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Abstract—Cyber security is one of the most serious economic
and national challenges faced by nations all over the world. When
a cyber security incident occurs, the critical question that security
administrators are concerned about is: What has happened?
Cyber situation assessment is critical to making correct and
timely defense decisions by the analysts. STIX ontology, which
was developed by taking advantage of existing cyber security
related standards, is used to represent cyber threat information
and infer important features of the cyber situation that help
decision makers form their situational awareness. However, due
to the widespread application of information technology, security
analysts face a challenge in information overload. There are
still huge volumes of low level observations captured by various
sensors and network tools that need to be used to derive the
high level intelligence queries such as potential courses of action
and future impact. Therefore, identification of the relevant cyber
threat information for a specific query is a crucial procedure
for cyber situation assessment. In this paper, we leverage the
STIX ontology to represent cyber threat information in a logical
framework. In order to recognize specific situation types and
identify the minimal and sufficient information for answering
a query automatically, we propose an information relevance
reasoning mechanism based on situation theory. Finally, we
implement our proposed framework using a dataset generated
by Skaion corporation.

I. INTRODUCTION

Nowadays, cyber security is one of the most serious eco-

nomic and national challenges faced by nations all over the

world. Cyber attacks have increased dramatically over the last

decade, exposing sensitive personal and business information,

disrupting critical operations, and imposing high costs on the

economy [1]. When a cyber security incident occurs, the

critical question that security administrators are concerned

about is: What has happened? To answer this question, a

security analyst should have a good understanding of the up-

to-date information of the cyber situation, which includes vul-

nerabilities, weaknesses and configurations of current network

environment, the content and patterns of the attacks, and the

behavior, capability and intent of the adversary. In other words,

having an efficient assessment of the current cyber situation in

hand is the foundation for successful cyber defense decision-

making. In this paper, we will focus on a situation assessment

framework for cyber defense.

The most commonly used definition of situation awareness

was provided by Endsley in [2]: “Situation awareness is the

perception of the elements in the environment within a volume

of time and space, the comprehension of their meaning, and the

projection of their status in the near future.” It consists of the

perception of environmental elements, the comprehension of

their meaning, and the projection of their status for the near fu-

ture [3]. Endsley distinguished the term “situation awareness”

as a state of knowledge, and the term “situation assessment”

as the process of achieving, acquiring, or maintaining situation

awareness. Although Endsley’s situation awareness model was

initially developed to capture the human situation awareness,

it has also been applied to the representation of the awareness

of computer agents. It has also been integrated into the Joint

Directors of Laboratories (JDL) model for data fusion [4].

In the cyber security domain, Barford [5] gives more

detailed requirements of situation awareness for cyber defense:

(1) be aware of the current situation; (2) be aware of the

impact of the attack; (3) be aware of how situations evolve;

(4) be aware of actor (adversary) behavior; (5) be aware of

why and how the current situation is caused; (6) be aware of

the quality of the collected situation awareness information

and the decisions derived from this information; (7) assess

plausible futures of the current situation.

A number of models have been proposed for cyber situation

assessment, c.f. [6][7][8][9]. Clearly, since multiple sources

of information, including humans, are involved in the process,

there is a need to exchange information among all such agents

while insuring that the information is both human-readable

and machine-understandable. By “machine-understandable”

we mean that a computer agent can parse, interpret, integrate

(or even fuse) it with its own knowledge, and infer how to

react to such received information.

Various cyber security standards have been proposed

to represent some aspects of cyber security information

[10][11][12][13][14]. Structured Threat Information eXpres-

sion (STIX) [10] is one of the most comprehensive efforts

to unify cyber security information sharing. It incorporates

vocabulary from several other standards. STIX captures con-

cepts of cyber threat intelligence information and provides a

high level framework to hold the various cyber intelligence
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components together. These include: (1) Observables and

Indicators (2) Incidents (3) Tactics, techniques and procedures

of attackers (TTP) (4) Exploit Targets (5) Courses Of Action

(6) Campaigns and Threat Actors. An XML schema imple-

mentation of the full STIX architecture is available [10].

