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Abstract—In critical infrastructures consisting of discrete
cyber and physical components, the correlations between them
may be exploited to launch strategic component attacks that
may degrade the entire system. We capture such correlations
between cyber and physical sub-infrastructures using the condi-
tional probabilities, and between cyber and physical components
using first-order differential conditions. By using a resilience
measure specified by the infrastructure’s survival probability, we
formulate a discrete game between the provider and attacker.
Their disutility functions are products of the survival (or failure)
probability and cost terms expressed in terms of the number
of components attacked and reinforced by the attacker and
provider, respectively. The Nash Equilibrium conditions of the
game provide the sensitivity functions that clearly show the
dependence of the infrastructure resilience on cost terms, correla-
tion function and sub-infrastructure survival probabilities. These
results for product-form disutility functions complement the sum-
form results from previous works, and more closely represent
the provider’s objectives for a certain class of infrastructures.
We apply these results to simple models of network testbed
infrastructures and cyber infrastructures of smart energy grids.

I. INTRODUCTION

The increasing proliferation of cyber technologies in crit-
ical infrastructures leads to complex cyber-physical corre-
lations that can be exploited by attackers to launch novel
attacks. These attacks, while utilizing only physical or cyber
components, can disrupt the other components and possibly
bring down the entire infrastructure. For example, a physical
fiber cut in a network testbed may disconnect all switches
and routers at a site, and a cyber attack on a supervisory
control and data acquisition (SCADA) system may disrupt all
power lines under its control. More generally, the operation
of infrastructures such as network testbeds and smart grids,
requires the uninterrupted operation of cyber components such
as routers, servers, and SCADA systems as well as physical
components such as optical fibers, electrical bus cables, and
heating, ventilation and air conditioning (HVAC) systems.

One of the key measures of resilience of such infrastruc-
tures is the probability that the infrastructure remains opera-
tional under various attack conditions, and thus it constitutes a
primary goal of the provider. The cyber and physical compo-
nents of the infrastructure may be reinforced by the provider
by balancing the costs against attack profiles that reflect the
underlying cyber-physical correlations. These considerations
lead to game theoretic formulations wherein the attacker and
provider utility functions include the survival probability and

cost terms [1]. The effectiveness of such approaches is deter-
mined by the Nash Equilibrium (NE) of the underlying game,
which in turn specifies the reinforcement and attack strategies
for the provider and attacker, respectively.

We consider infrastructures composed of discrete cyber and
physical components, whose performance critically depends
on both components being operational and available. The
cyber and physical components could be disrupted in various
ways: they may be disabled by direct attacks, for example,
a cyber attack on a server, or by indirect attacks, such as
a physical attack on a fiber conduit to a regional network.
Furthermore, in several infrastructures, the cyber and physical
sub-infrastructures depend on different technologies, and are
operated by separate domain teams. For example, in network
infrastructures, switches and routers are maintained by net-
working staff, fiber routes are maintained by engineering staff,
and HVAC systems are maintained by physical plant staff.
Hence, it may not be feasible for the provider to dynamically
reallocate the defenses between different domains, and hence
it is important to deploy them using optimal defense resource
allocations.

Consider an infrastructure characterized by the number
of discrete components, wherein an attacker launches yc cy-
ber or yp physical component attacks (not both), and the
provider reinforces xc cyber and xp physical components. In
essence this formulation captures critical infrastructures with
a large number of components such as a network testbed
with thousands of servers, routers, and switches, or a power
grid with hundreds of SCADA systems. The provider’s main
objective is to ensure that the infrastructure is operational by
strategically reinforcing a certain number of cyber and physical
components. A reinforced component survives a direct attack,
but can become (indirectly) unavailable as a result of an
attack on another component, and we attempt to explicitly
model such dependencies. Let PC and PP denote the marginal
survival probabilities of cyber and physical sub-infrastructures,
respectively. The failure correlation function f(PC , PP ) is the
failure probability of cyber sub-infrastructure given the other’s
failure; it is typically estimated using the structural properties
of the infrastructure. Furthermore, we consider that PC and
PP satisfy first-order differential conditions [1] involving xc,
xp, yc, and yp, which are derived based on component-level
considerations.

