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Abstract—This paper presents a method for matching spotlight
Synthetic Aperture Radar (SAR) images with a georeferenced
3D-map as means for navigational aid. A hypothesis of the flying
platform’s absolute position, velocity and direction – which later
can be used to correct the inertial navigation system – is attained
by image matching and optimization.

A projective model with 6 DoF is used to create a simulated
SAR image from a 3D map. The parameters of the projective
model represents the most important of the platform’s navigation
state, and these are adjusted by Chamfer matching the captured
SAR image to simulated ones.

The performance is demonstrated on real spotlight SAR
images and 3D-map, and the error is shown to be only a few
pixels in average, which in our case is about 3 meters.

I. INTRODUCTION

A radar that is carried by a flying platform can be used

to obtain an image of the environment by mapping radar

reflections to image pixels. The image resolution is governed

by the radar antenna size and radar frequency, and realistically,

this resolution will be in tens of meters in size. An approach

to improve the resolution is to synthesize a larger antenna,

which is achieved by moving the platform and taking many

radar echoes from the same area. On modern systems, this

technique allows for resolution in order of decimeters, and is

the basic principle of the Synthetic Aperture Radar (SAR),

[1], [2]. Normally, the radar antenna is fixed in the platform’s

body. Such a configuration generates striplike images, i.e. strip

SAR images, while configurations where the antenna is moved

and pointed to a certain point in the scene during the whole

image acquisition time, generates spotlight SAR images, see

e.g., [3]. In this work spotlight SAR images acquired with the

experimental system, [4]–[6], have been used. See Figure 1

for an image example. Usually, these images are used for

remote sensing, mapping or surveillance, but in some cases

they have been used for navigation purposes, see e.g., [7],

[8]. The idea behind this is that the pixels of the SAR image

can be related, by a geometric relationship, to the position

that the platform had when the image was taken. If the image

is, in turn, related or matched to a map of the environment

with known coordinates in some reference frame, an absolute

position can be obtained in the same reference frame. Such

navigation aid could be used to stabilize long term drift present

in Inertial Navigation Systems (INS), similar to how Global

Navigation Satellite Systems, e.g., GPS, are used. This method

has many similarities with terrain aided navigation, [9], where
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Figure 1: Example of a spotlight SAR image in slant

range/cone angle coordinates.

a 3D terrain elevation map is used to support navigation, or

visual aided navigation, where optical cameras and maps are

used in a similar way, [10], [11]. Optical cameras, however,

have the drawback of darkness or bad weather occlusions,

while SAR can operate under these conditions, giving an all-

weather sensor.

In this work, the image matching idea is utilized to relate

a SAR image and a 3D-map of the environment in order to

correct the flying platform’s position and orientation. This is

done by projecting a 3D-map onto an imaged surface, and

in that way creating a simulated SAR image. The simulated

image is then matched, or co-registered, with the SAR image.

Since the simulated image is created from the 3D-map by

using the assumption about platform’s position and orientation,

the best match should correspond to the best position and

orientation setting. More details about the projection of the

3D-map and its parametrisation are given in Section II.

II. SAR GEOMETRY

As mentioned above, SAR creates high resolution images

by measuring the time delay and dopplershift of microwaves

back-scattered from the environment. The propagation speed

of the transmitted microwaves is normally known (or esti-

mated), so that the measurements can be expressed in terms of
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Figure 2: Basic spotlight SAR image geometry.

slant range, R, and cone angle, ϕ. The obtained measurements

are basically a projection of the 3D environment into a

2D image plane. This implies that with a 3D-map of the

environment available, a simulated SAR image can be created.

In this context, a 3D-map is defined as a terrain elevation

for each environment position. It is also assumed that map

positions are related to a fixed coordinate system, denoted xyz,

in which the position of the platform can be expressed.

To create the simulated SAR image Isim
θ (R,ϕ), the 3D

positions of the 3D-map, s̄ = [sx, sy, sz]
T , is transformed to

a slant range/cone angle representation, using the parametric

projective model described below. θ is the parameter vector

of the projective model, and consists of the aperture center

position, p̄ = [px, py, pz]
T , and the aperture direction encoded

as the velocity vector, v̄ = [vx, vy, vz]
T , i.e., θ = [p̄T v̄T ]T .

