on the platform acquires an image,

a detection algorithm is run, and a set of Mk measurements are

extracted. Each measurements consists of the position where

it was discovered in the image [2]. The measurement set is

Zk = {zk,i, . . . , zk,Mk
} ⊂ Z. (7)

The measurement model specifies that the observations

originate from two sources: the targets and the background.

The detector output observation process is

Z = C(
∗
x)
⋃

W(X,
∗
x), (8)

where C(
∗
x) is the clutter and W(X,

∗
x) is the observation

RFS. The clutter likelihood is given by

ϕ (Z|∅) = κ(Z) = e−λ
∏

z∈Z

λc(z). (9)

The measurement likelihood for W(X,
∗
x) is found by sum-

ming over all assignments of the observations to either clutter

or to the target using the relationship

η(W|{X}) =

{

1− pD(
∗
x,x) if W = ∅

pD(
∗
x,x)·g(z|

∗
x,x) if W = {z}

(10)

The observation likelihood ϕ (Z|{x}) is then found by

assigning one measurement at a time to the target and all the

rest to clutter [5] to give

ϕ (Z|{x}) = (1− r)κ(Z)+

+ rκ(Z)pD(x)

[

∑

z∈Z

g(z|x)

λc(z)
− 1

]

.
(11)

Note that the platform and target states are coupled in two

ways. First, the probability of detection, pD(x,
∗
x), is affected

by the state of both. For example, in Figure 1, the UAV

can observe targets which lie within the view frustum of the

camera. Second, the likelihood g(z|
∗
x,x) also depends upon

the relative transformation between the target and state.

D. Discussion and Related Work

The target and platform states are coupled through the

target observation model described in (8). When the state of

the platform is well-known, its distribution is effectively a

delta function and the regular Bernoulli filter can be applied

without modification. However, when the platform state is

not well-known, the effect is to introduce uncertainty into the

observation RFS (10).

As explained in the introduction, random set based solutions

have begun to be developed to address issues with uncertainty

in platform position. Ristic considered the problem of cali-

bration and alignment of a pair of static sensing systems [15]

by finding the maximum likelihood overlap between the two

systems. Üney proposed to use the Hellinger distance between

the intensities computed at different platforms [14]. Both

approaches used nonlinear optimisation which could be run

over multiple time steps. However, we seek a formulation in

which real-time movement of the platform is supported. The

closest work we are aware of relates to the use of random

sets in Simultaneous Localisation and Mapping (SLAM) [18],

[19]. In the SLAM problem, a mobile platform moves through

an environment and constructs a map of stationary landmarks.

This information is used, in turn, to improve the estimate of

the robot’s location. Critical to these algorithms is the fact that

the correlations are maintained. To achieve this, Mullane et al.

developed a solution which uses a proxy map to evaluate the

dependency structure [18]. This was extended by Moratuwage

et al. to include moving objects [20]. Lee, on the other hand,

uses a hierarchical model based on a single cluster process [19]

which directly includes moving objects. Recently, Deusch et

al. applied the Labelled Multi-Bernoulli Filter to the SLAM

problem [21] and demonstrated significant improvements over

Mullane et al.’s PHD solution. Although their work does not

explicitly include moving objects, these can be readily added

using techniques applied in other random set formulations.

Although these approaches yield impressive results, they

have been developed by first deriving tractable approximations

to RFS, and then applying

III. TARGET TRACKING FROM A MOVING PLATFORM

To fully account for the dependencies between the platform

and the target state, our goal is to maintain the FISST PDF

fk|k(X|Z1:k) = fk|k(
∗
x,X|

∗
z1:k,Z1:k). (12)

To address this problem we begin by noting that, using the

chain rule of probability,

fk|k−1(X|Z1:k) = fk|k−1(
∗
x,X|Z1:k) (13)

= fk|k−1(X|
∗
x,Z1:k)fk|k−1(

∗
x|Z1:k).

Therefore, substituting from (4), the FISST PDF will be of

the form

π(X) =

{

(1− r)·s0(
∗
x) X = ∅

r·s1(
∗
x,x) X = {x}

(14)

where s0(
∗
x) is the localization distribution when the target

does not exist, and s1(
∗
x,x) is the localization distribution

when it does exist. Note that, from this definition, the proba-

bility of existence of the target is given by

r = 1−

∫

π
(

∗
x, ∅
)

d
∗
x. (15)

In a conventional Bernoulli filter, the probability of exis-

tence is a scalar quantity which can be propagated separately

from the particle distribution which represents the spatial

distribution of the target [5]. However, this is not the case

here. The reason is that, even if the target does not exist, the

filter must still maintain a distribution over the location of the

platform.