We formulate a game between the provider and attacker
with the following considerations:
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TABLE I. NOTATIONS

Notations Meaning Function of

xc Number of cyber components reinforced by provider NA

xp Number of physical components reinforced by provider NA

yc Number of cyber components attacked NA

yp Number of physical components attacked NA

PCP Probability of survival of the cyber-physical infrastructure (xc, xp, yc, yp)

PC Probability of survival of cyber sub-infrastructure (xc, xp, yc, yp)

PP Probability of survival of physical sub-infrastructure (xc, xp, yc, yp)

QCP = 1 − PCP Probability of failure of cyber-physical infrastructure (xc, xp, yc, yp)

CD Total cost incurred by the provider (xc, xp)

CA Total cost incurred by the attacker (xc, xp)

CCD Cost of reinforcing a cyber component by the provider (xc)

CP D Cost of reinforcing a physical component by the provider (xp)

C0 Cost of initial system deployment by the provider NA

UD× Disutility function of the provider in product form (xc, xp, yc, yp)

UA× Disutility function of the attacker in product form (xc, xp, yc, yp)

(a) sufficient knowledge about the cyber-physical correlation
in the infrastructure is available to the attacker to launch
component attacks that impact others;

(b) costs of attacks and reinforcements (including initial
deployment) of components, denoted by CA(yc, yp), and
CD(xc, xp), respectively, are not available to the other;

(c) strategies used by the provider in choosing which compo-
nents to reinforce, and by the attacker in choosing which
components to attack are not revealed to the other; and

(d) attack incidents and their results on components will be
known to the provider and attacker.

Let PCP denote the survival probability of the infrastruc-
ture. The provider disutility function is

UD× = [1 − PCP (xc, xp, yc, yp)]CD(xc, xp),

which is the expected reinforcement and deployment cost
under the condition that the infrastructure failed, and thus is
to be minimized. Intuitively, it represents the average “wasted
cost” since the infrastructure failed (with probability 1−PCP )
despite the component reinforcements. Notice that CD includes
the initial system deployment cost, C0 > 0, to preclude the
degenerate solution at xc = 0 and xp = 0, wherein the provider
achieves zero wasted cost by not reinforcing any component.
Similarly, the attacker disutility function is

UA× = [PCP (xc, xp, yc, yp)]CA(yc, yp),

which is the expected attack cost under the condition that
the infrastructure survives, and is to be minimized. For the
attacker, it represents the “wasted cost” since the infrastructure
survived (with probability PCP ) despite the attacks.

The organization of this paper is as follows. We com-
pare the above formulation with existing ones in Section
II. In Section III, we briefly present a discrete component
model for cyber-physical infrastructures, and discuss the failure
correlation function and the differential conditions on sub-
infrastructure survival probabilities. In Section IV, we present

the game-theoretic formulation, and derive NE conditions and
sensitivity estimates. We discuss the special cases of linear
failure correlation function, OR systems, and statistical inde-
pendence conditions in Section V. We discuss NE conditions
for simplified models of network testbeds and smart energy
grids in Section VI.

II. COMPARISON WITH OTHER WORKS

Game-theoretic methods have been extensively applied
in the risk analysis of critical infrastructures by explicitly
accounting for the interactions between providers and attackers
[2]. In particular, infrastructures such as power distribution,
transportation, and agriculture have been analyzed using com-
plex dymamic models of the underlying physical systems [3],
for example, using partial diffential equations. Both the formu-
lation and solution space of such works is quite extensive, in-
cluding, multiple-period games [4] that address multiple time-
scales of system dynamics; incomplete information games [5],
[6], [7] that account for partial knowledge about the system
dynamics and attack models; and multiple-target games [8],
[9] that account for possibly competing objectives. A compre-
hensive review of the defense and attack models in various
game-throretic model has been presented in [10]. While many
of these formulations utilize detailed dynamics models, they
do not explicitly account for the underlying cyber-physical
correlations. In another direction, game-theoretic methods have
been utilized to fuse information from muliple sources in
defense applications [11]. Due to the wide spectrum of these
game-theoretic and information fusion methods, we limit our
discussion to the ones that are directly related to our discrete
cyber-physical component formulation.

Discrete infrastructure models have been developed for a
certain class of cyber infrastructures [1], which are simpler
than ones used in above critical infrastructures, for example,
partial differential equations used to model traffic dynam-
ics [3]. Also, game-theoretic methods have been developed
specifically to address the system reliability and robustness
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for several applications [2], including, smart grids [12], cloud
computing infrastructures [13], and power systems [14]. For
cyber-physical infrastructures, the Stackelberg formulations
(where the provider chooses options based on instantaneous
information) have been developed [1], [13]; typically, this
formulation leads to more reactive strategies that are sensitive
to dynamic disruptions compared to long-term strategies used
in Markov game models [15].