Although these cyber security standards provide vocabular-

ies for representing various aspects of structured cyber threat

information and improve the consistency, efficiency, interop-

erability, and overall situational awareness, they still do not

provide sufficient support for the semantics of the vocabulary

terms that would allow computer agents to infer the conse-

quences of the information provided to them. As described

in Kokar et al. [15], in order to be aware, “...one needs to

have data pertinent to the objects of interest, some background

knowledge that allows one to interpret the collected object data

and finally a capability for drawing inferences.” In other words,

situation assessment requires that important features of the

situation be automatically inferred based on the data collected

by network sensors and host-based applications. Automatic

inference, in turn, requires that information be encoded in

a language with formally defined syntax and semantics. To

this end, the authors in [16] have converted some of the

cyber security standards expressed in XML into ontologies

expressed in OWL (Web Ontology Language) [17]. This effort

resulted into the STIX ontology [18]. Ontology, which is a

term used in the knowledge representation domain, stands

for an explicit, formal, machine-readable semantic model

that facilitates knowledge sharing and reuse. It defines the

classes, instances of the classes, inter-class relations and data

properties relevant to a problem domain [19]. The advantage of

an ontology based approach to situation awareness is that once

facts about the world are stated in terms of the ontology, other

facts can be inferred using an inference engine automatically.

In this paper, we will use the BaseVISor inference engine [20].

OWL is the most commonly used language for expressing

ontologies today.

Due to the widespread application of information tech-

nology, security analysts face the challenge of information

overload, rather than the lack of information. Although STIX

ontology has some constrains for inferring the cyber security

indicators and other intelligence concepts, there still is a huge

volume of low level observations captured by the various

sensors and network tools from which the high level queries

that concern potential courses of action and future impact need

to be inferred. In other words, a reasoning mechanism in the

comprehension step of cyber situation assessment is needed

to support the human analyst. Moreover, it is important to

filter out the information that is not relevant to a specific

analyst’s query. This is important from both the inference

mechanism’s point of view (not to be overwhelmed) as well as

the communications point of view. When security analysts and

agents share threat information and the situation they are deal-

ing with, sending too much information over communication

links with limited bandwidth is not good. Since cyber situation

assessment is a time critical process, only the information that

is necessary to assess a given situation should be sent.

The objective of our work is to develop an information

relevance reasoning mechanism for cyber security queries

in cyber situation assessment. Although there is a lot of

research about cyber situation assessment, unfortunately, a

comprehensive definition for “cyber situation” does not exist.

Most of the existing models describe the cyber situation by

a collection of threat indicators. However, the information

overload problem is still unsolved since it is not clear which

facts need to be included in the descriptions of situations.

In this paper, we will treat cyber situations as “first class

citizens”. This means cyber situations are separate objects

which can have types and properties associated with them.

The cyber situation types and situation properties can be

used to not only identify what the situation is, but what the

minimal amount of relevant information for decision makers to

sufficiently characterize a given situation and answer a given

query is, as well. To this end, we will propose a formal

definition of cyber situation based on Barwise’s situation

theory [21]. We will extend the STIX ontology by adding

a portion of a situation theory ontology structure to capture

the dynamic properties of situations and to emphasize the

recognition of specific situation types. This cyber situation

ontology will allow computer agents to identify the minimal

and sufficient information for answering a query automatically.

The rest of this paper is organized as follows: Section

II overviews situation theory and STO-L ontology. Section

III introduces how the STIX components work in our cyber

situation assessment framework. In Section IV, we discuss

the details of the information relevance reasoning mechanism.

Section V describes a cyber attack scenario example and the

Skaion dataset. In Section VI, we implement our proposed

framework on the Skaion dataset. Finally, conclusions and

future work are discussed in Section VII.

II. OVERVIEW OF SITUATION THEORY AND STO-L

ONTOLOGY

A. Situation Theory

In this paper, we use the notion of situation introduced

by Barwise and Perry as a means of giving a more realistic

formal semantics for speech acts than what was then avail-

able [21][22][23]. In contrast with a (complete an universal)

“world” which determines the value of proposition in a more

traditional approach, a situation corresponds to the limited

parts of reality that we perceive, reason about, and live in.

