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Abstract – Advancements and proliferation of wireless 

devices and capabilities have expanded the need for 

spectrum situational awareness in support of mobile 

applications. Accurate representations of spectrum usage 

parameters, however, are limited by the ability to attain 

sufficiently accurate information in environments 

characterized by significant uncertainty. 

 This paper describes the design and characterization of 

a probabilistic reasoning methodology for spectrum 

situational assessment. The approach uses Functional 

Causal Models—a form of Bayesian Networks—to 

represent the propagation environment and enables 

parameter estimation in uncertain environments. The 

general model is described and a simulation 

implementation is used to as a basis for quantitative and 

qualitative characterization. 

 Results demonstrate the degree of uncertainty reduction 

for various parameters as functions of prior beliefs and 

consistency with theoretical predictions. Path loss 

estimation error was significant reduced to within 10 dB 

of true conditions via Bayesian updating with several 

cases showing errors of less than 5 dB. Estimations errors 

of transmitted power were marginally reduced in the 

selected scenarios, and path distance could not be reliably 

estimated. Thus the proposed approach produces path loss 

estimates that could enable applications such as Dynamic 

Spectrum Access systems to operate with acceptable levels 

of risk. 
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1 Introduction 

Spectrum situational awareness (SA) provides a 

characterization of what radio frequency (RF) emitters exist 

in a given area, their location, and other information such as 

usage patterns. As wireless device applications grow, 

spectrum SA has increased in applicability and importance. 

Spectrum SA was once primarily associated with electronic 

intelligence (ELINT) for military and intelligence 

organizations. The proliferation of wireless devices and 

their associated computational capabilities have enabled 

subsets of ELINT capabilities to be developed in support of 

other applications. Search and rescue (SAR) organizations 

apply spectrum SA for geolocation of emergency beacons. 

Spectrum managers and commercial wireless service 

providers (e.g., broadband and cellular companies) seek to 

understand spectrum usage for wireless network 

deployment planning and identifying sources of interference 

[1,2]. More recently, commercial and government spectrum 

and wireless organizations (regulators and users) have been 

developing methods for dynamic spectrum access (DSA) 

[3,4], which depends upon accurate path loss estimates and 

other usage information for effective operation. 

Communications satellite payload management also relies 

heavily upon spectrum SA for understanding signal 

propagation characteristics and assessing interference [5]. 

In many of these applications, spectrum SA has 

significant sources of uncertainty that hinder or limit 

performance. RF emitter information (e.g., location and 

transmit power) is not readily known in many instances, and 

uncertainty regarding signal propagation characteristics also 

exists. These uncertainties can generate significant errors 

when estimating parameters such as path loss and emitter 

location [6]. 

Several estimation uncertainty reduction techniques have 

been studied and applied, but each encounters practical 

limitations. Distributed sensing is often proposed as a 

means to reduce uncertainty regarding channel and emitter 

characteristics from detected signals [7]. If the emitter-to-

sensor channel characteristics are sufficiently uncorrelated 

(e.g., the sensors are geographically separated), detection 

and estimation accuracy can improve. Some systems, 

however, may have only a local sensor available or have 

limited capability to support data exchange among sensors 

or with a fusion center. Spectrum SA systems with limited 

cooperative sensing capabilities may use locally-stored 

databases that catalogue known emitter characteristics and 

estimates of local signal propagation characteristics [2,8]. 

Database-oriented approaches, however, are of limited use 

in highly-dynamic situations with significant mobility and 

propagation environment variations. 
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To address those limitations, a probabilistic reasoning 

approach for spectrum SA has been proposed [9]. The 

technique uses Bayesian Network (BN) models of the 

propagation environment and spectrum users as part of a 

spectrum SA and reasoning capability. Input parameter 

estimates may come from local sensing, distributed sensing, 

database sources, or a fused estimate from multiple modes. 

The model is thus applicable to distributed and stand-alone 

systems as well as fixed and mobile implementations. In 

theory, the SA accuracy adapts to the diversity and 

availability of information, information sources, and 

information quality. Consequently, decisions can then be 

made with insight into risks associated with SA uncertainty. 

This paper presents the design and assessment of the 

propagation estimation portion of the model, which is 

foundational to the probabilistic spectrum SA model. While 

the methodology has been developed and applications 

discussed [9,10,11], a sufficient characterization of an 

implementation has not been available. The intent of the 

paper is to provide a quantitative and qualitative 

characterization using a computer-simulation. Specifically, 

the analysis addresses spectrum SA estimation performance 

for path loss, transmitted power, and path distance. 