The overall formulation of this paper is closely related
to that in [1] in terms of correlation characterization, but its
product-form disutility function is different from the other’s
sum-form. For the provider, the sum-form utility function,
which is to be maximized, is given by

UD+ = [PCP (xc, xp, yc, yp)] gD − CD(xc, xp),

where gD represents the reward of keeping the infrastructure
operational. Thus, it represents the cases where explicit rev-
enue terms can be identified. Similarly, the attacker incurs
a cost proportional to the attack efforts to bring down the
network. For the attacker, the sum-form utility function, which
again is to be maximized, is given by the utility function

UA+ = [1 − PS(xc, xp, yc, yp)] gA − CA(yc, yp),

where gA represents the reward for disrupting the infrastruc-
ture.

In contrast, the product-form represents the cases where
facility provider’s main objective is to keep the infrastructure
operational at the lowest cost. For example, there is no
“explicit” revenue from running the system as is the case
for many research infrastructures and government services.
Consequently, the NE conditions are different in these two
cases. Interestingly, they will turn out (in Section IV-D) to
be surprisingly similar at a fundamental level: the sensitivity
conditions show that the role of 1/gD in the sum-form is
effectively replaced by 1/C2

D in the product-form. However,
the cyber-physical differential at NE differs in its dependence
on the unit costs of components: in the product-form it depends
on the positive ratio of the unit costs, whereas in the sum-form
it depends on their negative ratio.

III. CORRELATIONS IN DISCRETE CYBER-PHYSICAL

NETWORK INFRASTRUCTURES

A Cyber-Physical Network Infrastructure (CPNI) consists
of cyber and physical sub-infrastructures with NC cyber
components and NP physical components, respectively. Both
components must be operational and available as part of
the infrastructure, but they can be functionally disabled or
operationally disconnected from the infrastructure through
attacks. The cyber-physical interactions are captured by the
survival probabilities of cyber and physical sub-infrastructures
using the failure correlation function f(PC , PP ) that captures
the correlations at the sub-infrastructure level, and differential
conditions on PC and PP that capture the component-level
correlations [1].

Condition 3.1: The probability that the CPNI is opera-
tional is given by

PCP = PC + PP − 1 + f (PC , PP ) (1 − PP ),

where f (PC , PP ) = PC̄|P̄ is the sub-infrastructure failure
correlation function [1]. �

The failure correlation function captures the dependence
of cyber sub-infrastructure failure on that of physical sub-
infrastructure. For example, in a network testbed (e.g., [16])
with NS switches at each site, disabling the fiber would
disconnect all of them from the infrastructure, which can be
captured by choosing f (PC , PP ) = NS(1 − PP ); this shows
that the physical failure rate is amplified by NS times by
making all switches unavailable. The following two special
cases lead to a simplified yet illustrative analysis of PCP .

(a) Linear Form: The special case of a linear form

f(PC , PP ) = aC(1 − PC) + bC

has been studied in [1] that expresses the failure correla-
tion in terms of multiplicative and additive coefficients,
denoted by aC and bC respectively. Here, aC represents
a proportional change in PC̄ due to the physical sub-
infrastructure failure, whereas bC represents an indepen-
dent factor. If aC > 1 and bC ≥ 0, or aC ≥ 1 and
bC > 0, cyber failures are positively correlated to physical
failures, that is, PC̄|P̄ > PC̄ ; and if aC < 1 and bC ≤ 0,
or aC ≤ 1 and bC < 0, cyber failures are negatively
correlated to physical gfailures, that is, PC̄|P̄ < PC̄ . If
the cyber and physical sub-infrastructures are statistical
independent, then we have the special case of aC = 0
and bC = 1, that is, f (PC , PP ) = 1 − PC .

(b) OR Systems: From a cyber-physical correlations perspec-
tive, the OR systems defined in [1] are amenable to
much simpler analysis in that the cyber and physical
sub-infrastructures can be independently studied. For OR
systems, the probability of failure of cyber or physical
sub-infrastructure is PC̄∪P̄ = PC̄ + PP̄ or equivalently
PC̄∩P̄ = 0. Thus, we have PCP = PC + PP − 1 and
f (PC , PP ) = 0, and their implications to the formulation
of this paper will be discussed in Section V-B.

