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Abstract— A nonlinear Bayesian filter is proposed in this
paper for a general nonlinear system of continuous time dynam-
ics and discrete time measurements. In this filter, a transient
Fokker-Planck equation solver based on tensor decomposition
is used for propagating the conditional state probability density
function (PDF) in conjunction with a measurement update via
Bayes’ rule. This filter is not restricted by assumptions of
linearity or Gaussianity since it relies on the exact state PDF
which captures the entire information of the underlying uncer-
tainty. Moreover, it is suitable for system of high-dimensional
state space by virtue of the efficient tensor decomposition
scheme, which enables the computational efforts for solving the
state PDF grow benignly with dimensionality. This is possible
because every dimension of the state space as well as the time
domain is separated from each other in the solution process,
as a result of which originally expensive high-dimensional
operations are decoupled into a series of simple one-dimensional
operations. Numerical examples are provided to demonstrate
the advantages of the proposed filter over the extended Kalman
filter for state estimation.

I. INTRODUCTION

The knowledge of the state is of great value for a dy-

namical system in that it is essential for monitoring and

control. However, in reality the true system model is seldom

known exactly and subject to certain noise perturbation, the

initial condition is only given stochastically as a probability

density function (PDF) rather than deterministically, and

the limited measurements are corrupted by noise as well.

Consequently, a filter is required for state estimation [1],

[2]. For linear dynamical system with linear measurement

model and Gaussian perturbations, the Kalman filter [3]

represents the optimal estimator [4]. For general nonlinear

systems, the design of optimal nonlinear filter is difficult

since it usually entails infinite number of parameters if

one resorts to methods based on moment evolution. As

a compromise, several finite dimensional suboptimal filters

have been developed [5], among which the extended Kalman

filter (EKF) is arguably the most popular. The essential idea

of EKF is to use the Jacobian matrices of the nonlinear

dynamics and measurement model for error dynamics and

gain calculation. Although not optimal, the EKF has been

successfully applied to various nonlinear systems over the
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past several decades. Note however that it can perform poorly

for highly nonlinear cases with large uncertainty in initial

condition and long propagation time [6].

The recursive Bayesian approach represents a general way

to describe the optimal nonlinear filtering problem, where the

key is to propagate the conditional state probability density

function (PDF) governed by the Fokker-Planck equation

(FPE) and update the PDF using the measurement data

by the Bayes’ rule. Filters based on this idea have been

developed, for example, in Refs. [7], [8], [9], which are not

restricted by assumptions of linearity or Gaussianity since

they rely on the exact state PDF which captures the entire

information of the underlying uncertainty. On the other hand,

the high accuracy is achieved at the cost of usually high

computational efforts since the FPE, a second order parabolic

partial differential equation (PDE) need to be solved for each

prediction step. This problem becomes even more severe

when the dimensionality of the underlying state space is

large [10], [11], since solving a PDE like FPE in general

suffers from the well-known curse of dimensionality [12],

i.e., the degrees of freedom (DOF) of the approximation,

or number of unknowns grow exponentially with respect

to the dimensionality [13], [14], [15]. Numerical methods

such as the meshless partition of unity finite element method

(PUFEM) has been employed to counter this problem with

moderate success [16], [17], [18]. In this paper, the transient

FPE solver developed in Refs. [19], [20] will be adopted

in the prediction step of the nonlinear Bayesian filter. To

tackle the dimensionality issue for solving FPEs, this solver

combines the Chebyshev spectral method and a tensor de-

composition approach to drastically reduce the DOF required

for maintaining accuracy of the solution. This is due to

the spectral accuracy of the Chebyshev differentiation and

the fact that every dimension of the state space as well

as the time domain is separated from each other in the

solution process, as a result of which originally expensive

high-dimensional operations are decoupled into a series of

simple one-dimensional operations. This transient solver has

been successfully applied to solving high dimensional FPEs

(up to 14D transient problem) encountered in various areas

including nonlinear vibrations [21], [22], polymeric fluids

[23] and orbital mechanics [24].

