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Abstract—Traditionally, IP geolocation has been focused on
finding the exact location of a given internet host. In this work,
we focus on the problem of simultaneously geolocating large
numbers of IP hosts to within a discrete set of geographical
regions. Towards this objective, we present a fusion algorithm
that combines information from multiple, heterogeneous sources
of location information. Our algorithm estimates the most likely
region for all hosts simultaneously. A key component of the al-
gorithm is a systematic procedure for automatically constructing
factor graphs to perform information fusion from a collection of
delay measurements between hosts. While the paper focuses on
the algorithmic aspects of the problem, we present initial results
that demonstrate that hosts are placed in the correct region with
very good accuracy.

I. INTRODUCTION

IP geolocation refers to the practice of mapping an Internet

host, identified by its IP address, to a physical location, e.g.,

a street address or geographic coordinates, latitude and longi-

tude. By itself, an IP address does not provide any information

about a host’s location; therefore information from external

sources is required to map an IP address to a geographic

location.

Sources of geolocation can be broadly divided into three

types: database-based, name-based and measurement-based

[1]. Database-based sources [2] build and maintain repositories

of IP address to location mappings. Geolocation databases

are traditionally focused on pinpointing the location of end-

systems, i.e., hosts that act as clients in internet applications.

This focus is driven by the desire to provide location based

services such as web advertising, content localization, fraud

mitigation, and others. Due to this focus on end-hosts, geolo-

cation databases tend to be unreliable in geolocating hosts in

the core of the network.

Location information about devices in the core of the net-

work, such as routers, can often be inferred from the names as-

signed to them. Name-based geolocation [3] uses hints, such as

airport codes, encoded in hostnames to geolocate hosts. For ex-

ample, the hostname 0.ae1.br2.iad8.alter.net con-

tains the airport code IAD (Washington Dulles Airport) which

suggest that the host is located near that airport. Although such

location hints tend to be highly reliable they are not always

available, especially for hosts that do not reside in the core

network.

Measurement-based systems [4] exploit network character-

istics, such as path delay and topology, to estimate the location

of a node. Measurement-based methods have been used to

geolocate individual network hosts fairly accurately. But, such

methods depend heavily on distributed “landmark” hosts and

on redundant probes to pinpoint a single host. As a result,

their ability to geolocate a large number of hosts is severely

restricted.

In contrast to the above methods, our research aims to

geolocate a large number of hosts simultaneously with reduced

geographical resolution. We envision that our methods will

directly support research on characterizing the spatial distribu-

tion of internet resources [5], efforts towards understanding the

infrastructural readiness of a region to store and communicate

information [6], and projects such as the Department of

Homeland Security initiative to gain macroscopic insight into

the global internet infrastructure [7]. In these applications, the

emphasis is on determining which hosts lie within a given

geographic region, which requires accurate, albeit coarser,

geolocation for a large number of IP hosts.

In this paper, we introduce a method for large-scale, discrete

IP geolocation; our method geolocates a large number of IP

hosts simultaneously to a discrete set of geographic regions.

At the core of our method is an algorithm for fusing heteroge-

neous information about hosts’ locations. Specifically, we fuse

data from three publicly available sources of information: the

GeoIP database [2], the nslookup service [8], and host-to-host

delay measurements obtained from the DIMES topological

database [9]. The first two sources provide location evidence

for individual nodes and therefore are referred to as node-

local evidence. The third is the host-to-host delay that provides

evidence about the relative separation of directly connected

hosts, hence it is referred to as the delay evidence.

We derive statistical models to capture the uncertainty in

each type of evidence and use Bayesian methods to fuse

information from these models. To support simultaneous ge-

olocation of a large number of hosts, we present a method

for automatically constructing factor graphs from the network

topology implied by delay measurements. Using factor graphs

and the associated sum-product algorithm we derive an infor-

mation fusion algorithm to find the most likely region for a

large number of IP hosts, simultaneously.
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This paper is organized as follows: Section II describes our

sources of location information and, in particular, the DIMES

database as a source of IP topology. Section III formalizes the

discrete geographic model and presents models for each piece

of location evidence. In section IV our algorithm for com-

bining multi-factor evidence is presented. Section V presents

results obtained using simulated data as well as data for an

actual IP topology and delay measurements extracted from

the DIMES database. Finally, section VI provides conclusions

and discusses future work.