The sub-infrastructure survival probabilities satisfy the
following differential conditions [1]:

Condition 3.2: The survival probabilities of cyber and
physical sub-infrastructures are given by

∂PC

∂xc

= hC (PC , xc, xp, yc, yp) = ΛC(xc, xp, yc, yp)PC

∂PP

∂xp

= hP (PP , xc, xp, yc, yp) = ΛP (xc, xp, yc, yp)PP

respectively. �

We now consider that the effects of reinforcements and
attacks can be “separated” at the sub-infrastructure level by
utilizing the following conditions ∂PP

∂zc
≈ 0 and ∂PC

∂zp
≈ 0 for

z = x, y. Intuitively, these conditions indicate that only the
direct cyber (physical) impacts are dominant at the level of cy-
ber (physical) sub-infrastructure. For example, cyber reinforce-
ments contribute to improving the cyber sub-infrastructure but
not directly to physical sub-infrastructure. However, both PC

and PP capture the correlations between cyber and physical
components through ΛC(xc, xp, yc, yp) and ΛP (xc, xp, yc, yp),
respectively. We capture the sub-infrastructure correlations for
the provider using the following condition from [1].
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Condition 3.3: For PCP in Condition 3.1, we have

∂PCP

∂xc

≈

[

1 + (1 − PP )
∂f

∂PC

]

∂PC

∂xc

(1)

∂PCP

∂xp

≈

[

1 − f(PC , PP ) + (1 − PP )
∂f

∂PP

]

∂PP

∂xp

(2)

for the provider. �

IV. GAME-THEORETIC ANALYSIS

In this section, we first present a simple example that
illustrates the non-monotonic dependence of the survival
probaibilty of cyber-physical infrastructure PCP on some sys-
tem paramters. We then present general results that characteize
the Nash equilibrium and the sensitivity functions of suvival
probabilties of cyber and physical sub-infrastructures.

A. Dependence of Infrastructure Survival Probability

We consider a simple case of a network testbed with
NS = 4 switches at each site with the number of sites ranging
from 2 to 100. Each site is connected to the wide-area network
via a single fiber connection, and thus its failure rate is am-
plified such that f(PC , PP ) = NS(1− PP ). We consider two
scenarios: (a) all components are reinforced, and (b) only half
of the randomly chosen components are reinforced. We assume
that the component failures are statistically independent, and
the probability that a reinforced component survives is 0.95,
and that a non-reinforced component survives is 0.5.
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Fig. 1. Probability of survival of cyber-physical infrastructure PCP as a
function of the number of sites.

As the number of sites is increased, PCP monotonically
increases for case (a) as shown in Figure 1. However, for case
(b), PCP initially decreases and then exponentially increases,
and such non-monotonic dependence in general requires a
closer examination of the reinforcement strategies at the Nash
equilibrium. Nevertheless, there are several other monotonic
relationships between the parameters of infrastructure. As
shown in Figure 2, the probability of survival of the physical
sub-infrastructure PC is generally higher when all components
are reinforced, and it decreases exponentially with increase in
number of fiber links. Together, these results indicate that even
under very simple conditions (namely, statistical independence
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Fig. 2. Probability of physical sub-infrastructure survival PP as a function
of number of fiber links reinforced.

of component failures and simple network connectivity), the
underlying dependences are non-monotonic, and hence simple
reinforcement strategies are not sufficient to address the cyber-
phyisical dependencies of these infrastructures.

B. Nash Equilibrium Conditions

At Nash Equilibrium (NE) of this game, the attack and rein-
forcement actions, given by (yc, yp) and (xc, xp) respectively,
represent the attempts of attacker and provider to minimize the
respective expected costs based on their individual information
(from which neither has a motivation to unilaterally deviate.

Partial derivatives for the provider’s disutility function are
calculated as follows

∂UD×

∂xc

= −
∂PCP

∂xc

CD(xc, xp) + CCD[1 − PCP ]

∂UD×

∂xp

= −
∂PCP

∂xp

CD(xc, xp) + CPD[1 − PCP ]

Equating these to zero, we get Nash Equilibrium conditions

∂PS

∂xc

=
CCD[1 − PCP ]

CD(xc, xp)
and

∂PS

∂xp

=
CPD[1 − PCP ]

CD(xc, xp)

The NE conditions highlight the dependence of PCP on
cost terms, correlation function, and sub-infrastructure survival
probabilities and their partial derivatives. In particular, the
provider strategy is derived by combining both cyber and phys-
ical parameters and their correlations. We can also estimate
the sensitivity functions of PCP using the partial derivatives
of parameters CA(·), CD(·), PC , PP , and f(PC , PP ) that
indicate their relative importance.

We apply this method to study simplified models of net-
work testbed infrastructures such as Global Environment for
Network Innovations (GENI) [16] and UltraScienceNet [17]
that provide users with network configurations or slices con-
sisting of connections, switches, routers and/or host systems.
We also consider simplified models of cyber infrastructures
for smart energy grids that consist of smart meters, SCADA
systems, power lines and generators [18]. In these examples,
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we derive the NE conditions and sensitivity functions under
certain statistical independence conditions on component fail-
ures.