Devlin subsequently extended Barwise’s situation semantics

by formalizing a number of concepts developed by Barwise

and Perry [24][25]. In situation theory, information about a

situation is expressed in terms of infons. Infons are written as

≪ R, a1, ..., an, 0/1 ≫

where R is an n-place relation and a1, ..., an are objects

appropriate for R. The last item in an infon is the polarity

of the infon. Its value is either 1 (if the objects stand in the

relation R) or 0 (if the objects don’t stand in the relation R).

It should be noted that infons are different from facts in the

knowledge base. Devlin states that “infons are not things that
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Fig. 1. Top Level Classes of STO-L

in themselves are true or false. Rather a particular item of

information may be true or false about a situation.”

To capture the semantics of situations, situation theory

provides a relation between situations and infons. This re-

lationship is called the supports relationship which relates

a situation with the infons that “are made factual” by the

situation. Given an infon σ and situation s the proposition

“s supports σ” is written as

s |= σ

In Devlin’s situation semantics, a particular feature of

intelligent behavior is the recognition of types. In other words,

the intelligent agent recognizes objects based on their types.

Since situation is an object, it could be recognized by its type.

Situation theory provides various mechanisms for defining

situation types.

B. STO-L Ontology

Situation Theory Ontology (STO) is a formalization of

Barwise’s situation semantics in terms of an ontology [15].

The basic elements of situation theory are objects and types.

Each kind of object has two associated classes: the type of

object class and a class that collects instances of a given type.

STO is compatible with the current thinking about situation

awareness in the community. In particular, there are clear

relations between the concepts in this ontology and Endsley’s

model of human situation awareness.

STO-L is a lighter version of STO. It is a simplification

and improvement of STO. Generally, there are two main

modifications. First of all, we give up the meta-types of

situation theory to reduce the complexity of STO. The STO-L

only keeps one meta-level - the objects. Moreover, we extend

the term “situation” as an entity that can affect, exhibit and

participate in various actions, instead of a static collection of

objects and relations among them. Figure 1 shows the top level

classes of STO-L. We extend the STIX ontology into a cyber

situation ontology by adding portion of STO-L structure to

capture the dynamic properties of situations and to emphasize

the recognition of specific situation types.

Fig. 2. Some of STIX Ontology Classes

III. STIX COMPONENTS IN THE CYBER SITUATION

ASSESSMENT FRAMEWORK

STIX ontology is created on the basis of the STIX standard

[16]. It provides a common mechanism for addressing struc-

tured cyber threat information in cyber situation assessment.

Some classes of the STIX ontology are shown in Figure

2. In the following, we compare the main STIX ontology

classes with the concepts in Barwise’s situation semantics and

discuss how the STIX components work in our cyber situation

assessment framework.

A. TTPs v.s. Queries

The central class in STIX ontology is TTP (Tactic, Tech-

niques and Procedures of the attackers). The instances of the

TTP class are cyber security exploits, which may belong to

a variety of TTP subclasses. TTPs are related to instances of

other STIX high level component classes, such as AttackPat-

tern, ExploitTarget, KillChain, KillChainPhase, and so on.

Although both TTPs and queries basically represent the

goal of situation assessment, they are different. In situation

semantics, queries are outside of the situations; they are the

start points of the situation assessment. In the STIX ontology,

TTPs are the outcomes of the situation assessment - the

awareness of the cyber situation. Therefore, the TTPs can

be considered as answers to the queries from cyber security

analysts.

B. Indicators v.s. Infons

The Indicator class is another key STIX component that

plays a pivotal role in cyber situation assessment. It is a

fundamental element of intelligence that connects low level

observables with high level cyber intelligence concepts. The

instances of Indicator class are patterns or behaviors that

indicate the likelihood and possibly predictability of a cyber

threat. Generally, an indicator could be any piece of infor-

mation that objectively describes an intrusion. On the one

hand, indicators are derived from observables combined with

contextual information intended to represent artifacts and/or

behaviors of interest within a cyber security context. On the

other hand, the indicators can be potentially mapped to a

related TTP context and adorned with other relevant high level
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STIX components, such as kill chain. The bottom-up inference

related to indicators is the key procedure in cyber situation

assessment.