II. IP TOPOLOGY

Of particular value for our work is the DIMES [9]

database. The DIMES database is constructed from an on-

going campaign of systematic, distributed traceroute

measurements [10]. From these measurements, The DIMES

database infers links between IP hosts and the delay on these

links.

Given a collection of IP links, an IP interface graph can be

constructed by connecting links that have common nodes. For

example, consider Fig.1, where in the first case a traceroute

from host A to host B returns the IP addresses of the hosts

(more correctly, interfaces) between A and B, here i, j and k.

The linear IP topology of links i → j → k thus obtained is

indicated on the right. In the second case, due to redundant

paths between A and B a traceroute probe may traverse routers

R1, R2, R3 or just R1 and R3 returning links i, k, l,m or

i, j,m. Connecting the links results in an IP topology that has

a loop as shown on the bottom right.
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Fig. 1. Inferring IP topology from traceroute

These simple examples can be generalized to infer large IP

topologies from the data in the DIMES topological database.

In section IV-C, we will show how factor graphs can be

synthesized directly from these inferred IP topologies.

Before we can derive our fusion algorithm, we present

statistical models to describe the information sources that we

seek to fuse.

III. MODEL

A. Discrete Region Model

To place an IP node in a distinct region, we define a finite set

of discrete geographical regions. For example, we can adopt

the Metropolitan Statistical Area (MSA) defined in [11]. For

this paper, we assume that a finite discrete set of areas A is

given and the total number of areas in the set is M .

Given an IP address n, there are M distinct regions where

the node may be situated. We define a random variable Rn

such that it reflects the index of the region from set A as

the location for the node n. Formally, Rn : A 7→ S is a

discrete random variable where S ⊂ Z+. Subsequently, initial

information about n’s location is modeled by associating a

probability mass function FRn
(r) with Rn. As mentioned

in section I, an IP address by itself does not provide any

location information and therefore a priori n is equally likely

to be in any of the regions in set A, i.e., the prior probability

mass function FRn
(r) is uniformly distributed. Throughout,

we adopt vector notation in representing probability mass

functions such that FRn
is a M -vector defined over the space

[0, 1]M

B. Models for node-local evidence

The first piece of node-local evidence is the GeoIP database

from Maxmind [2]. Although, such databases are good at

mapping the IP address of end-systems to a physical location

they are not universally reliable. For example, it has been

observed [12] that administrative entities with hosts scat-

tered in different locations register their assigned IP blocks

with the geographical location of their headquarters. As a

result, geographically dispersed IPs are erroneously geolocated

to a single location by such databases. Consequently, such

databases tend to be unreliable, especially for hosts in the

network core. Let the probability that GeoIP locates an IP

address correctly be denoted by α. Empirically, the reliability

of the GeoIP database, has been estimated as α = 0.7 for

hosts residing in the United States [2].

Let RG be a random variable defined over the same domain

as Rn. When the GeoIP database is queried with the IP

address n, the realization r of RG indicates the index of the

region where the corresponding host is believed to be located.

The confidence in the observed evidence r is given by the

conditional pmf FRG|Rn
(r|Rn) = Pr{RG = r|Rn = s}

which we model as

Pr{RG = r|Rn = s} =

{

α if r = s,
1−α
M−1 if r 6= s.

(1)

to reflect the accuracy of the GeoIP database.

The second piece of node-local evidence is the hostname

associated with an IP address. Hostname lookup services,

such as nslookup [8], map IP addresses to hostnames. The

hostname may contain location hints. However, hostnames are

not available for all IP addresses, in which case a query yields

an empty result. When a hostname is available and contains a

location hint, they provide a highly reliable source of location

information. To model name-based location information, in ad-

dition to the M discrete regions, the set of possible outcomes

must include an additional “none” outcome.

