
 

 
Abstract— A distributed net-centric environment consist of a 

large variety of data fusion nodes, where each node represents a 
sensor, software program, machine, human operator, warfighter, 
or a combat unit. Fusion nodes can be conceptualized as 
intelligent autonomous agents that communicate, coordinate, and 
cooperate with each other in order to improve their local 
situational awareness (SA), and to assess the situation of the 
operational environment as a whole. In this paper, we describe 
how we model this net-centric SA problem using a distributed 
belief propagation paradigm. A local fusion node maintains the 
joint state of the set of variables modeling a local SA task at hand 
using Bayesian network (BN) fragments. Local fusion nodes 
communicate their beliefs and coordinate with each other to 
update their local estimates of the situation and contribute to the 
global SA of the environment. We have implemented the 
propagation paradigm to determine threat out of terrorist dirty 
bombs with agents searching unstructured intelligence reports 
for evidence and assessing local situations via BN fragments. The 
paradigm provides an important foundation of our company’s 
cutting-edge predictive analytics platforms offering to solve 
enterprise distributed big data search and analytics problems.  

 
Index Terms—Net-centric environment; high-level fusion; 

situation assessment; distributed belief propagation; Bayesian 
networks. 

 

I. INTRODUCTION 
The concept of distributed fusion [12] refers to 

decentralized processing environments consisting of 
autonomous sensor nodes, and additional processing nodes 
without sensors, if necessary, to facilitate message 
communication, data storage, relaying, information 
aggregation, and assets scheduling. Some of the advantages of 
distributed fusion are reduced communication bandwidth, 
distribution of processing load, aggregation of distributed and 
proprietary knowledge sources, and improved system 
survivability from a single point failure. The distributed fusion 
concept naturally fits within the net-centric multi-agent 
paradigm[17]. In this paper, we describe a framework for 
distributed high-level fusion developed by the author and 
presented earlier in chapter 10 of [12]. The main development 
since then is a robust implementation of the framework, 
making use of both structured and unstructured data sources 
stored in traditional relational databases and cloud. 
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As a concrete example of distributed fusion, consider the 
decentralized processing environment as shown in Figure 1 
(left). In this example, we assume there is a high-value target 
within a region of interest, and that the designated areas A and 
B surrounding the target are considered to be the most 
vulnerable. These two areas must be under surveillance in 
order to detect any probing activities, which indicate a 
possible attack threat. The sensor coverage in areas A and B, 
shown in grey, is by an infrared sensor (MASINT) and a video 
camera (IMINT), respectively. In addition, a human observer 
(HUMINT) is watching the area in common between A and B. 
There are two local fusion centers for the two areas to detect 
any probing activity. The infrared sensor has wireless 
connectivity with the local fusion center for area A, whereas 
the video camera has wired connectivity with the local fusion 
center for area B for streaming video. Moreover, the human 
observer communicates wirelessly with both local fusion 
centers. Each of the two local centers fuses the sensor data it 
receives in order to identify any possible probing activity. The 
centers then pass their assessments (i.e., higher-level 
abstraction, rather than raw sensor information, thus saving 
bandwidth) to another fusion center that assesses the overall 
threat level, based on the reports of probing activities and 
other relevant prior contextual information.  

 
Figure 1: (left) An example distributed fusion environment; (right) A 

centralized BN model for situation assessment 

In a centralized fusion environment, where observations 
from IMINT, HUMINT, and MASINT are gathered in one 
place and fused, a BN model, such as the one in Figure 1 
(right), can be used for an overall SA. This model handles 
dependence among sensors and fusion centers via their 
representation in nodes and interrelationships. A probing 
activity at an area will be observed by those sensors covering 
the area, and the lower half of the BN models this. For 
example, MASINT and HUMINT reports will be generated 
due to a probing activity at area A. Similarly, IMINT and 
HUMINT reports will be generated due to a probing activity at 
area B. The upper half of the BN models the threat of an 
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attack based on the probing activities at areas A and B, 
together with other contextual information. 