In situation semantics [25], infons are used as the fundamen-

tal elements to express all the information about situations. In

STO-L, we only use infons to represent queries. The rest of the

information about situations is expressed in OWL. The Infon

class is the starting point of all the inferences in our situation

assessment. It is also a connection between situation types and

relevant individuals and relevant relations (cf. Figure 1). Infons

thus play an indispensable role in our situation assessment

framework because they capture the focus of attention of a

situation. They allow agents to infer which facts are relevant to

a given query and which are not. The inference of the supports

relation between infons and specific situation types provides

us with a rule of what is relevant for a specific situation.

C. Kill Chains v.s. Situation Types

In STIX ontology, the KillChain class is used to show

the multiple steps in an attack. Various low level incidents

are correlated as part of a larger kill chain. From low level

indicators, a kill chain with kill chain phases can be inferred

based on the potential threat actor and target. Therefore, the

kill chain can be viewed as a particular type of situation, in

which several events of particular types occur in a specified

order.

In STO-L, different situation types are denoted as subclasses

of Situation. The situation types and situation properties can

be used to not only identify what situation it is, but what the

necessary relevant information is to sufficiently characterize a

given situation and answer a given query is as well.

In our framework, the Event class was used to capture the

low level events data that is captured in typical log data. Events

and the entities related to events are treated as individuals in

STO-L.

D. Cyber Situation Assessment Framework

Figure 3 illustrates the architecture of our cyber situation

assessment framework. The inputs of this framework have

two parts: the queries from cyber security analysts, which

may involve various aspects of cyber security intelligence

information; and the voluminous observations and data about

the network captured by sensors and network tools.

The outputs of this framework also contain two parts. The

first part is the answers to cyber security analysts’ queries.

The answers could be either yes/no boolean types, or a

collection of OWL facts for complex questions. The latter is

the minimal and sufficient set of information for answering the

queries, which can be used by decision makers to sufficiently

characterize a given situation and communicate the situation

descriptions to others.

The core component in this cyber situation assessment

framework is the information relevance reasoning mechanism.

This mechanism identifies the minimal and sufficient relevant

information for each query. The details of this mechanism will

be discussed in next section.

Fig. 3. Cyber Situation Assessment Framework Architecture Overview

Fig. 4. Agent’s Knowledge Base

IV. CYBER SECURITY INFORMATION RELEVANCE

REASONING MECHANISM

A. Information Flow in Agent’s Knowledge Base

First we relate the cyber security situation assessment to the

Barwise’s situation semantics and the STO-L structure. Figure

4 shows a cyber security agent’s knowledge base on the right

and a cyber world on the left. Cyber world means the physical

(or abstract) world that is the subject of cyber security. The

circle labeled s in the cyber world is a situation. This is a real

situation that is happening in the cyber world. For example,

this situation could be an ongoing cyber attack. Agent can be

any intelligent agent who has the capability of inference, such

as human or computer. Basically, that agent uses sensors or

other information technologies to observe some aspects of the

real world.

As we mentioned before, Barwise’s situation semantics

states that the relation between a situation (in the world) and

a representation of the situation (in a formal framework) is

relative to a specific agent who establishes such a link. This

link is defined by the Agent Connections that link entities in the

world to the formal constructs of the situation-theoretic frame-

work. In Figure 4, the agent’s knowledge about the world,

that has been acquired via Agent Connections, is represented

by the rectangle labeled A. In this paper, we will use the

knowledge-based system approach to reason about information

relevance. The idea is to store knowledge in a knowledge base

which is combined with a reasoning mechanism that is used to

determine what can be inferred from the facts in the knowledge

base. The rectangle A is a knowledge base of an agent about
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parts of the cyber world. The small rectangle S in A denotes an

abstract cyber situation, i.e., the agent’s formally represented

knowledge about s.

The circle above the rectangle A represents a query, Q. The

agent need a start point for a specific cyber situation assess-

ment, which is a perspective that gives focus to what should

be considered as relevant for this cyber situation (situation s
for example). In STO-L, it represented as “utterance” - an

instance of class Infon.