C. System Survival Dependence on Players’ Cost

The disutility function of the provider can be written as

UD× = [QCP (xc, xp, yc, yp)]CD(xc, xp),

for QCP = 1 − PCP , wherein the initial infrastructure
cost is represented by C0 = CD(0, 0) > 0. Even with no
reinforcements, this cost will be wasted if the infrastructure
does not survive, and the consideration of this cost precludes
the degenerate solution at xc = 0 and xp = 0. At Nash
equilibrium, we have

∂UD×

∂xc

=
∂QCP

∂xc

CD(xc, xp) +
∂CD(xc, xp)

∂xc

QCP = 0,

which leads to the partial differential condition

∂QCP

∂xc

=

−∂CD(xc,xp)
∂xc

CD(xc, xp)
QCP .

A sensitivity-based estimate P̂CP for the system survival
probability PCP can be obtained using an approxima-
tion to this condition. Consider the approximate solution

Q̂CP = qde
−pd[ln CD(xc,xp)] = 1 − P̂CP , which is parameter-

ized by the scalars qd and pd. As pd �→ 1, this differential

relationship of Q̂CP approaches that of QCP , that is, the
solution satisfies

∂Q̂CP

∂xc

= −qd

∂CD(xc,xp)
∂xc

CD(xc, xp)
Q̂CP ,

which in turn approaches the NE condition as qd �→ 1. This
approximation

P̂CP ;D = 1 − qde
−pd[ln CD(xc,xp)] (3)

qualitatively shows the dependence of system survival on the
provider’s cost with the underlying cyber-physical correlations
absorbed by the normalization constant qd.

The disutility function of the attacker is given by

UA× = [PCP (xc, xp, yc, yp)]CA(xc, xp).

To avoid the degenerate solution, we have assumed that at least
one component is eventually attacked such that yc + yp ≥ 1.
By using the above approach we obtain the following similar
approximation for the attacker,

P̂CP ;A = qae−pa[ln CA(yc,yp)],

which shows the qualitative effect of the attacker’s cost on the
system survival with the underlying cyber-physical correlations
absorbed by the normalization constant qa.

D. NE Sensitivity Functions

We now derive sensitivity-based approximations for PC

and PP at NE using the partial derivatives of the cost and fail-
ure correlation function to obtain qualitative information about
their sensitivities to different parameters from the provider’s
perspective.

Theorem 4.1: Under Conditions 3.1, 3.2 and 3.3, an esti-
mate of the survival probability of physical sub-infrastructure,

for ∂f
∂PP

�= 0, is

P̂P ;D (xc, xp, yc, yp) =
1 − f (PC , PP ) + ∂f

∂PP

2 ∂f
∂PP

±

√

√

√

√

(

1 − f (PC , PP ) + ∂f
∂PP

2 ∂f
∂PP

)2

−

∂CD

∂xp
(1 − P̂CP ;D)

CDΛP (xc, xp, yc, yp)
∂f

∂PP

,

and, for ∂f
∂PP

= 0, is

P̂P ;D (xc, xp, yc, yp) =

∂CD

∂xp
(1 − P̂CP ;D)

CDΛP (xc, xp, yc, yp) [1 − f (PC , PP )]
.

An estimate of the survival probability of cyber sub-
infrastructure is

P̂C;D (xc, xp, yc, yp)

=
∂CD

∂xc
(1 − P̂CP ;D)

CDΛC(xc, xp, yc, yp)
[

1 + (1 − P̂P ;D) ∂f
∂PC

] .

Proof: At NE, we have

∂PCP

∂xc

=
CCD[1 − PCP ]

CD(xc, xp)
and

∂PCP

∂xp

=
CPD[1 − PCP ]

CD(xc, xp)
.

By using the formulae in Condition 3.3, we have
[

1 + (1 − PP )
∂f

∂PC

]

∂PC

∂xc

=
CCD[1 − PCP ]

CD(xc, xp)
,

[

1 − f(PC , PP ) + (1 − PP )
∂f

∂PP

]

∂PP

∂xp

=
CPD[1 − PCP ]

CD(xc, xp)
.

We now substitute expressions for ∂PC

∂xc
and ∂PP

∂xp
based on

Condition 3.2, and obtain the system of equations:
[

1 + (1 − PP )
∂f

∂PC

]

PC =
CCD[1 − PCP ]

ΛCCD(xc, xp)
, (4)

[

1 − f(PC , PP ) + (1 − PP )
∂f

∂PP

]

PP =
CPD[1 − PCP ]

ΛCCD(xc, xp)
.