The remainder of this paper is organized as follows: sec-

tion II states the problem of nonlinear filtering, followed by

the description of extended Kalman filter in section III. The

proposed nonlinear Bayesian filter’s scheme and numerical

examples are given in section IV and V respectively. Finally,

a summary and future research directions are provided in
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section VI.

II. PROBLEM STATEMENT

Consider the following continuous nonlinear dynamical

system with discrete time measurements:

dx = f(t,x)dt+ g(t)dB(t), x ∈ R
P , (1)

yk = h(xk) + vk, (2)

where B(t) denotes the Brownian motion process with

zero mean and covariance Qt. f(t,x),g(t) are deterministic

functions, and yk is the kth measurement vector of size

Q × 1. Let vk be a zero mean Gaussian white noise, such

that

E{vkv
T
j } =

{
0 k 6= j,

R k = j.
(3)

Further, it is assumed that vk is uncorrelated with dB(t).
Note that the Q of process noise and measurement noise

covariance R could change with time in practice, but here

we assume they are constant for simplicity. The time varying

state PDF W(t,x) of Eq.1 is governed by the Fokker-Planck

equation:
∂

∂t
W(t,x) = LFP [W(t,x)], (4)

where LFP is the Fokker-Planck operator given by

LFP =



−
P∑

i=1

∂

∂xi

D
(1)
i (·) +

P∑

i=1

P∑

j=1

∂2

∂xi∂xj

D
(2)
ij (·)



 , (5)

D(1)(t,x) = f(t,x), D(2)(t,x) =
1

2
g(t,x)QgT(t,x).

The filtering process is to estimate the state x, given

the general knowledge of the dynamics (since in reality the

f(t,x),g(t) in Eq.1 are usually not known exactly, and Q

serves as a tuning parameter accordingly) and the initial

condition (whose uncertainty is quantified as W(t0,x) =
W0(x)), combined with the measurement model of Eq.2, yk

and R.

III. EXTENDED KALMAN FILTER

As an extension of the Kalman filter for linear system, for

generally nonlinear system the extended Kalman filter was

developed, which uses the Jacobian matrices of the nonlinear

dynamics and measurement model for error dynamics and

gain calculation. This assumes the f and h in Eqs.1 and 2 are

continuously differentiable and the true state is sufficiently

close to the estimated state [6]. With these adjustments, the

EKF follows the same structure as the Kalman filter.

Let x̂ denote the estimate of the state x, then define the

estimate error as x̃ = x̂−x, and use +,− in the superscript

to describe the prior and posterior versions of a quantity.

Define the following error covariances:

P−
k = E{x̃−

k x̃
−T
k }, P+

k = E{x̃+
k x̃

+T
k }. (6)

The essential steps of EKF is described as follows:

• Initialization:

x̂(t0) = x̂0, P0 = E{x̃(t0)x̃
T (t0)}, (7)

where x̂(t0) and P0 capture the mean and covariance

of the PDF for initial condition.

• Propagation:

˙̂x(t) = f(t, x̂(t)), (8)

Ṗ(t) = F(t)P(t) +P(t)FT (t) + g(t)P(t)QgT (t),
(9)

F(t) =
∂f(t,x)

∂x

∣
∣
∣
∣
x̂(t)

. (10)

• Update:

x̂+
k = x̂−

k +Kk[yk − h(x̂−
k )], (11)

P+
k = [I−KkHk(x̂

−
k )]P

−
k , (12)

Kk = P−
k H

T
k (x̂

−
k )[Hk(x̂

−
k )P

−
k H

T
k (x̂

−
k ) +R]−1,

(13)

Hk(x̂
−
k ) =

∂h(x)

∂x

∣
∣
∣
∣
x̂
−

k

. (14)

After the initialization, the state estimate x̂ and error

covariance P are propagated using Eqs.8 to 10 until the

first measurement arrives. Then the update of Eqs.11 to 14

takes place. The above process repeats sequentially until

all measurement information is used. If a measurement is

available at the beginning, the update step is immediately

taken.