Let RN be random variable defined on the expanded set

of elementary outcomes given by A ∪ {“none”}. Let the

probability that a query results in a “none” reply be denoted

as β. Further, let the probability that a naming hint geolocates
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the address n correctly be denoted as ǫ. Our conditional pmf

FRN |Rn
(r|Rn) for modeling naming information is, thus,

Pr{RN = r|Rn = s} =







β if r = ”none”,

ǫ if r = s,
1−β−ǫ
M−1 if r 6= s.

(2)

From available data [13], [14], we estimate that naming hints

are available for half of all IP addresses (β = 0.5) and that

ǫ = 0.45.

C. Model for delay evidence

The third piece of evidence is the host-to-host propagation

delay which reflects the relative separation of directly con-

nected nodes. For example, short delays support the hypothesis

that the connected hosts are in the same region. Past studies

[15], [16] based on path delays measured via ping, have

shown that a strong positive correlation exists between mea-

sured delay and physical distance. In our study of traceroute

delays, experimental data have suggested similar positive cor-

relation between relative delays and distance. However, it has

been observed that for a given distance, there is considerable

variance in observed latency measurements.

The relation between delay and distance can be obtained by

fitting a linear regression model to the observed data

θ̂ = m · d+ b, (3)

where θ̂ is the mean delay for a given distance d and m and

b are the slope and offset of the linear model respectively. In

first approximation, the observed delay θ given distance d is

modeled using a normal distribution,

fΘ|D(θ|D = d) =
1

σ
√
2π

e−
(θ−θ̂)2

2σ2 . (4)

Since two regions uniquely determine distance d between

nodes i and j the above function can be rewritten in terms of

the regions Ri and Rj where the hosts at either end of the link

are located: fΘ|D(θ|D = d) = fΘ|Ri,Rj
(θ|Ri = s,Rj = t).

This formulation will allow us to infer in which regions hosts

are located from measured delays.

In the data obtained from DIMES, we have noticed inconsis-

tent delay values such as negative delays. It is known [17], that

these result are an artifact stemming from the fact that some in-

ternet routers delay ICMP replies. As a consequence, estimated

link delays may be negatively biased or highly positively bi-

ased depending on the position of such routers in the traceroute

path. To model this effect, we postulate that the traceroute

delays occur from one of three different distributions forming

a Gaussian mixture model [18]. For data corresponding to each

of the three component we calibrated slopes m and offsets

b in the model as are m = (0.0159, 0.0135, 0.0186) and

b = (0.4603,−14.358, 12.6855). The corresponding mixing

proportions are w = (0.9, 0.08, 0.02). Finally, the standard

deviations σ were determined as σ = (1.942, 3.552, 4.477).
Now that we have established the models for each piece of

evidence, in the next section, we present our procedure for

fusing information using these models.

IV. FUSING MULTI-FACTOR EVIDENCE

In this section, we develop our algorithms for large-scale

discrete geolocation. We begin with simple topologies to

demonstrate that the Bayesian inference is correctly described

by factor graphs before addressing the automated generation

of factor graphs from arbitrary IP topologies.

A. Bayesian Inference

In section III, we have defined an a priori unconditional

model for the location of IP nodes and conditional probability

models for each piece of evidence. Now, we use Bayesian

inference to compute the posterior distribution by updating

the prior distribution, in the light of observed data. We adopt

a two step approach for evidence fusion.

In the first step, an initial location estimate for a IP node

n is formed from node-local evidence by fusing GeoIP and

hostname evidence. Let RG = s and RN = t be the location

evidence for IP address n from GeoIP and hostnaming, respec-

tively. Assuming conditional independence of these variables,

the Bayes rule is applied as follows

FRn|r,s(Rn|s, t) ∝ FRG|Rn
(s|Rn) ·FRN |Rn

(t|Rn) ·FRn
. (5)

Note that the distribution FRn|s,t obtained in (5) must be nor-

malized to obtain the exact posterior; for notational simplicity,

we do not include the scaling factor. This process can be

carried out to obtain an initial location estimate for each IP

node in a given topology from node-local evidence.