B. Mapping Queries to Formal Language

A query is the starting point of situation assessment and

decision making processes of intelligent agents. Queries are

usually represented as expressions in natural language or in a

query language. In order to acquire the meaning of the query,

this expression needs to be represented in a formal language. In

this paper, we formalize the process of information relevance

reasoning using a STO-L. So the first step is to map a query

expressed as a sentence to OWL. The difference between

queries to a database and queries to an OWL knowledge base

is that the answer to a knowledge base query may include

facts that are inferred as well as facts that have been explicitly

asserted.

The query Q in Figure 4 is expressed as an instance of the

class Infon in STO-L:

Q = ≪ rQ, a1, ..., an, 0/1 ≫ (1)

where rQ denotes an n-place relation in the query Q. The

connection between a situation s and a collection of infons Q
would be expressed using the supports construct

s |= Q (2)

In this conceptualization, the objective of situation assess-

ment is to infer whether the specific situation that the analyst is

querying about holds or not. This inference will be described

in Section IV-D.

C. Query and Situation Type

Our final goal is to identify the minimal set of relevant

information to answer a given query. So after we represent

the query as an instance of the Infon class, the next step

is to establish the information base that includes relevant

information about the situation happening in the cyber world.

In Figure 4, it is represented by the small rectangle S. How

do we know what it contains?

The intelligent agent recognizes situations based on their

types. In STO-L, different situation types are denoted as sub-

classes of the Situation class. The main purpose of reasoning

about situations is to find out what situation type a specific

situation s belongs to. For a given query, Q, the situation type

S̄ in situation theory is defined as (where ṡ are instances of

the class Situation):

S̄ = ⌈ṡ|ṡ |= Q⌉ (3)

D. Situation Derivation and Relevant Information Reasoning

Situation theory also provides the notion of abstract situa-

tion. It is a collection of infons that are supported by a given

situation, s:

Ss = {ι|s |= ι} (4)

As explained in [15], STO, and thus STO-L, approximate

Situation Theory by capturing the supports (|=) relation with

an entails (or derives) relation (in the logical notation the

symbol ⊢ is used for this). Therefore, the supports relation

between a situation and a collection of infons should be

inferable from the knowledge of the agent, i.e., from the

abstract situation.

Assume the agent was able to derive using its knowledge,

A, that s holds. Denote the cylinder SQ in Figure 4 as the

knowledge in agent’s knowledge base that is necessary to

prove (or derive) that query Q (situation s) holds. This would

be the relevant information to this situation.

E. Derivation of Relevant Information

Now we address the question of how to infer which facts

belong to SQ. Notice that if SQ is sufficient to derive Q and

since SQ is a subset of A, then A should entail Q, too. The

identification of the exact boundary of the relevant information

SQ is the key issue here. We need three steps to pick relevant

information out of A.

Firstly, we only consider such subsets of A that are abstract

situations denoted as S in Figure 4, which is a formal

representation of situation s in the real world. However, not

all abstract situations are necessary for answering the query.

We only take a minimal subset of A that entails Q, or simply

rQ. These conditions can be captured by:

SQ =

⋂

|S|⊆A

S ⊢ rQ (5)

In STO-L, we create subclasses for Situation class to recog-

nize different situation types. Moreover, STO-L imposes some

restrictions on the instances of these classes. For instance,

different types of situations support different infons, and for

every situation there must be at least one relevant individual

and at least one relevant relation. All such constraints limit

the collection of facts that are considered in the intersection

of Eq. 5.

We should also notice that the definition of minimal subset

of relevant information in Eq. 5 does not guarantee the

uniqueness. It means that there may be different collections

of relevant information that have the same amount and entail

the same query, but have different content.