We now consider the prediction and update steps.
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A. Prediction

The prediction is given by

fk|k−1(X|Z1:k−1) =

∫

φk|k−1

(

X|X
′
)

fk|k−1(X
′
|Z1:k)δX

′
.

(16)

Given our assumptions, the time evolution of the platform

and the target are independent of one another. Therefore,

φk|k−1

(

X|X
′
)

=
∗

φk|k−1

(

∗
x|

∗
x
′
)

φk|k−1 (X|X′) . (17)

In Appendix A, we show that the probability that a target

exists evolves according to

rk|k−1 = pb(1− rk−1|k−1) + psrk−1|k−1. (18)

This is exactly the same as the form of the time evolution of

the survival of the target for a conventional Bernoulli filter.

B. Update Step

The update is carried out using Bayes’ Rule,

fk|k(Xk|Z1:k) =
ϕ
(

Zk|Xk

)

· fk|k−1(Xk|Z1:k−1)

fk(Zk|Z1:k−1)
. (19)

The updated probability of existence, computed from (15),

is given by

rk|k = 1−

∫

ϕ
(

Zk|
∗
xk, ∅

)

· fk|k−1(
∗
xk, ∅|Z1:k−1)d

∗
xk

fk(Zk|Z1:k−1)
.

(20)

We consider the case where we update with each type of

observation in turn.2

1) Update with a Platform Observation: In this case,

Zk =
∗
zk. (21)

Substituting for the sensor likelihood model, (19) becomes

fk|k(Xk|Z1:k) =

∗
ϕ
(

∗
zk|

∗
xk

)

· fk|k−1(Xk|Z1:k−1)

fk(
∗
zk|Z1:k−1)

. (22)

The normalization constant is

fk(
∗
zk|Z1:k−1) =

∫

∗
ϕ
(

∗
zk|

∗
xk

)

fk(X|Z1:k−1)δX

=

∫

∗
ϕ
(

∗
zk|

∗
xk

)

fk|k−1(
∗
xk, ∅|Z1:k−1)d

∗
xk

+

∫ ∫

∗
ϕ
(

∗
zk|

∗
xk

)

fk|k−1(
∗
xk,xk|Z1:k−1)dxkd

∗
xk

= ∆0 +∆1.

(23)

Using (20), the new probability of target existence is

rk|k =
∆1

∆0 +∆1

(24)

In general, rk|k 6= rk|k−1. The reason is that when a target

observation is used to perform an update, both the target and

2If the filter were presented with both types of observation simultaneously,
each type of measurement could be fused sequentially.

platform states are updated. If a track is not present but the

platform updates the state as if it is, the effect is to introduce

noise into the platform estimate. Direct observations of the

pose of the platform can help to identify if this case has arisen.

2) Update with a Set of Target Observations: Now consider

the case that just the target observations are available. In this

case, (19) becomes

fk|k(Xk|Z1:k) =
ϕ
(

Zk|Xk

)

· fk|k−1(Xk|Z1:k)

fk(Zk|Z1:k−1)
. (25)

The target likelihood ϕ
(

Zk|Xk

)

is given by extending (48)

and (49) in [5] to include the platform state. Specifically,

ϕ
(

Z|
∗
x, ∅
)

= κ(Z)

= e−λ
∏

z∈Z

λc(z,
∗
x), (26)

ϕ
(

Z|
∗
x, {x}

)

= (1− r)κ(Z)+

rκ(Z)pD(x,
∗
x)

[

∑

z∈Z

g(z|
∗
x,x)

λc(z)
− 1

]

. (27)

The normalization constant is

fk(Zk|Z1:k−1) =

∫

ϕ
(

Zk|
∗
xk,xk

)

fk(X|Z1:k−1)δX

=

∫

ϕ
(

Zk|
∗
xk, ∅

)

fk|k−1(
∗
xk, ∅|Z1:k−1)d

∗
xk

+

∫ ∫

ϕ
(

Zk|
∗
xk,xk

)

fk|k−1(
∗
xk,xk|Z1:k−1)dxkd

∗
xk

(28)

In Appendix B, we show that the probability of the target

existence is similar to that of the Bernoulli filter, and can be

written in the form

rk|k =
1−∆k

1− rk|k−1∆k

rk|k−1. (29)

However, the term ∆k includes the effects of both the platform

and target state.