The next section provides an overview of the spectrum 

SA model and provides the design detail of the propagation 

estimation model assessed in this paper. An implementation 

is described in Section 3 along with an assessment of results 

and discussion of insights. 

2 Probabilistic SA and Reasoning 

Model 

The conceptual development of a spectrum SA model is 

described in the context of a DSA system [6,9,10] and 

applied in a satellite communications (SATCOM) [11] 

context in prior articles. The methodology uses a Functional 

Causal Model (FCM)—a type of BN that uses the system of 

equations describing the underlying phenomenology to 

specify the parameters and general structure BN structure 

[12].  

The specific model evaluated in this study represents the 

effects of path loss (Lpath) and transmitted signal power (Ptx) 

on the power received (Prx) by a sensor. The functional 

representation used for each of these parameters is given (in 

dB scale) by the following equations: 

����� � ��	 ABC�� D
E

F���� (1) 
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with parameters having the following definitions: 

- c: speed of light (3x10
8
 m/s) 

- �: propagation decay exponent 

- f: channel frequency 

- d: distance between transmitter and receiver 

- Psig,rx: received power of the transmitted signal 

- N: receiver system noise power 

- Prx: total received RF power (signal plus noise) 

Those three equations form a system of functions that is 

represented by the FCM shown in Figure 1.  

While the speed of light c and channel frequency f are 

known parameters and may generally be treated as 

constants, determinations of the other independent (non-

child) parameters must be observed and characterized by in 

situ observations. Receiver noise N can be estimated by 

� � �� ABC"#�$%#& � '((�)* � (4) 

where: 

- k: Boltzmann’s Constant (1.38x10
-23

 J/K) 

- T0: noise temperature 

- B: noise-equivalent bandwidth 

- F: receiver (system) noise figure [13]. 

Alternatively, N can be directly determined by directly 

observing the channel in the absence of noise. The 

remaining parameters—the propagation decay exponent �, 

path distance d, and transmitted power Ptx –generally cannot 

be directly measured or estimated through spectrum sensing 

observations, thus requiring information from some other 

source. Transmitted power information can be derived from 

various data sources such as existing and proposed 

regulatory databases [4,8], from which a system could 

determine the range of transmitter powers associated with 

devices using the spectrum being monitored. Similarly, the 

databases would provide the locations of fixed (non-mobile) 

transmitters in many spectrum bands allowing the path 

distance d to be determined (assuming the sensor can 

determine its own location). If the signal source is not 

known or is determined to be mobile, the path distance will 

be uncertain. Attaining a priori estimates for the path loss 

exponent can be more challenging, as the nature of signal 

attenuation can vary significantly in a given area [14]. Most 

likely, a priori attenuation characteristics for a given 

 

Figure 1: Spectrum SA Bayesian Network representation 
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location would be derived from propagation studies and 

terrain-based models such as the Irregular Terrain Model 

[15]. Alternatively, propagation characteristics could be 

estimated from signals received from emitters having 

known characteristics (e.g., frequency and antenna height) 

that are similar to those of the emitter of interest. 

With the spectrum SA model, each of the parameters 

having some uncertainty is modeled as a random variable. 

The expected receive power therefore has a probability 

distribution given by: 

���+,-	� �� �., � � � �/�+,-�012�+,� �3
4 �/�012�+,5�67.8 � �.,3
4 �/�67.85	� �3���., 
4 ��	 ��� ��� � 

(4) 

As previously discussed, parameters commonly of interest 

for spectrum SA estimation applications are the transmitter 

power Ptx, path loss Lpath, and transmitter location (as 

determined by path distance d). Updates for these 

parameters can be found by sensing the received power Prx 

and performing Bayesian updating. 

The next section presents an implementation of the 

spectrum SA model and provides some analyses of its 

characteristics and performance under a range of conditions.  

3 Simulation Results and Analyses 

The spectrum SA model from Figure 1 was implemented 

using the Netica Java API
1
 as shown in Figure 2 with 

custom Java code for managing network settings and 

commands. Analyses were conducted to assess the model’s 

ability estimate parameters such as path loss, transmitter 

power, and the propagation decay exponent given initial 

levels of uncertainty and observations of a received signal.  

 
The analyses are grouped into three categories based on 

prior uncertainties of the model parameters. The first 

                                                 
1
 See www.norsys.com/ netica-j.html 

analysis, which is presented in the following section, 

investigates model behavior and parameter estimation 

capabilities when prior uncertainty exists for the 

propagation decay exponent �, the transmitted power Ptx, 

and the distance d between the transmitter and sensor. 