 
Figure 2: Distributed parts of the BN models 

In a decentralized environment [27], as illustrated in Figure 
2, each of the three fusion centers contains only a fragment of 
the above BN model. Local fusion centers A and B assess 
probing activities based on their local model fragments, and 
send their assessments to the global fusion center via 
messages. The global fusion center then uses its own models 
to determine the overall attack threat. If the same HUMINT 
report is received by both local fusion centers, the process has 
to ensure that this common information is used only once; 
otherwise, there will be a higher-than-actual level of support 
for a threat to be determined by the global fusion model. This 
is called the data incest problem in a distributed fusion 
environment, which is the result of repeated use of identical 
information. Pedigree needs to be traced, not only to identify 
common information, but also to assign appropriate trust and 
confidence to data sources. An information graph [18], for 
example, allows common prior information to be found. 

For situation and threat assessment in a distributed net-
centric environment, each node is an agent representing 
[3][6][8] a sensor, software program, machine, human 
operator, warfighter, or a unit. A fusion node maintains the 
joint state of the set of variables modeling a local SA task at 
hand. Informally, the set of variables maintained by a fusion 
node is a clique (maximal sets of variables that are all pairwise 
linked), and the set of cliques in the environment together 
form a clique network to be transformed into a junction tree, 
where the nodes are the cliques. Thus the cliques of a junction 
tree are maintained by local fusion nodes within the 
environment. Local fusion nodes communicate and coordinate 
with each other to improve their local estimates of the 
situation, avoiding the repeated use of identical information. 

A junction tree can also be obtained by transforming [16] a 
Bayesian Belief Network (BN) [24][16][7] model representing 
a global SA model in the context of a mission, thereby 
contributing to the development of a Common Tactical Picture 
(CTP) of the mission via shared awareness. Each clique is 
maintained by a local fusion node. Inference on such a BN 
model for SA relies on evidence from individual local fusion 
nodes. We make use of the message-passing inference 
algorithm for junction trees that naturally fits within 
distributed NCW environments. A BN structure with nodes 
and links is a natural fit for distributing tasks in a NCW 

environment at various levels of abstraction and hierarchy. 
BNs have been applied extensively for centralized fusion (e.g., 
[28][4][21][26]) where domain variables are represented by 
nodes. 

II. RELATED WORK 
There are approaches along these lines, namely Distributed 

Perception Networks (DPN) [23] and Multiply Section 
Bayesian Networks (MSBN) [29], but the proposed approach 
leverages existing algorithms and reduces the overall message 
flow to save bandwidth. Please refer to [22] for a more 
detailed account of a junction tree-based distributed fusion 
algorithm along the lines of the one presented here. The 
algorithm presented later in the paper, in addition, optimizes 
the choice of junction tree to minimize the communication and 
computation required by inference. 

There is an abundance of work in the area of distributed 
agent-based target tracking and, more generally, in the area of 
distributed fusion. In general, a distributed processing 
architecture for estimation and fusion consists of multiple 
processing agents. Here we mention only some of them. 

Horling et al. [13] developed an approach to real-time 
distributed tracking, where the environment is partitioned into 
sectors to reduce the level of potential interaction between 
agents. Hughes and Lewis [14] investigated the Track-Before-
Detect (identify tracks before applying thresholds) problem 
using multiple intelligent software agents. Martin and Chang 
[19] developed a tree based distributed data fusion method for 
ad hoc networks, where a collection of agents share and fuse 
data in an ad hoc manner for estimation and decision making. 

Graphical models and graphical Bayesian belief networks 
have been applied extensively by the fusion community to 
perform estimation [2] and situation assessment [4]. A 
network structure, modeling a situation assessment problem, 
with nodes and links is a natural fit for distributing tasks at 
various levels of abstraction and hierarchy, where nodes 
represent agents with message flows between agents along the 
links. An approach along these lines has been adopted by 
Pavlin et al. [23]. Mastrogiovanni et al. [20] developed a 
framework for collaborating agents for distributed knowledge 
representation and data fusion based on the idea of an 
ecosystem of interacting artificial entities. Mobile agents [5] 
have also been employed for distributed fusion. 