IV. SUBOPTIMAL APPROXIMATION

The last section described a filter which jointly estimates

the (Bernoulli) state of a target and the state of the platform.

As a result, the state space consists of both the the platform

and target states. These can be high dimensional. For example,

in many UAV applications, nine states are used to represent

the platform (position, velocity and orientation in 3D). If

the target dimension is four (position and velocity in the x

and y directions), the overall dimension of the system is 13.

Although Gaussian mixture approximations can be efficiently

used with such high-dimensional spaces, the nonlinear nature

of the detection region of the camera means that we prefer

to use a particle filter. However, it is well-known that the

number of particles required increases exponentially with

dimension, and we seek a simple methods to reduce the overall

computational cost of the filter.
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As explained earlier, there are three reasons why we main-

tain both the UAV and target states in the state space at the

same time:

1) To properly maintain the dependency structure between

the platform and the target state estimates.

2) To use the observations of the platform to improve the

quality of the estimate of both the platform and the

target.

3) To use observations of the target state to improve the

quality of the estimate of both the target and the plat-

form.

Of these advantages, the one which is likely to provide the

least benefit is to update the platform state based on the track.

There are two reasons for this. First, platforms such as UAVs

are often equipped with many types of sensors (such as GPS,

AHARS and vision-based mapping systems). As a result, the

UAV often has access to a range of high-quality information

and the marginal information provided by the target estimate is

likely to be very small. Second, even though the movement of

the target relative to the platform might be measured accurately

(for example via a camera) the target dynamics are often

highly uncertain, meaning that the target provides relatively

little information about the platform estimate.

Therefore, we propose to approximate the joint distribution

as follows:

fk|k−1(X|Z1:k) = fk|k−1(
∗
x,X|Z1:k,

∗
z1:k)

≈ fk|k−1(X|
∗
x,Z1:k)fk|k−1(

∗
x|

∗
z1:k)

(30)

Specifically, we have conditioned the platform state only on

the platform observations. As a result, the updated platform

information can be exploited by the target filter. However, the

target information is not exploited by the platform. This de-

composition is very similar to the approximation which is used

to derive the Schmidt Kalman Filter (SKF) [22]. To reduce the

state space in a Kalman filter, Schmidt proposed “locking” a

set of states so that their values do not change when new sensor

information arises. However, crucially, the filter maintains the

correlations between locked and unlocked states. Similarly

here, the flow of information from the platform to the target

filter means that the dependency structure is maintained.

We now describe an implementation of this algorithm which

we call the decoupled filter.

A. Implementation of the Decoupled Filter

The decoupled filter can be implemented in a very straight-

forward manner. It consists of the two filters as illustrated

in Figure 2. The first filter is the platform filter. It maintains

fk|k−1(
∗
x|

∗
z1:k). Any preferred estimation algorithm — includ-

ing a particle filter, Gaussian mixture model, or a particle

filter — can be used. The second filter is the Bernoulli

target filter which maintains the probability of existence of

the target, together with its spatial distribution. We use the

particle implementation [5]. To ensure proper conditioning on

the platform state, for each particle in the Bernoulli filter we

draw a sample from fk|k−1(
∗
x|

∗
z1:k) and and condition that this

sample is the actual state of the platform.

Platform Filter Target Filter

Platform Observations Target Observations

Particles

Platform Estimate

Fig. 2. The decoupled filter consists of two hierarchically arranged filters.

The computational cost of running the algorithm is equal

to the cost of running the platform estimator, together with

the cost of running the Bernoulli filter. The only additional

overhead comes from the need to sample the platform for each

Bernoulli particle.

V. EXPERIMENTAL EVALUATION

A. Simulation Scenario

We evaluated the performance of the different configurations

of the algorithm in simulation using a subset of a high-

fidelity quadrotor simulator known as QRSim [1]. QRSim is

a high-resolution simulation system for modelling both white

and non-white noise sources in realistic UAV models. These

correlations can be very important [23]. In this simulation we

used a baseline version of QRSim’s simulation models.

The state of the platform is

∗
x =

[

x y z u v w φ θ ψ
]⊤
, (31)

where the position is x, y, z the velocity is u, v, w and the

attitude is expressed by the φ, θ, ψ Tait-Bryan angles using a

rotation about z, followed about y and finally by x.

The platform sensing system consists of the following:

1) A GPS system which measures position with standard

deviation of 1m, 1m, and 2meter.

2) An AHARS system which measures attitude with 2

degrees standard deviation in all angles.