Section 3.2 presents analysis when d is known, and Section 

3.3 presents analysis when Ptx, is known.  

3.1 Unknown Ptx, �, and d 

The initial prior values used in the analyses presented in 

this section are shown in Table 1. The frequency f being 

monitored is a known value based on the settings of the 

sensor. The receiver noise N is a measureable parameter and 

takes a single value for the purposes of this assessment. The 

propagation exponent � is set as a normal distribution that 

ranges from a lower limit of 2 (free space propagation) to 6 

(significant propagation loss due to foliage, buildings, etc.). 

The transmit power Ptx is represented by a uniform 

distribution ranging from 24 dBm (~300 mW) to 36 dBm (4 

W), indicating significant uncertainty across a wide range of 

possible transmitter types. Finally, the distance d is 

similarly a uniform distribution, with a maximum of d=10 

km.  

Table 1: Spectrum SA model parameter prior belief settings 

Parameter Prior 

Frequency (f) 1 GHz 

Distance (d) U(1,10000) m 

Propagation exponent (�) N(4,1), 2<�<6 

Transmit Power (Ptx) U(24,36) dBm 

Receiver Noise (N) -110 dBm 

 

The prior values from Table 1 produce the prior path loss 

Lpath and received power Prx probability distributions shown 

in Figure 3. The path loss prior distribution is found to have 

significant uncertainty with a mean of -201 dB and variance 

of 53.6. The range of values is driven by the combinations 

of {max(�), min(Ptx), max(d)} for the maximum (i.e., most 

negative) path loss and {min(�), max(Ptx), min(d)} for the 

minimum path loss. The received power distribution 

appears to show significantly less uncertainty with a mean 

of -106 dBm and variance of 11.6. The distribution, 

however, has a lower bound at -111 dBm but a long tail 

extending to -1.5 dBm for a total span of nearly 100 dBm. 

With these priors in place, the simulation model uses 

scenario parameters to determine the true received power 

measured at the receiver and reported to the spectrum SA 

model. The relevant scenarios are created from the set of 

parameter settings shown in Table 2. The values cover the 

uncertainty ranges of the corresponding spectrum SA 

uncertainty parameters from Table 1. A signal power 

variance of 1 dB is also added to the scenario, which 

simulates modest average power variations along the path 

from emitter to receiver (see Figure 4, top). 

 

Figure 2: Netica implementation of the spectrum SA 

model used in the analysis. 
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Table 2: Simulation model scenario parameter settings 

Parameter Values 

Transmit Power (Ptx) {24,30,36} dBm 

Distance (d) {1,…,10000} m 

Propagation exponent (�) {2,…,6} 

Signal power variance 1 dB 

 

With each scenario, the receiver uses a minimum 

detectable signal to noise ratio (SNR) threshold as a first 

step in the detection process. If the received signal is above 

the threshold SNR, the signal is declared detectable and sent 

to the spectrum SA model for estimating the unknown 

parameters. If the signal is below the threshold SNR, no 

detection is declared and the scenario generator advances to 

the next set of scenario parameter values. A SNR detection 

threshold of 0 dB is used for the scenarios presented here, 

allowing for a characterization of the model at low received 

signal levels. 

When a set of scenario parameter values generates a 

detectable signal, the spectrum SA model treats it as an 

observed finding for the received power Prx node. The 

remaining BN model parameters are updated based on the 

observation to produce posterior estimates.  

Figure 4 provides an illustration of the observed signal 

power (Prx) and updated (i.e., posterior) path loss Lpath 

distribution following a single observation for one of the 

scenarios. The mean received power is found to be -42.5 

dBm from a signal transmitted at 24 dBm, corresponding to 

a -66.5 dB mean path loss. The prior and updated estimates 

for Lpath in the bottom graph of Figure 4 demonstrate the 

significant change given only a single observation. While 

the prior had a mean of -201 dB and variance of 53.6, the 

updated Lpath estimate is -73.2 dB with a variance of 4.1. 

The remaining spectrum SA uncertainty parameters are 

similarly updated and reported in Table 3. 

 

Table 3: Posterior probability distributions of the SA model 

uncertainty parameters after the first observation for the case 

from Figure 1. 

Parameter Posterior Distribution 

Lpath �= -73.2, �
2
= 4.1 dB 

Psig,rx �= -42.4, �
2
= 0.96 dBm 

d �= 16.9, �
2
= 23.4 m 

� �= 2.9, �
2
= 0.57 

Ptx �= 30.9, �
2
= 3.8 dBm 

 

The updated beliefs can now be used as prior estimates 

for the subsequent observation. Keeping the scenario 

parameters constant, the model makes additional 

observations, each followed by belief updating. Continuing 

with the example, Figure 5 shows the estimation results for 

the Lpath estimate as a function of observation-update cycles. 