Mobile agents are able to travel between nodes of a network 
in order to make use of resources that are not locally available. 
Mobile agents enable the execution code to be moved to the 
data sites, thus save the network bandwidth and provide an 
effective way to overcome network latency. Qi et al. [25] 
developed an infrastructure for Mobile-agent-based 
Distributed Sensor Networks (MADSNs) for multisensor data 
fusion. Bai et al. [1] developed a Mobile Agent-Based 
Distributed Fusion (MADFUSION) system for decision 
making in Level 2 Fusion. The system environment consists of 
a peer-to-peer ad-hoc network in which information may be 
dynamically distributed and collected via publish/subscribe 
functionality. Jameson’s Grapevine architecture [15] for data 
fusion integrates intelligent agent technology, where an agent 
generates the information needs of the peer platform it 
represents. Gerken et al. [11] embedded intelligent agents into 
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the Mobile Commander’s Associate (MCA) decision aiding 
system to improve the situational awareness of the commander 
by monitoring and alerting based on the information gathered. 

III. IMPLEMENTATION 
Our approach to complex analytics and fusion1 is to make 

use of a computational model and its mobile agent-based 
distributed belief propagation presented in this paper. Figure 3 
presents a Bayesian network model to help in assessing the 
level of a dirty-bomb threat from a rogue nation. In our model, 
the site maintaining the root node (for example) continually 
updates the state (i.e., the probability distribution) of an 
overall threat based on evidence it receives from its child 
node, representing terrorism indication and warning, which in 
turn receives evidence of indications and warnings from its 
four children, namely, planning, acquisition, making, and 
deployment. The state of these nodes can be maintained by 
various sites based on the evidence received from their 
children nodes. This hierarchical breakdown process 
continues, and model fragments are determined. A fragment is 
defined here as a connected sub-network of the entire belief 
network model. For the purpose of our demonstration we 
assume all the fragments are two levels deep as shown in 
Figure 3. 

 
Figure 3: Some fragmented models distributed across remote sites 

The specific strategy for evaluating a fragment at a remote 
site is determined based on the site’s capability of 
accumulating evidence from multiple sources. Figure 4 shows 
the current state of the interface for controlling and monitoring 
the distributed execution, with nine list components for the 
following nine purposes respectively: 

1. Text area where the analyst poses a full or partial 
analytics query in key words. 

2. Lists all the model fragments stored in a directory such as 
the ones from the BN in Figure 3, filters the models based 
on the analyst query, and lets user select one. 

3. The selected dependent model fragments based on the 
user selection that are to be distributed and maintained 
across remote sites.  

4. Publishes available http addresses of the remote sites 
running Aglets servers to host computation. 

 
1 Analytics and data fusion are two sides of the same coin (Das, 2014) 

5. Lists search nodes of the fragments (same as the list of 
model fragments above). 

6. Provides probability distributions corresponding to the 
search nodes as model fragments. 

7. Graphically display a selected fragment from the library. 
8. Displays messages that are received and also the evidence 

that are found. 
9. Overall assessment of threat which is 0.25 based on 

evidence searched so far. 

Users can dispatch fragments individually by selecting a 
fragment from the area marked 3 to a remote site selected 
from the area marked 4 by pressing the Dispatch Agent button. 
Users can also dispatch all fragments at once just by pressing 
the Random Dispatch button. Evidence on a child node at a 
remote site can be set by selecting the node in the area marked 
6 and then by pressing the button Set Evidence. Various 
messages will be passed among fragments as described earlier 
in the section on complex analytics. These messages will be 
displayed in the area marked 8. The probability distributions 
of each child node will be updated in areas marked by 6. To 
start execution of the analytics model, a user dispatches all 
fragments at once by pressing the Random Dispatch button in 
the analytics interface. 