(5)
The expression for P̂P ;D is obtained by solving for PP using

the quadratic Eq. 5, and the expression for P̂C;D follows from
Eq. 4. �

The expression P̂P ;D (xc, xp, yc, yp) shows the dependence
on both f(·) and its partial derivatives with respect to PP , and
the partial derivative of CD with respect to xp; it also depends
on the cost factor CD, ΛP and PCP as expected. Its depen-
dence on PC is implicit through the failure correlation function
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f(PC , PP ). The qualitative behavior of P̂C;D (xc, xp, yc, yp)
is quite similar with respect to CD but its dependence on PP

is also through f . And, they both are affected by ΛC(·) and
ΛP (·), and each of them in turn depends on the number of
both cyber and physical component attacks and reinforcements.

Thus, the estimates P̂P ;D and P̂C;D reflect the correlations
between the sub-infrastructures explicitly through f , as well
as those captured by the survival probabilities of individual
sub-infrastructures by themselves.

E. Comparison with Sum-Form Utility Functions

We have seen from Section IV-A that by using the limiting
approximation with pd = 1 and qd = 1 in Eq. 3, we obtain
the approximation

P̂CP ;D = 1 −
1

CD(xc, xp)

By substituting this term in P̂P ;D (xc, xp, yc, yp) of Theorem
4.1, we obtain the following:

P̂P ;D (xc, xp, yc, yp) =
1 − f (PC , PP ) + ∂f

∂PP

2 ∂f
∂PP

±

√

√

√

√

(

1 − f (PC , PP ) + ∂f
∂PP

2 ∂f
∂PP

)2

−

∂CD

∂xp

C2
DΛP (xc, xp, yc, yp)

∂f
∂PP

We now compare it with the corresponding expression of
the sum-form given by

P̂P ;D (xc, xp, yc, yp) =
1 − f (PC , PP ) + ∂f

∂PP

2 ∂f
∂PP

±

√

√

√

√

(

1 − f (PC , PP ) + ∂f
∂PP

2 ∂f
∂PP

)2

−

∂CD

∂xp

gDΛP (xc, xp, yc, yp)
∂f

∂PP

These two expressions for P̂P ;D (xc, xp, yc, yp) are strik-
ingly similar in that gD of the sum-form is simply replaced
by C2

D in the product form. Such similarity is not apparent
from the formulation since the sum-form appears to account
for two separate terms namely cost and resilience, whereas
the product-form more closely combines the two. However,
despite the similarity, these two quantities have opposite effects

on P̂CP ;D, namely, increase in gD is qualitatively similar to
decrease in C2

D, since the utility functions are maximized in
the sum-form compared to the minimization in the product-

form. Also, due to the presence of power 2, P̂CP ;D is more
sensitive to CD compared to gD.

V. SPECIAL CASES OF INFRASTRUCTURE MODELS

In this section, we present special cases wherein simpler
forms of results of Theorem 4.1 can be derived.

A. Linear From

For the special case of the linear form of the failure correla-
tion function (Section III), we first derive a simplified version
of the Condition 3.3. Then, by substituting the expression for
the correlation coefficients in Eq. 1 we obtain

∂PCP

∂xc

=

[

1 + (1 − PP )
∂ (aC(1 − PC) + bC)

∂PC

]

∂PC

∂xc

= [1 − aC + aCPP ]
∂PC

∂xc

Since we have considered the effects of reinforcements and
attacks can be “separated” at the sub-infrastructure level, the
probability of survival of cyber infrastructure does not depend
on the probability of survival of physical infrastructure and
vice versa. Also, by substituting the expression for correlation
coefficients in Eq. 2 we obtain

∂PCP

∂xp

=

[

1 − aC(1 − PC) − bC + (1 − PP )
∂ (aC(1 − PC) + bC)

∂PP

]

∂PP

∂xp

= [1 − aC − bC + aCPC ]
∂PP

∂xp

Thus, we have much simpler dependences of PCP on PC and
PP compared to the general forms in Theorem 4.1.

B. OR Systems

In the special case of OR systems [1], the infrastructure
will fail if either of the physical or cyber sub-infrastructures
fails under the condition PC̄∪P̄ = PC̄ + PP̄ , which requires
that PC̄∩P̄ = 0, that is, the simultaneous failure of cyber and
physical sub-infrastructures is not possible. While practical
interpretations or verifications of these conditions are not
apparent, these systems are of interest from an analytical
perspective. In particular, we have a much simpler form of
Condition 3.3 for these systems given by ∂PCP

∂xc
≈ ∂PC

∂xc
and

∂PCP

∂xp
≈ ∂PP

∂xp
[1]. At NE, using the limiting approximation for

P̂CP ;D we have

∂PC

∂xc

=
1

C2
D

∂CD

∂xc

and
∂PP

∂xp

=
1

C2
D

∂CD

∂xp

.