IV. A FPE BASED NONLINEAR BAYESIAN FILTER

In EKF it is assumed that the conditional state PDF

keeps Gaussian even for nonlinear dynamics [2], which may

lead to large error in implementation. To estimate the real

underlying evolution of conditional state PDF, the FPE based

Bayesian filter is developed, in which the FPE is solved

in the propagation step to obtain the prior prediction. The

measurement data is then incorporated using the Bayes’ rule

in the update step to compute the posterior. This becomes

the initial condition for the next propagation step. These

propagation and update steps repeat sequentially until all

measurement data are used.

Define Yk = {y0,y1, . . . ,yk} which contains all the

measurement information up to the kth measurement. Then

the propagation step of the Bayesian filter is given by the

Chapman-Kolmogorov equation (CKE):

W(x̂−
k ) = W(x̂k|Y

k−1)

=

∫

W(x̂k|x̂k−1)W(x̂k−1|Y
k−1)dx̂k−1, (15)

which is the integral form of the FPE. In other words, a

transient FPE solver is required to obtain the prior prediction

W(x̂k|Y
k−1) (i.e., the transient solution at the instance

when the kth measurement comes) given the posterior

W(x̂k−1|Y
k−1) as the initial PDF.

To facilitate the prediction step (especially for high-

dimensional cases), the efficient transient FPE solver pro-

posed in Refs.[19], [20] is adopted in current work. The

transient solution W(t,x) of FPE in Eq.4 is sought in the
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following CANDECOMP/PARAFAC decomposition (CPD)

form:

W(t,x) ≈ U(t,x) =

RU∑

l=1

[(
P∏

d=1

ul
d(xd)

)

T l(t)

]

, (16)

where ul
d(xd) and T l(t) for l = 1, 2, . . . , RU are called

spatial and temporal basis functions respectively. Note that

each of these basis functions has only one variable and can be

discretized by Chebyshev spectral method on the 1D domain.

This results in vectors ul
d and T l with size nd×1 and nt×1

respectively. And for convenience, the discretized version of

U is denoted by U =
∑RU

l=1

⊗P+1
d=1 f l

d, where f l
d includes

both ul
d and T l. Correspondingly, the Fokker Planck (FP)

operator LFP can be written in the tensorized form as

A =

RA∑

iA=1

[(
P⊗

d=1

AiA
d

)

⊗ It

]

, (17)

where AiA
d are nd×nd matrices, and It is an nt×nt identity

matrix. Interested readers can find more details in Ref.[19]

on how this is achieved. Next the operator ∂
∂t

in Eq.4 can

be approximated as

∂

∂t
≈

(
P⊗

d=1

Id

)

⊗Dt, (18)

where Id is an nd × nd identity matrix and Dt is the

nt × nt first order differentiation matrix corresponding to

the temporal domain. Now the FPE is reduced to

A
′
U = 0, (19)

where A
′ is the sum of A and operator ∂

∂t
in Eq.18, and is

rewritten as A
′ =

∑RA′

iA=1

⊗P+1
d=1 GiA

d for convenience.

Eq.19 can be solved by transforming into an optimization

problem:

min
{f l

d
}
‖ A

′
U ‖2F , (20)

and define R =‖ A
′
U ‖2F . The necessary condition for

minimization is
∂〈A′

U,A′
U〉

∂f l
d

= 0, (21)

for d = 1, 2, . . . , P + 1 and l = 1, 2, . . . , RU . Collecting

terms in Eq.21 for all l’s and fixed dimension d, we have





M1,1 · · · M1,RU

...
. . .

...

MRU ,1 · · · MRU ,RU






︸ ︷︷ ︸

=M






f1
d
...

fRU

d




 = 0, (22)

where Mi,j is submatrix of the block matrix M, given by

Mi,j =

RA′

∑

iA=1

RA′

∑

jA=1

(GjA
d )TGiA

d

∏

k 6=d

〈GiA
k f

j
k , G

jA
k f i

k〉 (23)

In the alternating least squares (ALS) framework [25],

[19], Eq.22 is reduced to a linear system and solved sequen-

tially for each dimension in an iterative manner. Therefore,

the number of unknowns in a single iteration is independent

of the dimensionality P once the user prescribes RU . More-

over, a significant amount of computation is saved by noting

that only a small portion of the terms involved need to be

recalculated for different d and RU . In implementation, we

begin with RU = 1 and random initial values for f l
d, and

then increase RU gradually until stopping criteria are met.