 
Figure 4: Distributed analytics interface 

IV. DISTRIBUTED FUSION ENVIRONMENTS 

 
Figure 5: A typical distributed fusion environment 
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As shown in Figure 5, a typical distributed fusion 
environment is likely to contain a variety of fusion nodes that 
do a variety of tasks: 

 Process observations generated from a cluster of 
heterogeneous sensors (e.g., the local fusion centers A 
and B in Figure 1, and nodes labeled 5 and 9 in Figure 5).  Process observations generated from a single sensor (e.g., 
nodes labeled 11, 12, and 13 in Figure 5).  Perform a task (e.g., Situation Assessment (SA) and 
Threat Assessment (TA), Course of Action (COA) 
generation, planning and scheduling, Common Tactical 
Picture (CTP) generation, collection management) based 
on information received from other sensors in the 
environment and from other information stored in 
databases (e.g., nodes labeled 1, 2, 3, 4, 6, 7, and 10 in 
Figure 5).  Relay observations generated from sensors to other nodes 
(e.g., the node labeled 8 in Figure 5). 

As shown in Figure 5, a fusion node receives values of 
some variables obtained either from sensor observations (X 
variables) or via information aggregation by other nodes (A 
variables). Such values can also be obtained from databases. 
For example, the fusion center labeled 6 receives values of the 
variables A2, X5, and X6 from the cluster fusion node labeled 
9, and values of the variable X3 from a database. Note that an 
arrow between two nodes indicates the flow of information in 
the direction of the arrow as opposed to a communication link. 
The existence of an arrow indicates the presence of at least a 
one-way communication link, though not necessarily a direct 
link, via some communication network route. For example, 
there is a one-way communication link from node 3 to node 1. 
A reverse communication link between these two nodes will 
be necessary in implementing our message-passing distributed 
fusion algorithm to be presented later. 

 
Figure 6: Network of distributed fusion nodes 

Each node (fusion center, cluster fusion, relay switch, or 
local fusion) in a distributed fusion environment has 
knowledge of the states of some variables, called local 
variables, as shown in Figure 6 (ignore red cross for now). For 
example, the fusion node labeled 6 has knowledge of the X 
variables X3, X5, and X6, and A variables A2 and A3. The 
node receives values of the variables A2, X5, and X6 from the 
node labeled 9, and the variable X3 from a database. The node 

generates values of the variable A3 via some information 
aggregation operation. On the other hand, fusion node 9 
receives measurements X4, X5, and X6 from a cluster of 
sensors and generates A2; fusion node 8 relays values of the 
variables X10, X1, and X12 to other nodes; and fusion node 
12 obtains measurements of X8 from a single sensor. 

There are four possible distributed fusion environments: 
centralized, hierarchical, peer-to-peer, and grid-based. In a 
centralized environment, only the sensors are distributed, 
sending their observations to a centralized fusion node. The 
centralized node combines the sensor information to perform 
tracking or SA. In a hierarchical environment, the fusion 
nodes are arranged in a hierarchy, with the higher-level nodes 
processing results from the lower-level nodes and possibly 
providing some feedback. The hierarchical architecture will be 
natural for applications where situations are assessed with an 
increasing level of abstraction along a command hierarchy, 
starting with the tracking of targets at the bottom level. 
Considerable savings in communication effort can be achieved 
in a hierarchical fusion environment. In both peer-to-peer and 
grid-based distributed environments, every node is capable of 
communicating with every other node. This internode 
communication is direct in the case of a peer-to-peer 
environment, but some form of “publish and subscribe” 
communication mechanism is required in a grid-based 
environment.  

V. ALGORITHM FOR DISTRIBUTED BELIEF PROPAGATION 
As mentioned in the introduction, there are two ways in 

which we can accomplish SA in a distributed environment: 1) 
each local fusion node maintains the state of a set of variables; 
2) there is a BN model for global SA. 