The second step is to incorporate the delay evidence to

update location information about connected nodes. Suppose

two IP nodes i and j are connected; then FRi|si,ti and

FRj |sj ,tj are the posteriors obtained after incorporating node-

local evidence (5). Let Θij = θij be the observed delay on the

link connecting nodes i and j. Then, fΘij |Ri,Rj
(θij |Ri, Rj)

gives the likelihood of observing delay θij for the distance

between the two regions. The joint conditional distribution of

variables Ri and Rj is obtained using the Bayes rule as

FRi,Rj |Θ,RG,RN (Ri, Rj |θij , s, t) ∝
fΘij |Ri,Rj

(θij |Ri, Rj)
︸ ︷︷ ︸

Delay evidence

·

FRG|Ri
(si|Ri)FRN |Ri

(ti|Ri)
︸ ︷︷ ︸

i’s node-local evidence

·

FRG|Rj
(sj |Rj)FRN |Rj

(tj |Rj)
︸ ︷︷ ︸

j’s node-local evidence

· FRi
︸︷︷︸

i’s prior

· FRj
︸︷︷︸

j’s prior

. (6)

The location estimates for IP nodes i and j is obtained

by marginalizing the joint posterior (6). Finding the posterior

distributions for a pair of connected nodes is simple, but

the problem becomes intractable when dealing with a large

number of connected nodes. In such cases, it is important to

have a method that systematically captures the dependency

between variables and allows for the computation of the

marginal pmfs for a large number of connected nodes.

1499



B. Factor graphs for mapping IP topologies

Before, we illustrate the automatic construction of factor

graphs from IP topologies, we briefly review factor graphs.

1) Overview: Factor graphs [19] integrate a graph theoretic

formalism for large systems with probabilistic modeling. They

can represent complex global functions of many variables and

encode the relations between them. For example, if a multivari-

ate function, such as the joint probability function (6), can be

factored into a product of functions then it can effectively be

represented via Factor graphs. Throughout, we use the Forney-

style factor graphs (FFGs) [20]. Following is the summary of

conventions followed in building the FFG representation.

• Factorized functions are represented by nodes and vari-

ables participating in each factor represent the connected

edges to the factor.

• A variable that occurs only in one factor is represented

as a half edge.

• Generally, a variable can only be shared between two

factors but this restriction is easily circumvented by

introducing equality constraint nodes.

Factor graphs are associated with the sum-product algorithm

[21] that operates by message passing along the edges of the

factor graph. The sum-product algorithm can be thought of

as an elimination algorithm for multiple variables. Each time

a summation is calculated an expression is produced which

can be considered as a message to be passed to the next

summation. Continuing this process of summation to generate

messages (partial sums) the final expression thus obtained is

a function of the variable to be marginalized. Following are

the rules for message computation.

• A half edge does not carry any message towards the

connected factor. Alternatively, a constant function such

as a uniform distribution can be assumed on such edges.

• The message out of a factor node along an edge is the

summarized (marginalized) product of the local function

and the received messages on all connected edges except

the edge on which the message is to be sent.

• The marginal distribution of a variable can be obtained

by forming the product of messages traveling along the

edge in opposite direction.

• Known or observed variables are simply plugged into the

corresponding factors.

For detailed treatment of factor graphs and the summary

propagation algorithms, the reader is directed to [19], [22].

2) Example 1: Factor Graphs for Geolocating a Single IP

Node: We now demonstrate how the Bayesian inference for

node local evidence (5) can be captured by a factor graph.

Each conditional model along with the a priori model can be

represented by a factor node and the random variables involved

in each model are represented by edges as per the rules for

constructing FFGs. Since the two conditional distributions

share a common variable Rn, we use the equality constraint

node f=(r, r
(1), r(2)) = δ(r − r(1))δ(r − r(2)) where δ(·)

is a Kronecker delta function. The equality constraint node

“clones” the variables so as to share them between at most

two factors. The factor graph capturing node-local evidence

for an IP node n is illustrated in Fig. 2.