Using Condition 3.2, we obtain the following estimates for the
survival probabilities of cyber and physical sub-infrastructures:

P̃C;D (xc, xp, yc, yp) =
∂CD

∂xc

C2
DΛC(xc, xp, yc, yp)

,

P̃P ;D (xc, xp, yc, yp) =

∂CD

∂xp

C2
DΛP (xc, xp, yc, yp)

.

These estimates do not involve f(PC , PP ) – the cyber-physical
interactions are captured by ΛC(·) and ΛP (·) at the component

level instead. Both survival probability estimates P̃C;D and

P̃P ;D are proportional to the corresponding cost derivatives
and inversely proportional to the square of the cost term CD.
However, such seemingly counter-intuitive trend applies only
to the set of Nash equilibria and not to the overall system
behavior.
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Compared to OR Systems, there are significant
cyber-physical interactions in the general case at the

sub-infrastructure level in both P̂P ;D (xc, xp, yc, yp) and

P̂C;D (xc, xp, yc, yp) as seen in Theorem 4.1.

C. Statistical Independence

Condition 3.2 is satisfied under the special case of Statisti-
cal Independence as defined in Section III. Let pC|R, pC|N and
pP |R, pP |N denote the conditional probability of survival of a
cyber or physical component, respectively where ‘R’ denotes
reinforcement and ‘N’ denotes no reinforcement.

Under the assumption of statistical independence of com-
ponent failures, the probability that the cyber and physical
components survive the attacks are given by [1]:

PC = pxc

C|RpNC−xc

C|N and PP = p
xp

P |Rp
NP −xp

P |N

respectively.

The partial differentials are estimated using a Lemma from
[1] that leads to:

∂PC

∂xc

= PC ln

(

pC|R

pC|N

)

and
∂PP

∂xp

= PP ln

(

pP |R

pP |N

)

,

which provide simpler expressions for the terms used in
formulae in Theorem 4.1.

VI. APPLICATIONS

We apply the analytical results to simplified models of
network testbed infrastructures and smart grid cyber infras-
tructures in this section. In both cases, we attempt to capture
the provider’s perspective of primarily keeping the system
operational. In these examples, we derive the NE conditions
and sensitivity functions under certain statistical independence
conditions on component failures.

A. Testbeds for Network Experiments

Network infrastructure testbeds have been established by
the research community to support the development and testing
of new network configurations, technologies and applications.
For example, they enable the researches to setup novel network
configurations and connections, and test the performance of
new devices, protocols and network applications. In cases
such as GENI [16] and USN [17], these testbeds provide
connections that span the country and beyond; they may
connect the local networks consisting of switches, routers
and/or host systems at individual sites over the long-haul
backbone networks. In particular, certain GENI slices provide
entire infrastructure of backbone and local area networks, and
certain USN configurations provide networking devices and
end hosts. There testbed infrastructures are different from the
traditional network infrastructures in some ways: the devices
tend to be more dynamically configured, and each site may
house multiple types of devices such as routers, switches and
hosts. Also, because of their research-oriented objectives, they
do not have revenue measures that are common in commercial
network infrastructures. As such, the provider may aim at
keeping the system operational against possible attacks with
least cost. In terms of game-theoretic models, these infrastruc-
ture models are somewhat more complex than simplified cloud

computing infrastructures in [1] in that these sites consist of
more networking devices.

A simplified model of a network testbed consists of mul-
tiple sites, each with NN network devices and NS servers.
Assess to the site networks may be blocked by cyber attacks
on gateway routers, and communication fiber routes to the
sites may be physically cut. Similar effect may also result
from multiple cyber attacks on the network devices that
effectively disconnect the site network. Reinforcements to
these components may be in the form of replicated stand-
by servers, switches and routers, and redundant, physically
separate fiber routes. Since a physical fiber cut disconnects
all network devices and servers at the site from the network,
to a first-order approximation, we consider f (PC , PP ) =
(NN +NS)(1−PP ), which indicates the multiplicative effect
of physical attacks. We now consider that the attacker and
provider choose the components according to the uniform
distribution. Then, there are [yp − xp]+ non-reinforced fiber
connections, where [·]+ represent the non-negative part, that
is, [x]+ = x for x > 0, and [x]+ = 0 otherwise. Then,
the probability that a cyber-reinforced component survives the
fiber attacks is estimated by

pC|R =
gC

1 + (NN + NS)[yp − xp]+
,

where 0 ≤ gC ≤ 1 is appropriately chosen. This estimate
reflects that a random attack on a cyber component is more
likely to be effective for higher values of [yp − xp]+. If a
cyber component is not reinforced, it can be brought down by
a direct cyber attack, or indirectly through a fiber attack. Thus,
we estimate the survival probability of a cyber component as

pC|N =
gC

1 + yc + (NN + NS)[yp − xp]+
,

which reflects the additional lowering of survival probability,
in inverse proportion to the level of cyber attack yc. Using
these formulae, we have [1]