In the first case, we start with a distributed fusion 
environment such as the one shown in Figure 5. Our 
distributed SA framework in this case has four steps: 1) 
Network formation; 2) Spanning tree formation; 3) Junction 
tree formation; and 4) Message passing. The nodes of the 
sensor network first organize themselves into a network of 
fusion nodes, similar to the one shown in Figure 6. Each 
fusion node has partial knowledge of the whole environment. 
This network is then transformed into a spanning tree (a 
spanning tree of a connected, undirected graph, such as the 
one in Figure 6, is a tree composed of all the vertices and 
some or all of the edges of the graph), so that neighbor nodes 
establish high-quality connections. In addition, the spanning 
tree formation algorithm optimizes the communication 
required by inference in junction trees. The algorithm can 
recover from communication and node failures by 
regenerating the spanning tree. Figure 6 with (red crosses 
indicating link severed) describes a spanning tree obtained 
from the network in Figure 5. The decision to sever the link 
between nodes 4 and 6, as opposed to between nodes 3 and 6, 
can be mitigated using the communication bandwidth and 
reliability information in the cycle of nodes 1, 3, 6, and 4. 

Using pairwise communication-link information sent 
between neighbors in a spanning tree, the nodes compute the 
information necessary to transform the spanning tree into a 
junction tree for the inference problem. Finally, the inference 
problem is solved via message-passing on the junction tree. 
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During the formation of a spanning tree, each node chooses 
a set of neighbors, so that the nodes form a spanning tree 
where adjacent nodes have high-quality communication links. 
Each node’s clique is then determined as follows. If i is a node 
and j is a neighbor of i, then the variables reachable to j from i, 

ijR , are defined recursively as 

   ij i ki
k nbr i j

R D R
 

  

where iD  is the set of local variables of node i. A base case 
corresponds to a leaf node, which is simply a collection of a 
node’s local variables. If a node has two sets of reachable 
variables to two of its neighbors that both include some 
variable V, then the node must also carry V to satisfy the 
running intersection property of a junction tree. Formally, 
node i computes its clique iC  as 

 ,
i i ji ki

j k nbr i
j k

C D R R


   

A node i can also compute its separator set ij i jS C C 
with its neighbor j using reachable variables as ij i jiS C R  . 

 
Figure 7: A junction tree from the distributed fusion environment 

Figure 7 shows the junction tree obtained from the spanning 
tree in Figure 6. The variables reachable to a leaf node, for 
example, fusion node 9, are its local variables 2 4 5 6, , ,A X X X . 
The variables reachable to an intermediate node, for example, 
fusion node 1, from its neighboring nodes 3 and 4 are  

 31 1 2 3 1 2 3 4 5 6

41 3 5 6 7 7 8 9 10 11 12

, , , , , , , ,
, , , , , , , , ,

R A A A X X X X X X

R A A A A X X X X X X


  

The local variable of the fusion node 1 is  1 1 2 4 7, , ,D A A A A . Therefore, its clique is 

 1 1 2 3 4 7, , , ,C A A A A A . The formation of a suitable junction 
tree from a BN model for SA is the only part of our distributed 
fusion approach that is global in nature. 

A. Junction Tree Construction and Inference 
The moral graph of a BN is obtained by adding a link 

between any pair of variables with a common “child,” and 
dropping the directions of the original links in the BN. An 
undirected graph is triangulated if any cycle of length greater 
than 3 has a chord, that is, an edge joining two nonconsecutive 
nodes along the cycle. The nodes of a junction tree for a graph 
are the cliques in the graph (maximal sets of variables that are 
all pairwise linked).  

Once we have formed a junction tree from either of the 
above two cases, such as the one in Figure 7, a message-
passing algorithm then computes prior beliefs of the variables 
in the network via an initialization of the junction tree 
structure, followed by evidence propagation and 
marginalization. The algorithm can be run asynchronously on 
each node responding to changes in other  nodes’ states. Each 
time a node i receives a new separator variables message from 
a neighbor j, it recomputes its own clique and separator 
variables messages to all neighbors except j, and transmits 
them if they have changed from their previous values. Here we 
briefly discuss the algorithm, and how to handle evidence by 
computing the posterior beliefs of the variables in the network. 