These parameters correspond to the platform’s mean position,

speed and traveling direction during image acquisition. Note

that this parameter vector can be obtained from the INS, but it

will normally be wrong due to e.g., drift errors. The parameter

vector obtained from INS is called θ0. Define further a vector

from the center position of the aperture p̄ to any 3D-map

position s̄ as d̄ = s̄− p̄.

Now, each 3D point can be projected to the {slant range,

cone angle}-plane by computing the magnitude of d̄ and the

angle between the velocity vector v̄ and the vector d̄ as

(subscript G stands for “geometric”)

RG(θ) = ‖d̄‖ =
√

d2x + d2y + d2z (1a)

ϕG(θ) = arccos

(

d̄T v̄

‖d̄‖‖v̄‖

)

(1b)

The intensity values (in range 0 to 1) in these coordinates

is simply assumed to be proportional to the incidence angle

between local terrain plane in point s̄ and the vector d̄ as

Isim
θ (RG, ϕG) =

1

π
arccos

(

d̄T n̄

‖d̄‖‖n̄‖

)

(2)
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Figure 3: A simulated slant range/cone angle SAR image

which has been used for evaluation of the method.

where n̄ represents the normal to the local plane defined as

n̄ =
[

∂
∂x

s̄ ∂
∂y

s̄ ∂
∂z

s̄
]T

(3)

Refer to Figure 2 for an illustration of the setup and the

parameters defined above.

Important to note is that the image is constructed under

the assumption of straight flight trajectory. This assumption

is usually valid for these cases, since aperture lengths are

quite small. An example image created from a 3D-map with

the the projection model (1) is depicted in Figure 3. For

comparison, the real slant range/cone angle SAR image is

shown in Figure 1 in Section I.

Since SAR measures Doppler shifts and time delay of

the transmitted signals, the platform speed affects the image

construction. Hence, the pure geometrical projection model

in (1) is not sufficient when comparing SAR images to a

3D-map. We have chosen to keep the SAR image and its

metadata unspoiled, and instead compensate for the aberration

that depends on the platform speed by altering the projection

model. The effect on time delay, and thus range measurements,

of transmitted signals caused by erroneous platform speed

is well below the range resolution of the sensor. Hence, no

compensation for range projection equation (1a) is necessary.

The effect of erroneous platform speed is incorporated on the

cone angle measurement in the model by using the Doppler

frequency equation

fd =
2

λ

(

d̄T v̄

‖d̄‖

)

(4)

where λ denotes the microwave’s wave length. Combining (1b)

and (4), the cone angle can be expressed as

ϕ = arccos

(

λfd
2‖v̄‖

)

(5)

This expression is actually used by SAR systems to calculate

cone angle image coordinates from the Doppler measurements

by using the speed from the navigation system.
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By using Taylor expansion on (5), a cone angle formula that

compensates for speed errors can be derived as

ϕ ≈ ϕL +∆‖v̄‖
∂ϕ

∂‖v̄‖

∣

∣

∣

∣

‖v̄‖=‖v̄L‖

=

= ϕL +∆‖v̄‖
λfd

2‖v̄L‖2

√

1−

(

λfd
2‖v̄L‖

)2
=

= ϕL +∆‖v̄‖
λfd

2‖v̄L‖2
√

1− cos2(ϕL)
=

= ϕL +∆‖v̄‖
2‖v̄L‖ cos(ϕL)

2‖v̄L‖2 sin(ϕL)
=

= ϕL +
∆‖v̄‖

‖v̄L‖ tan(ϕL)
(6)

where ϕL and ‖v̄L‖ are evaluated at the linearisation point, and

∆‖v̄‖ = ‖v̄‖−‖v̄L‖ represents the deviation from it. Now, this

relation can be used to calculate the speed error compensated

cone angle by setting the linearisation point to the parameter

v̄. This gives that ϕL is set to the geometrical cone angle as

given before in (1b), and ∆‖v̄‖ is set to the difference between

the parameter speed and the INS measured speed, i.e.,

ϕL = ϕG(θ) = arccos

(

d̄T v̄

‖d̄‖‖v̄‖

)

(7a)

∆‖v̄‖ = ‖v̄‖ − ‖v̄0‖ (7b)

Now the term
∆‖v̄‖

‖v̄‖ tan(ϕG) is used to compensate for aberration

that the deviation, ∆‖v̄‖, from the actual speed, which we

want to find, and the speed measured by the navigation system

causes. This gives the final relation for the simulated image

coordinates (Rsim, ϕsim) as

Rsim(θ) = RG(θ) = ‖d̄‖ =
√

d2x + d2y + d2z (8a)

ϕsim(θ) = ϕG(θ) +
∆‖v̄‖

‖v̄‖ tan(ϕG(θ))
(8b)

which can be used to generate simulated images together with

relationship in (2).