In order for the ALS scheme to return a nontrivial answer,

we must incorporate the initial condition, boundary condition

as described in Ref.[20].

For the update step, the Bayes’ rule can be used as follows:

W(x̂+
k ) = W(x̂k|Y

k) =
W(x̂k,yk,Y

k−1)

W(yk,Yk−1)

=
W(x̂k,yk|Y

k−1)W(Yk−1)

W(yk|Yk−1)W(Yk−1)

=
W(x̂k,yk|Y

k−1)

W(yk|Yk−1)

=
W(yk|x̂k,Y

k−1)W(x̂k|Y
k−1)

∫
W(yk|x̂k,Yk−1)W(x̂k|Yk−1)dx̂k

=
W(yk|x̂k)W(x̂k|Y

k−1)
∫
W(yk|x̂k)W(x̂k|Yk−1)dx̂k

=
W(yk|x̂k)W(x̂−

k )
∫
W(yk|x̂k)W(x̂−

k )dx̂k

(24)

where the last but one step uses the fact that

W(yk|x̂k,Y
k−1) = W(yk|x̂k) since x̂k has already

incorporated the information of Yk−1.

In Eq.24, the likelihood PDF W(yk|x̂k) is chosen as [9]:

W(yk|x̂k) =
exp

(
− 1

2 [yk − h(xk)]
TR−1[yk − h(xk)]

)

√

(2π)Q det(R)
,

(25)

and the denominator of Eq.24 is essentially a normalization

constant to ensure that W(x̂+
k ) is a valid PDF. Since the prior

W(x̂−
k ) is given by the tensor solver, it is in the CPD form,

i.e., all the independent variables are decoupled. Thus if the

likelihood W(yk|x̂k) is also in the CPD form, the muti-

dimensional integration in Eq.24 will be trivial. When this

is not the case, W(yk|x̂k) can be approximated in the CPD

form by using the ALS algorithm described for example in

Ref.[19].

V. NUMERICAL EXAMPLES

In this section, 2 examples of 2D state space are examined,

where the results by the FPE based Bayesian filter are

compared with those of the extended Kalman filer.

A. Results for 2D System 1

Consider the following nonlinear oscillator with 2D state

space:

ẍ+ bẋ+ x+ a(x2 + ẋ2)ẋ = gξ(t), (26)

where ξ(t) is Gaussian white noise with intensity Q. For

simulation of the true model, let the parameters have the

following values: a = 0.125, b = −0.5, g = 1,Q = 0.4
and the true initial condition is [0, 0]T . While in the filters,

1485



(a) For state x

(b) For state ẋ

Fig. 1. 1D marginal state PDF by FPE based Bayesian filter for system 1

we assume the model parameters are given by a = 0.1, b =
−0.4, g = 1,Q = 0.2 and use [1, 1]T , diag([0.5, 0.5]) as

the mean and covariance of the initial condition respectively.

Suppose the measurement model is given by

yk = xk + vk, (27)

i.e., only position x is observed. The measurement arrives

after 5s intervals with measurement noise covariance R =
0.5. The Milstein’s stochastic integration scheme [26] is used

to propagate the true model and the model in EKF. For the

Bayesian filter, 20 enrichment steps are performed by the

tensor solver for each propagation stage.

The evolution of the prior and posterior conditional 2D
state PDFs is given in Figure 3 and the 1D marginal state

PDFs are shown in Figure 1. As can be seen, the state PDF is

clearly non-Gaussian following the propagation stage. When

a measurements arrives, in the update step the PDF “shrinks”

due to gain of information but still remains non-Gaussian.

These conditional state PDFs contain the full probabilistic

information of the system and can be used for calculating

desired expectations of the state and other quantities. For

state estimation, the mean and variance of the 1D marginal

state PDFs can be obtained as shown in Figure 1, and based

on which the state estimate is compared with that of EKF

as illustrated in Figures 2(a) and 2(b). The corresponding

error and 3σ error bounds comparison are given in Figures

2(c) and 2(d), which show that the state estimate errors are

(a) For state x (b) For state ẋ

(c) For state x (d) For state ẋ

Fig. 2. Results comparison for FPE based Bayesian filter and EKF for
system 1

comparable, but the nonlinear Bayesian filter has tighter error

bounds, at the cost of more computational effort.