The graph includes the mean estimate as well as the 95% 

and 99% quantiles. 

The data show a significant reduction in estimation error 

and uncertainty. While only one case is shown here, the 

other combinations of scenario parameters produce 

 

 

Figure 3: Path loss LPath (top) and received power Prx 

(bottom) prior distributions. 

 

 

Figure 4: Received power Prx distribution (top) and 

resulting path loss Lpath prior and posterior beliefs 

(bottom) after a single Prx observation. 
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comparable results. The mean Lpath estimate converges to 

within 8 dB of the true path loss—and in some cases to 

within 3 dB—representing an improvement of almost 200 

dB from the prior estimate mean. The convergence occurs 

quickly, generally within five (5) observations. The 

uncertainty is also greatly reduced within the first five (5) 

observations. Continued observations, however, produce 

over-confident results with the true path loss falling outside 

of the 99% quantile by the 7
th

 observation. 

 
Data analysis demonstrates that the magnitude of path 

loss estimation error depends on the difference between the 

true transmit power and mean of the transmit power prior 

distribution used in the model. Figure 6 shows the path loss 

estimation error as a function of received power Prx 

delineated by the true transmitted power Ptx,true. It is easily 

seen that the path loss estimation error is affected by the 

transmitted power.  

Further analysis demonstrates that the effect is created 

specifically by the difference between the estimate and true 

Ptx as derived in [6]. Estimation error data for Ptx shown in 

Figure 7 demonstrates that the relationship between Lpath 

and Ptx is consistent with (13a) in [6], which is given by 

9:;< � (:=>?�>@AB � :=>?�BC>(� (5a) 

9:;< � (�9:=>?(� (5b) 

where �µLp is the mean path loss error and �µPtx is the mean 

transmitted power estimate error. Comparing data from 

Figure 6 and Figure 7, it can be shown that the errors are of 

the same magnitude but opposite signs. The consequence is 

that path loss estimation is limited by the extent to which 

transmitted power can be estimated and vice versa.  

With the propagation model used in this study, path loss 

estimates are a function of the propagation loss exponent 

and distance. The estimation error relationship for these 

three parameters are defined in [6] by (15) by  

9:;< � (:D>@AB:EF�>@AB � :DBC>:EF�BC>( (6) 

where µ fd is given by 

9:EF � G H�� ABC"# D E
F����I((� (7) 

 

 

 
The simulation results shown are found to be consistent 

with those theoretical representations. The path loss 

exponent � and link distance d estimates behave similar to 

that shown for path loss Lp, producing an over-confident 

estimate after several observation-update cycles. The 

magnitude of the estimation errors, however, is much 

greater for the link distance estimate d as shown in Figure 8. 

The increased relative error is due to the logarithmic 

relationship between d and the other parameters as shown in 

(1) and (7). Variations in link distance have a much smaller 

effect on path loss relative to variations in the path loss 

exponent. Small errors in path loss Lpath estimation can 

therefore result in large errors in link distance d estimation.  

Data analyses show two further characteristics of link 

distance estimation. First, link distance was consistently 

estimated to be less than 50 m (the region where distance 

variations have a greater effect on path loss) regardless of 

the true link distance. The data in Figure 8 (upper graph) 

consequently shows that the magnitude of link distance 

estimation errors increase with true link distance. Second, 

Figure 8 (lower graph) shows no notable influence of path 

loss exponent on distance estimation capabilities. 

 

Figure 5: Example path loss Lpath estimation error as a 

function of Bayesian update cycles. 

 

Figure 6: Path loss Lpath estimation error as a function of 

mean received power Prx for each true transmitted power 

Ptx. 

 

Figure 7: Transmitted power Ptx estimation error as a 

function of mean received power Prx for each true 

transmitted power Ptx. 
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The path loss exponent � error estimation data, however, 

shows dependencies on the true � and d values. Similar to 

link distance estimates, Figure 9 (upper graph) shows a 

clear trend of increased estimation error with the true path 

distance. Additionally, Figure 9 (lower graph) shows a 

dependency on the true path loss exponent. This trend is 

predicted by (6) and (7), in which an increase in link 

distance error must be offset with an increase in path loss 

exponent error for a given path loss estimation error �µLp. 

3.2 Estimating Lpath, Ptx, and � with known d 

For this set of scenarios, the location of the transmitter is 

known while the remaining uncertainty parameters are 

estimated as described in the previous analysis. The link 

distance is set at d={50, 500, 2500} meters  while the 

remaining parameters are defined as before (see Table 1). 