III. POSITION AND VELOCITY PARAMETER ESTIMATION

Given the 3D-map introduced in Section II, a simulated

SAR image Isim
θ , which is assumed to cover the whole area

captured by the real SAR image, can be created for any

parameter vector θ using relationship in (8). The captured

SAR image can be used as a whole or it can be split into

smaller parts, e.g., if the whole image is too large making

the calculations computationally heavy. This is expressed as

ISAR
k , k = 1, . . . , N , where N is the number of (sub)images,

e.g., N = 1 means that the whole image is used. The

real image(s) can now be compared to the simulated SAR

image to find the best correspondence between images. Posed

as an optimisation problem, a solution θ̂ to the following

minimisation problem is sought

θ̂ =argmin
θ

N
∑

k=1

V (Isim
θ , ISAR

k ) (9)

Here V ( · , · ) is some similarity measure between images that

attains its minimum value for the best match. Many similarity

measures could be used, e.g., simple image difference or some

image feature based comparison. Since the 3D-map that is

used has no radar reflectivity information included, all direct

comparison methods would most likely fail due to too large

differences in pixel values.

Another approach is to use the relative intensity differences,

i.e., edges, that arise along the contour of structures. The

edges that are formed along the structure, e.g., coast lines

and buildings, can be extracted and compared according to

[12]–[14].

One quite robust method, which relies on edge extraction,

and that has been successfully used for template matching, is

Chamfer matching, [8], [14]–[16]. Consequently we use this

measure as our image similarity measure V . The Chamfer

measure is explained in some more detail in Section III-A.

One thing to note about the used similarity measure is that

it is not analytically differentiable. This implies that if any

gradient based algorithms are to be used, numerical methods

for differentiation must be used, such as finite differences. An

alternative is to use gradient-free or grid based search methods.

For our experiments we have chosen the gradient-free alter-

native, in particular Nelder-Mead method [17]. Further, the

optimisation procedure is initialised with the parameter values

obtained from the platform’s navigation system.

A. Chamfer Matching

Chamfer image matching is a computationally cheap image

matching algorithm, which expresses image similarity in terms

of distances between edge pixels in binary template, IF , and

target, IT , images, see Figures 4a and 4b for an example.

To calculate the Chamfer distance measure between these two

images, V (IT , IF ), a distance image, D, is first constructed

from the target image. The distance image is constructed such

that the value of each pixel states the distance to the closest

edge pixel. See Figure 4c for an example where city-block

distance metric is used. In our experiments, we have used

the method presented by [18] that efficiently calculates exact

Euclidean distances.

The Chamfer measure is calculated by taking the average

of the accumulated distance values from D along the contour

of the template image as

V (IT , IF ) =
1

N

∑

e∈IF

D(e) (10)

where e represents the coordinates of the non-zero pixels in

the template image and N = |IF |, i.e., the number of non-

zero pixels. In Figure 4d and 4e the coordinates e are colored

orange and it can be seen that the sum above evaluates to

24 and 2, respectively (the sum of all values that are hit by

orange pixels). Since the total number of non-zero pixels in

the template is N = 16, the Chamfer measures for these

examples are 24/16 = 1.5 and 2/16 = 0.125. The latter

is the minimal distance that can be achieved for this set of

target and template images. Since Chamfer measure requires
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(a) Binary target image,
IT .

(b) Binary template im-
age, IF .

(c) City-block distance
transform of the target
image, D.

(d) Template image (in orange) su-
perimposed on the distance trans-
formed image.

(e) Template image (in orange) su-
perimposed on the distance trans-
formed image giving the best fit.