V. A CYBER ATTACK SCENARIO EXAMPLE

In this section, we consider a Common Gateway Interface

(CGI) buffer overflow attack scenario which comes from the

Skaion Corporations Advanced Research and Development

Agency (ARDA) Testbed Dataset [26].
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A. Scenario Description

CGI is a commonly used application framework, which

is implemented on a Web server and provides an interface

between the Web server and programs that generate the

Web content. It is used for allowing limited access to the

Web content information. In this scenario, a buffer overflow

exploits against a CGI script of a petition website. People’s

“signatures” are all stored in a MySQL database. After the

script establishes its connection to the database, it is exploited

by a buffer overflow, which allows the attacker to query all

information from that database, including the content that they

should not be able to access. This attack has two steps:

• Attacker passes an overflow string to a CGI script on

www.bprd.osis.gov.

• CGI is exploited, querying all tables in the MySQL DB

it connects to.

B. Skaion Dataset

Skaion designed its testbed after the Open Source In-

formation System (OSIS) [27]. The Skaion dataset about

CGI overflow scenario consists of about 25 minutes capture

from three different network sensors. These files include

network traffic entering and leaving the entire internal network

captured by tcpdump, the signature-based network intrusion

detection system (IDS) alerts captured by Snort and Dragon,

and FTP/Web sever logs. Besides, the dataset also provides

knowledge of “ground truth”, in which the actual roles of each

IP address are listed.

This scenario only includes single stage attacks, which

means it only has a simple scan or exploit or data exfiltration

in this scenario. Besides the main attack, there are other

background attacks (none of which are successful) and scans.

VI. INFORMATION RELEVANCE REASONING

EXPERIMENTS

In this section, we describe on the use of an implementation

of our situation assessment framework for cyber intelligence

information relevance reasoning on the Skaion dataset about

an CGI overflow scenario.

A. Relevance Reasoning Work Flow

Figure 5 shows the workflow of cyber intelligence infor-

mation relevance reasoning in our situation assessment frame-

work. As illustrated in Figure 3, the cyber security analysts’

queries and raw data from network sensors are the two inputs

to the situation assessment framework. In our experiments,

we manually map the query examples expressed by natural

language to the Infon class of STO-L. The network raw data in

Skaion dataset includes packet traffic, IDS alerts and operating

system logs. We only import the Snort alerts to the STIX

ontology as instances using Java to form the agent’s knowledge

base. We use Protégé [28] as the ontology editor.

The rest of the steps in this workflow are implemented by

ontology based inference. In particular, we use BaseVISor

as the inference engine. It allows for including additional

inference rules.

Fig. 5. Relevance Reasoning Workflow

Fig. 6. Infon of Query 1

B. Query 1: Which servers have been targeted?

1) Infons: We interpret this query as the following infon:

<< beTargeted, IPAddress >>

where beTargeted is an unary relation, and IPAddress

represents a collection of IP addresses of the servers being

targeted. In our cyber situation assessment ontology, we

represent this query as a subclass of Infon which was defined

by a restriction as shown in Figure 6. All the instances of

Infon0 class should satisfy this restriction.

2) Situation type: We define a situation type named Tar-

getedServerSituation that supports the infon above:

TargetedServerSituation |=

<< beTargeted, IPAddress >>

which is represented as a subclass of Situation by

the restriction in Figure 7. All the instances of

TargetedServerSituation class should satisfy this restriction.

Fig. 7. Situation Type of Query 1
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Fig. 8. An Example of Snort Alert Event Instance

It should be noted that both infon and situation type are

defined manually with expert knowledge of cyber security

domain.

3) Indicator rule: The core of Snort alert is a simple plain

text message with a brief description of the event. Firstly, we

parse the alerts and import the semantics to the ontology as

instances using Java. Figure 8 is an example of Snort alert

event instance.

We can see that an event instance carries several pieces

of information associated with both object properties and

datatype properties. The indicator rule is used to derive pat-

terns or behaviors that indicate some aspects of a cyber threat.

Since the infon gives us the focus of the situation assessment,

we create the indicators based on the infon. For this query,

the indicator rule is: create indicator instances for the events

whose source IP address is from external network and the

destination IP address is from internal network.

4) Be targeted rule: This rule is used to infer if the infon

holds. If there are alert events in which source IP address is

from external network and the destination IP address is from

the internal network, then we assert that these destination IP

addresses have been targeted.