Path loss Lpath estimation error exhibits similar behavior 

as shown in the previous set of scenarios as shown in Figure 

10. The errors, however, are shifted to the positive by about 

1.5 dB (see also Figure 13). This gives an error range 

between -5 to 9 dB for this case compared with an error 

range of ±8 dB in the first case (see Figure 6).  Transmitted 

power Ptx estimation errors are correspondingly shifted 

consistent with (5) as shown in Figure 11. 

 
Path loss exponent � estimation errors are shown in 

Figure 12 to be greatly reduced compared to the prior case 

as predicted by (6). For this case, :EF�>@AB � :EF�BC> , giving  

9:;< � ( /:D>@AB � :DBC>3:EF � 9:D:EF. (8) 

Since the estimation error is now independent of distance 

errors and 5:EF5 J �, the path loss exponent error will 

always be less than the path loss error, i.e., 9:D K 9:;<.  

Note also that Figure 12 shows that 9:D is influenced by 

transmitted power Ptx, as can be seen by substituting (5b) 

into (8). In the prior case, this influence was mitigated by 

link distance errors. 

 

Figure 10: Path loss Lpath estimation errors for known 

link distance d as a function of mean received power. 

 

 

Figure 8: Link distance d estimation error as a function 

mean received power for various true link distances and 

path loss exponents. 

 

 

Figure 9: Propagation loss exponent � error as a function 

of mean received power for various link ranges (top) and 

propagation exponents (bottom). 
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These results show that knowing the link distance may 

bias path loss Lpath and transmitter power Ptx estimation 

errors, but will always reduce the path loss exponent � 

estimation error. 

 

 

3.3 Estimating Lpath, �, and d with known Ptx  

For this set of scenarios, the transmitted power Ptx is 

known while the remaining uncertainty parameters are 

estimated as described in the previous analyses. Transmitted 

power levels are set at Ptx = [24,30,36] dBm while the 

remaining parameters are defined as in Table 1. 

As expected, Lpath estimation error becomes negligible 

(less than 1 dB) as shown in Figure 14. Knowing both Ptx 

and Prx (along with system noise N) provides an exact 

solution to Lpath as defined in (2) and (3). The distribution of 

the Lpath estimate, however, is overconfident as previously 

described. 

The estimation error for d shows the same behavior as 

found in the first set of scenarios. Range is consistently 

estimated at d < 100 m regardless of true distance, Ptx, or �. 

Estimation error for �, however, is shown in Figure 14 to 

have more variation with true � than the prior cases. 

 

 

 

3.4 Summary and Concluding Remarks  

Parameter estimation capabilities are found to vary 

greatly by parameter for the model analyzed here.  Path loss 

estimates were greatly improved after several observation-

update cycles, as were path loss exponent estimates. 

Transmitted power estimates were marginally improved, 

and link distance estimates were shown to be very poor due 

to its logarithmic relationship to the other parameters. One 

issue to be addressed in future work is the over-confidence 

produced after several observation-update cycles. 

 

Figure 11: Transmitted power Ptx estimation errors for 

known link distance d as a function of mean received 

power. 

 

Figure 12: Path loss exponent � estimation errors for 

known link distance d as a function of mean received 

power. 

 

Figure 13: Path loss Lpath estimation error for the three 

scenarios. 

 

 

Figure 14: Path loss exponent � estimation error as a 

function of mean received power for various true link 

ranges (top) and propagation exponents (bottom). 
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Interactions among parameter estimates and associated 

errors were found to be consistent with theoretical 

formulations developed in [6]. Furthermore, knowing 

various parameter values produced mixed results with 

respect to estimation of the remaining parameters. 

The results indicate that the probabilistic spectrum SA 

model may be more beneficial for some applications over 

others. Uses involving path loss estimation but having 

significant environmental uncertainty —such as DSA—may 

benefit from the significant reduction in path loss 

uncertainty. Other applications such as geolocation system 

relying on distance estimates, however, would not be able to 

use the model studied here due to the inability to attain 

useful distance estimates. 

Future efforts will further explore the characteristics of 

the model and evaluate its utility in various system models. 

Analysis will be conducted using a range of probability 

distribution types and values to understand their effect on 

estimation accuracy. The performance predicted by the 

simulations will also be experimentally validated using 

spectrum measurement data. Finally, investigations will 

evaluate means for generating prior estimates from 

available information sources including regulatory 

information, equipment standards, and multi-modal sensing.  
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