A junction tree maintains a joint probability distribution at 
each node, cluster, or separator set in terms of a belief 
potential, which is a function that maps each instantiation of 
the set of variables in the node into a real number. The belief 
potential of a set of variables X will be denoted as X , and 

 X x  is the number onto which the belief potential maps x. 
The probability distribution of a set of variables X is just the 
special case of a potential whose elements add up to 1. In 
other words,    X 1

x x
x p x

 
  

X X
 

The marginalization and multiplication operations on 
potentials are defined in a manner similar to the same 
operations on probability distributions. 

Belief potentials encode the joint distribution  p X  of the 
BN according to the following: 

  C

S

i

j

i

j

p

 X  

where Ci
  and S j

  are the cluster and separator set 
potentials, respectively. We have the following joint 
distribution for the junction tree in Figure 7: 

  1 2 13

13 14 24 35 12 13

1 9 1 12
S S S S S

...
,..., , ,...,

...
C C Cp A A X X
  

      

where iC  represents the variable in clique i and 

ij i jS C C   represents the separator set between nodes i and 
j. It is imperative that a cluster potential agrees with its 
neighboring separator sets on the variables in common, up to 
marginalization. This imperative is formalized by the concept 
of local consistency. A junction tree is locally consistent if, for 
each cluster C and neighboring separator set S, the following 
holds: C S

C\S
  . To start initialization, for each cluster C 

and separator set S, set the following: C S1, 1   . Then 
assign each variable X to a cluster C that contains X and its 
parents  pa X . Then set the following: 

  C C |p X pa X  . 
When new evidence on a variable is entered into the tree, it 

becomes inconsistent and requires a global propagation to 
make it consistent. The posterior probabilities can be 
computed via marginalization and normalization from the 
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global propagation. If evidence on a variable is updated, the 
tree requires re-initialization. Next, we present initialization, 
normalization, and marginalization procedures for handling 
evidence. 

As before, to start initialization, for each cluster C and 
separator set S, set the following: C S1, 1   . Then 
assign each variable X to a cluster C that contains X and its 
parents  pa X , and then set the following:

  C C | , 1Xp X pa X    , where X  is the likelihood 
vector for the variable X. Now, perform the following steps for 
each piece of evidence on a variable X: 

 Encode the evidence on the variable as a likelihood new
X . 

 Identify a cluster C that contains X (e.g., one containing X 
and its parents). 

 Update as follows: ,
new

newX
C C X X

X

      

Now perform a global propagation using the two recursive 
procedures Collect Evidence and Distribute Evidence. Note 
that if the belief potential of one cluster C is modified, then it 
is sufficient to unmark all clusters and call only Distribute 
Evidence(C). The potential C  for each cluster C is now 

 ,p eC , where e denotes evidence incorporated into the tree. 

Now marginalize C into the variable as   C
C\{ }

,
X

p X e   . 

Compute posterior  |p X e  as follows: 

       , ,
|

,
X

p X e p X e
p X e

p e p X e
   . 

To update evidence for each variable X on which evidence 
has been obtained, first update its likelihood vector. Then 
initialize the junction tree by incorporating the observations. 
Finally, perform global propagation, marginalization, etc. 

VI. CONCLUSIONS 
We have presented an agent based approach to distributed 

belief propagation in net-centric environments. The approach 
provides the foundation of the company’s  predictive analytics 
products. We are currently enhancing the product with agent-
based approach distributed semantic search to find evidence to 
propagate in Bayesian network fragments. We are 
investigating the best way to make use of any types of local 
model fragments such as rules, neural networks, and decision 
trees. 

VII. REFERENCES 
[1] Bai, L., Landis, J., Salerno, J., Hinman, M., and Boulware, 

D. (2005). “Mobile Agent-Based Distributed Fusion 
(MADFUSION) System,” Proceeding of the 8th International 
conference on Information Fusion, Philadelphia. 