5) Supports rule: If there are IP addresses that are targeted,

we create instances of Infon0 class (e.g., i1) and corresponding

instances of the TargetedServerSituation class (e.g., s1), and

assert that s1 supports i1.

6) Relevant information rule: The relations and anchors of

the instances of Infon0 will be asserted as relevant relations

and relevant individuals of the targeted server situation.

C. Query 2: Are there CGI buffer overflow attack attempts?

1) Infons: We interpret this query as the following com-

pound infon:

<< contains, CGIOverflowKillChain,KillChainPhase >>

∧ << killChainPhase, Indicator,KillChainPhase >>

where constains and killChainPhase are two binary relations.

This compound infon means the CGIOverflowKillChain

contains some kill chain phases which are derived from some

related indicators. Figure 9 shows the definitions of two

elementary infons.

2) Situation type: We define a situation type named

CGIOverFlowSituation that supports the compound infon:

Fig. 9. Infons of Query 2

Fig. 10. Situation Type of Query 2

CGIOverF lowSituation |=

<< contains, CGIOverF lowKillChain,KillChainPhase >>

∧ << killChainPhase, Indicator,KillChainPhase >>

Figure 10 shows the definitions of this situation type.

3) Indicator rule: The signature of some Snort alerts has

a CVE [29] reference associated with it, which is used

as a key to get additional information about the particular

vulnerability. However, in this dataset, most alerts don’t have

CVE references. So we need to analyze the signature of alert to

recognize the attack type. For this query, we create indicator

instances for the events whose signatures are related to the

CGI buffer overflow kill chain phases.

4) Kill chain phase rule: Based on the scenario description,

we can roughly define that the kill chain of this scenario

contains two phases: overflow CGI phase, and query protect

database phase. If the indicators have the same source and

destination IP address, we assert that these indicators belong

to the same kill chain phase.

5) Contains rule: If there are kill chain phases related to

the buffer overflow indicators, we assert that this kill chain

phase is contained by the CGIOverFlowKillChain.

6) Supports rule and relevant information rule: These two

rules are similar to the rules in Query 1.

D. Inference Results

The total size of the Snort alerts files is 37 KB, which

include 238 events. We import theses events into our ontology,

and create an observable for each event. The rules described
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TABLE I
INFERENCE RESULTS

Precision Recall
Input Information Output Information

number of individuals number of properties number of individuals number of properties

Query 1 90.0% 100% 472 1920 41 101

Query 2 100% 82.9% 472 1920 106 344

above were implemented in the BaseVISor rule language.

Table I shows the inference results.

As depicted in Figure 3, the outputs of our framework

contain two parts: the answers for the queries, and the minimal

and sufficient set of information for answering the queries.

So we first calculate the precision and recall of BaseVISor

rule based inference. Then, we compare the amount of input

information and output information.

E. Limitations

The main limitation of our experiments is caused by the

input network data. This paper is just a prototype of the

information relevance mechanism. To simplify the workflow,

we only import a small part of the Skaion dataset (only Snort

alerts) into our ontology. As we all know, all IDSs produce

false positives and negatives. That means we need to consider

all the dataset together, especially the packets traffic data,

which is the most basic and trustful data to validate the alert

events. We will extend our mechanism for diversity inputs in

the future work.

Another limitation exists due to the format of ground truth

in the Skaion dataset. The data created by Skaion is “labeled”

according to the roles played by individual IP addresses

(attacker, background attacker, background scanner, victim,

server, etc.), instead of according to if individual packets were

specifically malicious. So we just assume that every packet

sent by a malicious IP address is a malicious packet. In the

real situation, this assumption is not always true. In the future

work, we need to figure out a more sophisticated way to

characterize the behavior of adversaries.

VII. CONCLUSION

In this paper, we described a situation assessment frame-

work for cyber security information relevance reasoning. We

leverage the STIX ontology to represent cyber threat infor-

mation, and extend it using situation theory. The information

relevance reasoning mechanism we proposed can recognize

specific situation types and identify the minimal and sufficient

information for answering a query automatically. We imple-

mented our framework on Skiaon dataset. The results show

that our mechanism performed well. However, our experiments

have some limitations. We will improve our framework in the

future work.
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