ΛC(xp, yc, yp) = ln

(

1 +
yc

1 + (NN + NS)[yp − xp]+

)

,

which does not depend on xc.

B. Smart Grid Infrastructures

In some power grids, the cyber infrastructure of the trans-
mission and distribution network is operated by an independent
entity who is not directly involved in the retail market. Indeed,
it may be hard for such providers to accurately estimate the
total revenue from an operating network. On the other hand,
the deployment cost of the network is usually huge, so that
there is a strong incentive for the provider to protect the system
against attacks. There have been recent efforts to develop smart
grid technologies [18] that utilize cyber technologies to achieve
high levels of automation and adaptation of power systems.
We consider simplified models of such smart energy grids
that consist of smart meters, SCADA system, power lines and
generators.

We consider a simplified model of a power grid infrastruc-
ture controlled by a SCADA system using information fed with
a network of sensors monitoring the condition of each major
transmission and distribution line, related by communication
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sinks located at strategic locations for the best connectivity
of the sensors. We assume that each communication sink
relates information from sensors of NL lines. Each sink may
be disabled by a direct cyber attack, which will disrupt the
information flow to the SCADA system, and hence, the power
flow on all its NL lines. By using the reasoning analogous
to Example 1, we have PP̄ |C̄ = NL(1 − PC); then by

using the Bayes formula PC̄|P̄ = PP̄ |C̄PC̄/PP̄ , we have

f(PC , PP ) = NL(1−PC)2

(1−PP ) . We then estimate the survival

probability of reinforced smart grid communication system that
can be disconnected by yc cyber attacks, as

pP |R =
gP

1 + NL[yc − xc]+
,

where 0 ≤ gP ≤ 1 is appropriately chosen. Meanwhile, each
power line can be directly disrupted by physical means such
that it can be brought down if not reinforced, and the physical
sub-infrastructure is more likely to be unavailable if there are
more physical attacks, namely, higher yp. Thus, an attack on
a communication sink will have an amplified effect on power
lines compared to direct physical attacks such that

pP |N =
gP

1 + yp + NL[yc − xc]+

provides an estimate of the probability of survival of a non-
reinforced power line. Using the above formulae, we have

ΛP (xc, yc, yp) = ln

(

1 +
yp

1 + NL[yc − xc]+

)

,

which does not depend on xp.

VII. CONCLUSION

We considered simple models of critical infrastructures
consisting of discrete cyber and physical components. The
cyber-physical correlations in these systems may be exploited
to launch strategic component attacks that may degrade the
entire infrastructure. We modeled such correlations using
conditional probabilities and first-order differential conditions.
By using an infrastructure resilience measure specified by
its survival probability, we have formulated a discrete game
between the provider and attacker. Their disutility functions are
the products of survival (or failure) probability and cost terms
expressed in terms of the number of components attacked and
reinforced by the attacker and provider, respectively. The Nash
Equilibrium conditions of the game provide the sensitivity
functions that clearly show the dependence of infrastructure
resilience on the cost terms, correlation function and sub-
infrastructure survival probabilities.

The product-form results presented here complement sum-
form results from previous works, and more closely represent
the considerations of a class of infrastructure operators. The
model is flexible and applicable to numerous practical cases.
The application of the framework is neither limited to the
examples described in this paper, nor to the computer security
modeling. The basic framework can be utilized to solve prob-
lems in which the game theoretical models can be formulated
for modeling strategic interactions between rational players.
This includes a wide range of problems from political and
economic analysis to perspective and normative analysis.

Applications of the analytical results presented here to
more detailed models of network and smart grid infrastructures
would be of future interest. Also, it would be of future interest
to extend this formulation to account for different types of
cyber and physical components, which may represent different
benefits and costs to the provider and attacker. In these
cases, the utility functions must capture the specific effects of
inidividual components such as identifying critical components
(for example, core connections of a network testbed) as well
as critical correlations between certain components.
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