B. Results for 2D System 2

Next consider the Van der Pol oscillator given by

ẍ+ v1x+ v2ẋ(1− x2) = gξ, (28)

where ξ(t) is Gaussian white noise with intensity Q. This

nonlinear system is characterized by its bimodal limit cycle

in the 2D state PDF. Let the true model have the following

parameters: v1 = 1, v2 = −1, g = 1,Q = 1 and the true

initial condition is [0, 0]T . We assume the model parameters

used in EKF and the Bayesian filter are given by v1 =
2, v2 = −1, g = 1,Q = 4 and use [1, 1]T , diag([1, 1]) as

the mean and covariance of the initial condition respectively.

Suppose the same measurement model in Eq.27 are chosen

with R = 0.5 and measurement is available at 4s intervals.

The evolution of the prior and posterior conditional 2D
state PDFs as well as the 1D marginal state PDFs are given

in Figure 6 and Figure 4 respectively. The limit cycle with its

double peaks is clearly visible at the end of each propagation

stage since the 4s interval is long enough for the state PDF to

reach the stationary state. When the measurement becomes

available, the posterior PDF “sheds” one of the two peaks of

the prior PDF. However, with the poor knowledge of system

parameters and sparse measurement data, none of these two

filters perform well enough in terms of state estimation as

shown in Figure 5. As can be seen in Figures 5(c) and 5(d),

the EKF state estimate has larger error (with MSE = 6.34
for x and 10.27 for ẋ) than the Bayesian filter (with MSE

= 1.32 for x and 2.16 for ẋ) and the error bounds of EKF

become inconsistent.

This example illustrates that using mean of the conditional
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(a) Prior PDF at t = 0s (b) Posterior PDF at t = 0s

(c) Prior PDF at t = 5s (d) Posterior PDF at t = 5s

(e) Prior PDF at t = 10s (f) Posterior PDF at t = 10s

(g) Prior PDF at t = 15s (h) Posterior PDF at t = 15s

(i) Prior PDF at t = 20s (j) Posterior PDF at t = 20s

Fig. 3. 2D state PDF by FPE based Bayesian filter for system 1

state PDF as state estimate can be highly inadequate. In this

example, the symmetric bimodal nature of the state PDF (see

Figure 6 and 4) causes the mean to be zero and therefore is

clearly a poor state estimate. On the other hand, the nonlinear

Bayesian filter provides the full PDF, i.e., a better estimate

of the state in terms of its probability distribution over the

entire state space. Moreover, it should be aware that only

one simulation of the true model is performed, and based

on which the error of the two filters are computed. If more

simulations are performed, by definition the average state

(a) For state x

(b) For state ẋ

Fig. 4. 1D marginal state PDF by FPE based Bayesian filter for system 2

trajectories will undoubtedly become closer to the FPE based

nonlinear Bayesian filter results.

(a) For state x (b) For state ẋ

(c) For state x (d) For state ẋ

Fig. 5. Results comparison for FPE based Bayesian filter and EKF for
system 2

VI. CONCLUSIONS

In this paper, the a nonlinear Bayesian filter is developed

by using the transient tensor solver proposed in Refs.[19],
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(a) Prior PDF at t = 0s (b) Posterior PDF at t = 0s

(c) Prior PDF at t = 4s (d) Posterior PDF at t = 4s

(e) Prior PDF at t = 8s (f) Posterior PDF at t = 8s

(g) Prior PDF at t = 12s (h) Posterior PDF at t = 12s

Fig. 6. 2D state PDF by FPE based Bayesian filter for system 2

[20]. The nonlinear, PDF based approach illustrates the

pitfalls of using the “mean” as state estimate (especially

in multi-modal cases) and provides a wholistic view of

the system’s whereabouts. The state estimate results are

compared with those of the EKF showing that the Bayesian

filter has better error bounds for system 1 of section V-A

and more accurate state estimate in system 2 of section V-B

at the cost of more computational effort.
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