3) A camera system. The camera system uses full perspec-

tive projection, view frustum culling, and lens distortion.

Although extensive models of probability of detection of

cameras exist [17], we used a simple approach in which

the probability of detection was 0.999. In addition, noise

was generated as a Poisson process with 10−6.

The state of the target is

x =
[

x y u v
]⊤
, (32)

where the position is x, y and the velocity is u, v.

The parameters of the simulation are found in Table I.

Figure 3 lays out the scenario. A UAV flies at a constant

altitude of 30m over flat ground. Three targets pass through

the field-of-view of the sensor at different times.
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Parameter Value Parameter Value

σGPS 1m2 σAHARS 2
◦

σPX 1px Image size 3264× 2248 px
Persistent particles 4000 New born particles 40
Probability of birth 0.3935 Probability of survival 0.9

Probability of detection 0.999 λ 10
−5

TABLE I
THE PARAMETER VALUES USED IN THE SIMULATION.
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−50
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Fig. 3. The scenario. The 3D plot shows the configuration of the scenario. The
blue tetrahedron is the 3D view frustum of the camera. The target location is
shown as the purple circle, and clutter are hollow circles. The second shows
the measurements overlaid with clutter, projected into the ground plane. The
track of the 3 targets is visible. The view frustum of the camera is the blue
rectangle.

B. Algorithms Tested

To compare the performance of the different algorithms, we

implemented the following:

1) Ideal. This has full knowledge of the UAV’s location,

as if it were provided by an oracle. This shows the best

possible results.

2) Raw. This uses the GPS and AHARS measurements

directly in the Bernoulli filter as if they were ground

truth. In this example we do not have correlated noise.

Rather, this illustrates the effects of large magnitude

noise on the filter.

3) Decoupled. This implements the decoupled filter.

4) Decoupled MAP. This takes the output from the UAV

Kalman filter and treats it as an “ideal” measurement,

similar to the Raw algorithm.

For the Decoupled and Decoupled MAP filter, we use a

standard linear Kalman filter for both position and attitude.3

Since the filter used ground truth noise values from the

simulator, empirical tuning was not required.

Two sets of results were collected — the computed vs. the

ground truth probability that a target exists, and the OSPA

metric [24] using the settings c = 25 and p = 1. A target was

declared to exist if its probability of existence is at least 0.5.

All results were computed for 100 Monte Carlo runs.

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

 

 

AssumedKnownPlatformBernoulliEstimator

KnownPlatformBernoulliEstimator

MAPDecoupledBernoulliEstimator
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Fig. 4. The normalised estimation error squared for the estimated state of the
platform.
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Fig. 5. The probability existence of the target.

C. Results

Figure 4 shows the Normalised Estimation Error Squared

(NEES) for the position and orientation states for the platform

estimated by each filter. From the properties of NEES, if a

filter operates in a covariance consistent manner, the mean

value of the NEES should be the same as the dimension of

the state. For all the algorithms illustrated here, this is the

case. Therefore, in all algorithms the platform is estimated in

a covariance consistent manner.

Figure 5 shows the estimated probability of existence of the

target for each filter. As can be seen, the expected probability

of existence of a target rises when a target is present. However,

the Raw filter has a much lower cardinality. The reason is

that the large errors in the platform movement cause large

apparent movements in the target relative to the platform.

As a result, the movement appears to be far more similar to

noise. The Decoupled and DecoupledMAP filters, however,

use a filtered version of the platform pose. Even though this

contains temporal correlations from the Kalman filter, the

overall magnitude of the platform noise is greatly reduced.

As a result, the filter is able to greatly improve the quality of

the estimates. Figure 6 plots the results for the filters. Given

the uniformly low value, it shows that the localisation error in

3This is acceptable in this application because both the errors and magni-
tudes of the angles are very small.
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Fig. 6. The OSPA metric for the different filters.
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Fig. 7. Frames from the scenario 25 time steps apart. The black particles
are from the decoupled filter. False tracks, created by clutter, can exit the
detection region of the sensor for a prolonged period of time.

the target is small.