[2] Chong, C-Y and Mori, S. (2004). “Graphical models for 
nonlinear distributed estimation,” Proceedings of the Conference 
on Information Fusion, Vol. I, pp. 614–621. 

[3] Das, S. and Grecu, D. (2000). “COGENT: Cognitive agent to 
amplify human perception and cognition.” Proc. of the 4th Int. 
Conf. on Autonomous Agents, Barcelona, June. 

[4] Das, S., Grey, R., and Gonsalves, P. (2002a). “Situation 
assessment via Bayesian Belief Networks,” Proc. of the 5th Int. 
Conference on Information Fusion, Annapolis, Maryland. 

[5] Das, S., Shuster, K., and Wu, C. (2002b). “ACQUIRE: 
Agent-based Complex QUery and Information Retrieval 
Engine,” Proceedings of the 1st International Joint Conference 
on Autonomous Agents and Multi-Agent Systems, Bologna, Italy. 

[6] Das, S. (2008a). Foundations of Decision-Making Agents: 
Logic, Probability, and Modality, World Scientific/Imperial 
College Press, Singapore/London. 

[7] Das, S. (2008b). High-Level Data Fusion, Artech House, 
Norwood, MA. 

[8] Das, S. (2010). Agent-based information fusion, Guest 
Editorial, Information Fusion, Elsevier Science, Vol. 11, pp. 
216–219. 

[9] Das, S. (2014). “Computational Business Analytics,” 
Chapman & Hall/CRC Data Mining and Knowledge Discovery 
Series. 

[10] Durrant-Whyte, H. and Stevens, M. (2006). “Data Fusion in 
Decentralised Sensing Networks,” Australian Centre for Field 
Robotics, The University of Sydney NSW 2006, 
http://www.acfr.usyd.edu.au. 

[11] Gerken, P., Jameson, S., Sidharta, B., and Barton, J. (2003). 
“Improving Army Aviation Situational Awareness with Agent-
Based Data Discovery,” American Helicopter Society 59th 
Annual Forum, Phoenix, Arizona. 

[12] Hall, D., Liggins, M., and Chong, C. (eds) (2012).  
Distributed Data Fusion for Network-Centric Operations, CRC 
Press. 

[13] Horling, B.,   Vincent, R., Mailler, R., Shen, J., Becker, R, 
Rawlins, K., and Lesser, V. (2001). “Distributed sensor network 
for real time tracking,” Proceedings of the 5th International 
Conference on Autonomous Agents, Montreal, 417–424. 

[14] Hughes, E. and Lewis, M. (2009). “An Intelligent agent 
based Track-Before-Detect system applied to a range and 
velocity ambiguous radar,” Electro Magnetic Remote Sensing 
Defence Technology Center (EMRS DTC) Technical 
Conference. 

[15] Jameson, S. (2001). “Architectures for Distributed 
Information Fusion to Support Situation Awareness on the 
Digital Battlefield,” Proc. of the 4th Int. Conf. on Data Fusion, 
pp. 7–10. 

[16] Jensen. F. V. (2001). Bayesian Networks and Decision 
Graphs. Springer-Verlag, NY. 

[17] Lichtblau, D. E. (2004). “The critical role of intelligent 
software agents in enabling net-centric command and control,” 
Command and Control Research and Technology Symposium, 
The Power of Information Age Concepts and Technologies, San 
Diego, CA. 

[18] Liggins, M. E., Chong, C.-Y., Kadar, I., Alford, M. G., 
Vannicola, V., and Thomopoulos, S. (1997). “Distributed fusion 
architectures and algorithms for target tracking,” Proceedings of 
the IEEE, 85(1):95–107. 

[19] Martin, T. and Chang, K. (2005). “A distributed data fusion 
approach for mobile ad hoc networks,” Proceedings of the 8th 
Int. Conference on Information Fusion, pp. 25–28. 