FRn

=

f=

Rn

F
RG|R

(1)
n

R(1)
n

F
RN |R

(2)
n

R(2)
n

s t

Fig. 2. Factor graph for combining node-local evidence for a single IP node

This simple factor graph represents the a posteriori function

FRn|s,t(Rn|s, t) for local evidence at IP node n.

a) Sum-Product Algorithm for Combining Node-Local

Evidence: The sum-product algorithm fuses the node-local

evidence and we will show that it produces exactly the right

hand side of (5). The computation is performed via message

passing over the factor graph of Fig. 2. In such factor graphs

message passing is initiated from the leaf nodes. FRn
is a

leaf node connected to only one edge Rn. The message along

edge Rn is the probability vector FRn
. Thus, the message

along the edge Rn is given by µFRn→Rn
= FRn

. Per the

sum-product rule, the observed GeoIP evidence RG = s is

plugged into the factor, FRG|Rn
(s|Rn), giving the message

µ
F

RG|Rn
→R

(1)
n

= FRG|Rn
(s|Rn) along edge R

(1)
n . Similarly,

the observed naming evidence RN = t for a node n is

plugged into the factor FRN |Rn
(s|Rn) giving the message

µ
F

RN |Rn
→R

(2)
n

= FRN |Rn
(t|Rn) along edge R

(2)
n . Due to the

conditional independence of GeoIP and naming evidence, the

messages from the factors representing conditional pmfs can

be combined simply by forming an elements-wise product of

vectors at the equality constraint node

µf=→Rn
=

∑

r(1)

∑

r(2)

δ(r − r(1))δ(r − r(2))

µ
F

RG|R
(1)
n

→R
(1)
n
µ
F

RN |R
(2)
n

→R
(2)
n

= µF
RG|Rn

→Rn
· µF

RN |Rn
→Rn

(7)

= FRG|Rn
(s|Rn) · FRN |Rn

(t|Rn). (8)

As discussed earlier, the a posteriori pmf is obtained by

forming the product of messages traveling in the opposite

direction along the edge Rn and is given by

FRn|RG,RN = µf=→Rn
· µFRn→Rn

= FRG|Rn
(s|Rn) · FRN |Rn

(t|Rn) · FRn
.(9)

Obviously, equations (5) and (9) are identical, demonstrating

that the posterior pmf is correctly computed via the above

factor graph.
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3) Example 2: Factor Graphs for Geolocating a Network

of Two Nodes: In the next step, we demonstrate that a factor

graph can correctly represent two connected nodes, i and

j, and the sum product algorithm produces the posterior

pmf for this case (6). For each node, node-local evidence

is available that is fused as described above and captured

in Fig. 2. The additional factor is the delay model given

by fΘij |Ri,Rj
(θ|Ri, Rj). This is a function of two discrete

variables Ri and Rj since the delay θ is observed between

nodes i and j. Therefore each of these variables now need to

be shared between the factors representing the three pieces of

evidence using the equality constraint node f=. The resulting

factor graph is shown in Fig. 3.

FRi

=fi1=

Ri

=

fi=

R
(1)
i

F
RG|Ri

F
RN |Ri

si ti

FRj

= fj1=

Rj

=

fj=

R
(1)
j

F
RG|Rj

F
RN |Rj

sj tj

fΘij |Ri,Rj

R
(2)
i

R
(2)
j

θ

Fig. 3. Factor Graph representation for combining delay and node-local
evidence to simultaneously geolocate a pair of nodes i,j

a) Sum-Product Algorithm for Combining Delay Evi-

dence with Node-Local evidence for a Pair of Nodes:

Equation (6) gives the conditional joint pmf of two nodes,

given the node-local and delay evidence. To find the marginal

distribution for a node i or j, the conditional joint pmf needs

to be summarized over all variables except the variable to be

marginalized. Like the factor graph of Fig. 2, here too the

message passing starts from the leaf nodes and the messages

are combined at the equality constraint nodes fi1= and fj1=.

The output messages from these nodes are combined with

the local function fθ|Ri,Rj
and subsequently update the other

node. Note that the two nodes “trade location information” via

the messages passed through the delay factor.