Figure 4: To calculate the city-block Chamfer measure, the

binary target image has to be transformed into a distance

image, D. The similarity of the target and template images

is acquired by taking the average of all distance values along

the contour of the template edges. The measures for the bottom

left and right images are consequently 1.5 (24/16) and 0.125

(2/16), respectively.

binary images to be used, some kind of edge detector must be

applied to the images. One quite robust and well-known variant

is the Canny edge detector, [19]. It uses image gradients and

thresholding to detect edges in the images. Its main advantage

is high robustness to the noise in the images, which is a

preferable feature when it comes to the SAR images. The main

principle behind this detector is hysteresis with two different

thresholds, one high and one low. In this way the problem

of broken edges, or streaking, which is almost always present

in detectors with only one threshold is avoided. The higher

threshold is used to detect edges, while the lower one is used

to implement hysteresis and keep an edge even if the gradient

response would fall under the higher threshold.

The Canny detector is not free from the general problem

of threshold tuning, and individual thresholds for different

images must be found on a case by case basis. In this work

we are using an existing Canny edge detector implemented in

the Image Processing Toolbox in Matlab.

IV. RESULTS

The optimisation approach from Section III is illustrated on

a real SAR image in Figure 5a. The corresponding simulated

image is shown in Figure 5b where the initial parameter values,

i.e., the ones from navigation system, are used. These images

are basically the same ones as the images in Figure 1 and
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(a) Real SAR image.
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(b) Simulated image.

Figure 5: Real SAR and simulated image used for the experi-

ment. Note that the images are projected on the East-North-Up

local plane.

3, but projected from range/cone angle coordinates to a East-

North-Up local plane. This is done to easier evaluate matching

results in terms of distances on the ground.

Unfortunately, we don’t have ground truth for the navigation

parameters for these images, but only measured values from

the actual flight. For that reason we choose to evaluate the

performance of the method by comparing a set of control

points manually chosen in the images and evaluate the match-

ing efficiency. We also give the difference between initial and

final parameter values as information just to illustrate the order

of magnitude for the correction that method provides. The

control points for both images are shown in Figure 6.

When the images are superimposed with the initial value

of θ, it can be seen that the control points are quite far

away from each other. This is mostly caused by the error

in the velocity vector of the platform which manifests itself

as a rotation of the image in the plane, see Figure 7a. As

shown by Figure 7b, the distance between the corresponding
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(a) Control points in the real SAR image.
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(b) Control points in the simulated image.

Figure 6: Control points in the real (red circles) and simulated

(white crosses) image used for the evaluation of the perfor-

mance.

Point Initial error [m] Final Error [m]

1 317 6
2 319 4
3 299 0
4 294 3
5 308 2

Average 307 3

Table I: Estimation results for the control points.

control points is much shorter after the optimization has been

performed. The distances (error) between the corresponding

control points for the initial and final value of θ, as well

as the average error for all the points, are given in Table I.

The difference between the final and initial parameter value

is θ̂ − θ0 = [6.62, 13.7,−3.75,−0.299, 0.740,−0.0135]T .

The first three values, which represents the correction of the

platform’s position in m, is much smaller than the control

points’ total correction (which is about 300 m). This is due to

the fact that image is captured at a large distance, and even
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(a) The real SAR image is superimposed on the simulated SAR image, where
the simulated image was generated with the initial parameter values.
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(b) The real SAR image is superimposed on the simulated SAR image, where
the simulated image was generated with the optimised parameter values.

Figure 7: The results of the optimisation approach.

the smallest deviation in the velocity vector (the last three

parameter values, expressed in m/s) generates large geocoding

errors.

V. CONCLUSIONS AND FUTURE WORK

In this work we present a method for estimating position,

velocity and flight direction of a flying platform by matching

a spotlight SAR image with a 3D-map of the environment.

The basis for the image comparison is the Chamfer matching

measure, which is a robust way of matching template images to

target images. The performance of the algorithm is evaluated

on real SAR images and 3D-map. Great improvement of the

correspondence between the images are shown. In this way, an

extra all-weather “sensor”, SAR, can be used to support nav-

igation, even without presence of the high-precision systems

like GPS.

It is however worth noting that it is crucial to have feature

rich environment for this method to work, since the matching
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performance is highly dependent on this. In this case it is the

presence of the well defined (and possibly unique) edges that

is important. This implies that in e.g., ocean or desert areas

the method will perform quite poorly.

In the future it would be interesting to add some kind

of radiometric (radar reflectance) information in the 3D-map

in order to get more accurate simulated SAR images and

in this way make image matching even more robust. Also,

an alternative edge detector, more tailored to SAR image

properties, instead of generic one, like Canny, would be

interesting to test.
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