However, all the filters exhibit two problems: first, they can

be slow in initializing the location of a target. Second, the

probability of target existence is relatively high even when a

target is not present. These two results can be explained by

a combination of the (relatively high) clutter in the camera

together with its limited detection region. Figure 7 shows a

series of frames from the scenario. The particles from the

decoupled filter are shown. The detection region is shown as a

quadrilateral. However, clutter can generate targets which, due

to the random walk associated with the target dynamics, can

leave the clutter region. Because the probability of detection

becomes zero, the weights on these particles only decline

slowly due to the non-unit probability of survival. Although

the filter could be tuned to reduce the magnitude of these

effects, this is inherent for any system in which the detection

region of the sensor is finite.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have considered how to formulate the

problem of tracking a single target from a platform. We have

developed an extension of the Bernoulli filter to handle the

dependency upon the platform. We have also developed a sub-

optimal strategy for implementing the combined algorithm,

which cascades a Bernoulli filter onto a platform localization

algorithm. Our experimental results show that the filter can

successfully track the target, when present, with a high degree

of accuracy. However, the results also show that the limited

field of view of the sensor leads to a number of problems in

which clutter can lead to false tracks which, when they fall

outside of the field of view of the sensor, can persist for long

periods of time.

Our future work will concentrate on two main themes. First,

we will apply the formulation to the multi-Bernoulli algorithm

to support multiple target tracking. Second, we will investigate

more efficient ways to manage occlusion and limited detection

regions of sensors.
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APPENDIX A

PREDICTED PROBABILITY OF TARGET EXISTENCE

In this appendix, we prove (18). From (15), we only need

to consider fk|k−1(
∗
x, ∅|Z1:k−1). Substituting from (16) and

(17),

fk|k−1(
∗
x, ∅|Z1:k−1) =

∫

∗

φk|k−1

(

∗
x|

∗
x
′
)

φk|k−1 (∅|∅) fk−1|k−1(
∗
x
′, ∅|Z1:k−1)d

∗
x
′

+

∫ ∫

∗

φk|k−1

(

∗
x|

∗
x
′
)

φk|k−1 (∅|{x
′})

× fk−1|k−1(
∗
x
′, {x′}|Z1:k−1d

∗
x
′)dx′. (33)

Substituting from (6) and (14),

fk|k−1(
∗
x, ∅|Z1:k−1) = (34)

= (1− pb)(1− rk−1|k−1)

∫

∗

φk|k−1

(

∗
x|

∗
x
′
)

s0(
∗
x
′)d

∗
x
′

+ (1− ps)

∫ ∫

∗

φk|k−1

(

∗
x|

∗
x
′
)

rk−1|k−1s1(
∗
x
′,x′)d

∗
x
′dx′

= (1− pb)(1− rk−1|k−1)s
′
0(

∗
x) + (1− ps)rk−1|k−1s

′
1(

∗
x)
(35)

where s′0(
∗
x) and s′1(

∗
x) are spatial probability distributions of

the platform conditioned on the cases that the target does not

or does exist. Finally, from (15),

rk|k−1 = 1−

∫

fk|k−1(
∗
x, ∅|Z1:k−1)d

∗
x

= 1− (1− pb)(1− rk−1|k−1)

∫

s′0(
∗
x)d

∗
x

− (1− ps)rk−1|k−1

∫

(1− ps)s
′
1(

∗
x)d

∗
x

= 1− (1− pb)(1− rk−1|k−1)− (1− ps)rk−1|k−1

= pb(1− rk−1|k−1) + psrk−1|k−1.

APPENDIX B

PROBABILITY OF EXISTENCE WITH TARGET

OBSERVATIONS

In this appendix, we show that (20), in the case of a

target observation, has the Bernoulli-type form in (29), the
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normalization constant can be written as

fk(Zk|Z1:k−1) = (1− rk|k−1)

∫

ϕ
(

Zk|
∗
xk, ∅

)

s0(
∗
xk)d

∗
xk

+ rk|k−1

∫ ∫

ϕ
(

Zk|
∗
xk,xk

)

s1(
∗
xk,xk)dxkd

∗
xk.

(36)

Using the observation likelihood terms (26) and (27), define

the quantity

∆k =

∫ ∫

[(

∑

z∈Z

g(z|x)

λc(z)

)

− 1

]

×pD(
∗
xk,xk)s1(

∗
xk,xk)dxkd

∗
xk

(37)

Therefore,

fk(Zk|Z1:k−1) = κ(Zk)(1− rk|k−1∆k). (38)

Furthermore,
∫

ϕ
(

Zk|
∗
xk, ∅

)

· fk|k−1(
∗
xk, ∅|Z1:k−1)d

∗
xk

= (1− rk|k−1)κ(Zk). (39)

Substituting into (20),

1− rk|k−1 =
κ(Zk)(1− rk|k−1)

κ(Zk)(1− rk|k−1∆k)
. (40)

Rearranging gives (29).
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