Alternatively, the message passing can be viewed as oc-

curring in two steps. In the first step, the posterior due to

the node-local evidence at each node is computed, and in

the second step, they are combined with the local function

for the link evidence. This is a valid way to pass messages

because of the local elimination property [19] of the sum-

product algorithm wherein intermediate summaries are formed

by grouping factors into subsystems and applying the sum-

product rule to each subsystem. This property of forming

subsystems has important applications to our problem as

now each subsystem corresponds to a physical node in the

IP network. The box drawn around the factors represent a

subsystem in Fig. 3

The message computation for each node due to node-local

evidence is identical to the one shown in section IV-B2.

Therefore, we show only messages that illustrate how the

new delay evidence is used in computing marginals. For

nodes i and j the updated posterior after observing node-local

evidence are FRi|RG,RN and FRj |RG,RN . Following are the

messages that are computed at the factor representing the delay

evidence.

µ
fΘ|Ri,Rj

→R
(2)
i

=
∑

rj

fΘ|Ri,Rj
· µ

fj1=→R
(2)
j

=
∑

rj

fΘ|Ri,Rj
· FRj |RG,RN (10)

µ
fΘ|Ri,Rj

→R
(2)
j

=
∑

ri

fΘ|Ri,Rj
· µ

fi1=→R
(2)
i

=
∑

ri

fΘ|Ri,Rj
· FRi|RG,RN (11)

Finally the updated posterior after including the link evi-

dence for nodes with IP address i and j is obtained by forming

the product of messages traveling in opposite directions on

edges Ri and Rj respectively and is given by

FRi|Θij ,R
G,RN = µfi1=→Ri

µfΘij |Ri,Rj
→Ri

(12)

= FRi|RG,RN

∑

rj

fΘij |Ri,Rj
FRj |RG,RN

FRj |Θij ,R
G,RN = µfj1=→Rj

· µfΘ|Ri,Rj
→Rj

(13)

= FRj |RG,RN ·
∑

ri

fΘij |Ri,Rj
· FRi|RG,RN

Note that equation (12)-(13) are the marginals of the global

function. Also, the algorithm stops automatically after comput-

ing messages along each direction of each edge in the factor

graph. Such factor graphs in which the algorithm halts after

computing exact marginals are known as acyclic factor graphs.

C. Factor Graphs for Simultaneous Geolocation of Nodes in

Arbitrary IP Topologies

Building on the simple examples in the preceding sections,

we will now turn to arbitrary topologies. In the following

discussion, we present two algorithms, one for automated

construction of factor graphs from an arbitrary network topol-

ogy and the second for executing the iterative sum-product

algorithm on such factor graphs. The first algorithm illustrates

the close relationship between the topology structure and

the factor graph structure. Each host of the IP network is

represented by a node-factor (see section IV-B2) and each

link is represented by a delay-factor (see section IV-B3) in

the corresponding factor graph. If a host is connected to

multiple links then the corresponding node-factor is connected

to multiple delay-factors via equality-factors.

Fig.4 shows a network and the corresponding factor graph

for a network of 20 nodes and 21 links. Note how the the factor

graph preserves the network structure implied by host-to-host

delays. A step-by-step procedure for creating a factor graph
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(b) Factor graph corresponding to the IP topology

Fig. 4. Automatic construction of factor graphs for an arbitrary IP topology

representation for an IP topology implied by a collection of

links is as follows:

1) For each link (i, j) create one delay-factor and check if

factors corresponding to each node have already been

created.

2) If a node-factor does not exist, create a node-factor and

point it to the link-factor. Similarly point the link-factor

to the node-factor.

3) If a node-factor exists, create an equality-factor and

update the existing pointers of the link-factor and the

node-factor. Subsequently update the pointers of the

equality-factor.

4) Repeat steps 1 to 3 for all links in a given physical

topology

In section II, it was shown that due to redundant paths

between hosts, IP networks may have loops causing cycles in

the corresponding factor graph. For factor graphs with cycles,

the sum-product algorithm does not terminate automatically.

In such cases, the iterative form of the sum-product algorithm

can be used to produce approximate marginal distributions.

Such distributions are close to the true distributions whenever

the algorithm successfully converges [23].

To understand how the sum-product algorithm applies to

arbitrary IP graphs consider the following example. Three IP

nodes i, j, and k are connected in a cyclic manner such that

each node has links to the other two. Let Θ be the delays

observed on all links in the network and RG, RN be the node-

local evidence for the three nodes. The conditional, joint pmf

for this network has the following factorization

FRi,Rj ,Rk|Θ,RG,RN ∝ fΘij |Ri,Rj
fΘjk|Rj ,Rk

fΘki|Rk,Ri

FRi|RG,RNFRj |RG,RNFRk|RG,RN . (14)

This correspondence between nodes and links of the IP net-

work and the nodes of factor graph is illustrated in Fig.5.

For the factor graph of Fig.5, the messages due to node-

local evidence are sent along the edges Ri, Rj , Rk. By the

sum-product rule, a factor computes an output message along

an edge only if there are messages on all other connected

edges. In Fig. 5, a deadlock occurs as none of the equality

nodes fi1=, fj1=, fk1= have received messages on at least two

edges. To break such deadlocks a place-holder message, e.g. a

uniform pmf vector is injected along a randomly chosen edge

and message passing is initiated. Also, once such deadlocks

are broken, the messages circulate endlessly in the factor graph

unless a stopping criterion is specified. We use the Kullback-

Leibler (KL) divergence, as a measure of the change between

two consecutive messages, for this purpose. The message

passing stops when the change in the message is below a pre-

determined threshold κ.

Following is the outline for implementing our iterative sum-

product algorithm.

1) Set initial conditions for execution: Compute messages

at each node by combining node-local evidence and start

message passing.

2) Computation of messages at each node in the factor

graph: Compute a new message along an edge if there

are messages along all other edges and pass resulting

messages to the next node.

3) If a deadlock occurs, randomly choose an equality factor

and inject a place-holder message to initiate message

passing.

4) Convergence detection: In each iteration find the KL

distance between the message in the previous iteration

and the message in the current iteration. Pass a new

message only if KL distance is above threshold κ.

5) Repeat steps 2 to 4 until no more messages exist.

When the algorithm stops all factor nodes must have

received at least one message other than the place-holder

message, if any, along each connected edge and the change

in the message along an edge is less than the KL threshold κ.

V. RESULTS

A. Simulation study

To test our method, we extracted an IP subnetwork from

the DIMES edges file by using the Internet2 [24] address

block and matched it against the DIMES database to obtain

links with at least one address belonging to that IP block.

The topology thus obtained, consisted of 79 IP nodes and
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Fig. 5. Factor graphs with cycles for a network of three nodes

132 IP links. Using the algorithms in the previous section we

constructed the corresponding factor graph and computed the

posterior pmfs.

As discussed above, factor graphs with cycles compute

messages endlessly unless a stopping criterion is specified.

We rely on the KL distance dropping below threshold κ for

this purpose. The parameter κ is the main factor responsible

for the convergence of the iterative algorithm. We say the

algorithm has converged if in successive iterations the KL

distance between messages at all the nodes is less than κ. If κ

is chosen to be too large (κ ≫ 0), convergence is insufficient,

and location estimates are inaccurate. If κ is chosen too

small (κ ≈ 0) then the convergence is delayed without any

appreciable change to the marginal distributions of each node.

Moreover, this leads to the increase in the number of messages

thereby affecting the execution time of the algorithm.

To understand how this parameter affects the accuracy and

the execution time of the algorithm we conducted a simulation

study on the candidate topology where the node-local and

delay evidence were generated from the statistical models

presented in section III. The effect of κ on accuracy is plotted

in Fig. 6a and on execution time (measured in terms of number

of messages) in Fig. 6b.

Fig. 6a, shows that, before the iterative algorithm was exe-

cuted, 82% of hosts were located to their true region using only

the node-local evidence. The iterative sum-product algorithm

was run 10 times for each value of κ and the accuracy

is measured as the mean proportion of nodes geolocated to

their true location denoted as p(correct). Variations between

runs originate from randomly selected nodes for breaking

deadlocks. We decide the most likely region of a host by the

maximum value of the posterior probability denoted as pmax.

For values of κ > 0.5 marginal functions are inaccurate and

the value of p(correct) drops from 0.92 to 0.89. Also there

is significant variation in the values of p(correct). But, as κ

is decreased (κ ≤ 0.005) the mean accuracy increases to 0.93
and the variation in p(correct) is reduced signifying that the

accuracy in each run of the experiment is closer to the average.

Fig. 6b, reveals that as κ → 0 the total number of messages

passed for achieving convergence increases. The number of

messages increase exponentially (linear on a logarithmic scale)

as κ → 0. Also, a comparison between Fig. 6a and Fig. 6b, re-

veals that there is no appreciable change in p(correct) (0.925
to 0.930) for κ < 0.5. This implies that the convergence can

be achieved with fewer messages without adversely affecting

the accuracy of the algorithm.

Also, Fig.6c illustrates the increase in the confidence with

which each node in the IP topology is geolocated to their true

region. Out of the 82% of nodes geolocated due to node-local

evidence 51% of nodes are located to their true location with

probability in the range 0.65 ≤ pmax ≤ 0.75 whereas only

31% of nodes were geolocated with a probability in the range

0.95 ≤ pmax < 1. After incorporating the delay evidence the

reliability increased such that 74% of nodes were geolocated

within the range 0.95 ≤ pmax < 1 and 16% in the range

of 0.65 ≤ pmax < 0.95 with the total percentage of nodes

correctly geolocated at 92%.

B. Internet2 Data

In this section, we present results obtained by executing the

iterative sum-product algorithm for the candidate topology but

with the actual (measured) delay data. To validate the accuracy

of our method on real data, it is important to have ground-

truth information about each node in the topology. Although
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Internet2 publishes its topology maps, it is very difficult to

obtain ground-truth for each of the IP address especially for

those nodes that are connected to Internet2 nodes. We infer

ground-truth indirectly by choosing geographically distributed

landmarks and conducting traceroutes to each of the IP address

discovered. The true location of the IP node was based on the

hostname of the router one hop away from the target IP. The

ground-truth information thus obtained, divided the nodes into

M = 5 regions (Atlanta, GA, Washington, DC, New York, NY,

Chicago, IL and Cleveland, OH).

The result obtained after running the algorithm with real

data is shown in Fig.7. Since the topology has been derived

for Internet2 hosts which are mostly routers, as expected, the

GeoIP database fails to provide evidence about any of the

nodes. On the contrary the nslookup service provides names

for 99% of IP hosts. Fig.7 shows that only 3% of nodes were

located with high confidence (pmax > 0.95) given the node-

local evidence whereas 81% of nodes had pmax > 0.95 after

fusing the delay evidence. Our method accurately geolocates

97% of the nodes to the correct location (p(correct) = 0.97).

Note that the total number of nodes correctly geolocated is

slightly smaller when compared to only node-local evidence,

p(correct) = 0.99. This appears to be an artifact due to the

fact that regions Atlanta, New York City and Chicago are

approximately equidistant. As a result, three nodes belonging

to Chicago and having links to Atlanta are being placed in

New York City. Moreover, such nodes do not have additional

connections due to the limited topology size considered. We

believe that in a larger topology such nodes would have

additional links that would pin such nodes to their correct

location.
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Fig. 7. Results for Internet2 IP topology

VI. CONCLUSION AND FUTURE WORK

A number of IP geolocation techniques are available that

cater to applications that require precise location of each IP

host. For applications that require the location of a large

number of internet hosts, such techniques are unreliable and

incomplete in the information they provide.

The main contribution of this paper is a new algorithm,

that fuses multiple pieces of evidence from heterogeneous data

sources. More importantly, the algorithm achieves simultane-

ous geolocation of a large number of hosts by automatically

constructing factor graphs for any arbitrary IP topology. The

algorithm is applied to a real network and is shown to accu-

rately place nodes in the correct regions with high confidence.

For future work, we will address the scalability of our

method and apply our algorithm to truly large-scale networks.

Additionally, we will explore incorporating additional pieces

of evidence to further strengthen the accuracy of the algorithm.
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