[20] Mastrogiovanni, F., Sgorbissa A., and Zaccaria, R. (2007). 
“A Distributed Architecture for Symbolic Data Fusion,” 

1449



 

Proceedings of the 20th International Joint Conference on 
Artificial Intelligence (IJCAI), Hyderabad, India. 

[21] Mirmoeini, F. and Krishnamurthy, V. (2005). 
“Reconfigurable Bayesian networks for adaptive situation 
assessment in battlespace,” Proceedings of the IEEE Conference 
on Networking, Sensing and Control, pp. 810–815. 

[22] Paskin, M., and Guestrin, C. (2004). “Robust probabilistic 
inference in distributed systems,” Proceedings of the 20th 
Conference on Uncertainty in Artificial Intelligence (UAI), 
Banff, Canada. 

[23] Pavlin, G., de Oude, P., Maris, M., and Hood, T. (2006). 
“Distributed perception networks,” Proc. of the International 
Conference on Multisensor Fusion and Integration for 
Intelligent Systems, Heidelberg, Germany. 

[24] Pearl, J. (1988). Probabilistic Reasoning in Intelligent 
Systems: Networks of Plausible Inference, Morgan Kaufmann, 
San Mateo, CA. 

[25] Qi, H., Wang, X., Iyengar, S., and Chakrabarty, K. (2001). 
“Multisensor Data Fusion in Distributed Sensor Networks Using 
Mobile Agents,” Proceedings of 5th International Conference on 
Information Fusion,  pp. 11–16. 

[26] Su, X., Bai, P., Du, F., and Feng, Y. (2011). “Application of 
Bayesian Networks in Situation Assessment,” Intelligent 
Computing and Information Science, Communications in 
Computer and Information Science, Volume 134, Springer 
Berlin Heidelberg. 

[27] Waldock, A. and Nicholson, D. (2007). “Cooperative 
decentralised data fusion using probability collectives,” Proc. of 
the 1st Int. Work. on Agent Technology for Sensor Networks. 

[28] Wright, E., et al, T. (2002). “Multi-entity Bayesian networks 
for situation assessment,” Proceedings of the 5th International 
Conference on Information Fusion, pp. 804–811. 

[29] Xiang, Y., Poole, D., and Beddoes, M. (1993). “Multiply 
sectioned Bayesian networks and junction forests for large 
knowledge based systems,” Computational Intelligence, 
9(2):171–220, 1993. 
 

Dr. Subrata Das is the founder of Machine Analytics, a 
company in the Boston area providing 
business analytics and data fusion 
consultancy services and developing 
customized solutions for clients in 
government and industry. Subrata is 
also providing consulting services to 
several companies. Subrata’s technical 
expertise includes mathematical logics, 
probabilistic reasoning including 
Bayesian belief networks, symbolic 
argumentation, particle filtering, and a broad range of 

computational artificial intelligence techniques. 
Subrata recently spent two years in Grenoble, France, as the 

manager of over forty researchers in the document content 
laboratory at the Xerox European Research Centre. Subrata 
guided applied analytics research and development in the 
areas of unstructured data analyses, machine translation, 
image processing, and decision-making under uncertainty. 
Subrata was one of the five-members in the high-profile Xerox 
task force Knowledge Work 2020, alongside colleagues from 
the Palo Alto Research Center (PARC), to explore a strategic 
vision of the future of work. 

Before joining Xerox, Subrata held the Chief Scientist 
position at Charles River Analytics in Cambridge, MA, 
working on projects funded by DARAP, NASA, US Air 
Force, Army and Navy, ONR and AFRL. In the past, Subrata 
held research positions at Imperial College and Queen Mary 
and Westfield College, both part of the University of London. 
He received his PhD in Computer Science from Heriot-Watt 
University in Scotland, a Master’s in Mathematics from the 
University of Kolkata, and an M.Tech from the Indian 
Statistical Institute. 

Subrata has published many journal and conference articles. 
He is the author of the books Computational Business 
Analytics, published by CRC Press/Chapman and Hall, High-
Level Data Fusion, published by the Artech House, 
Foundations of Decision Making Agents: Logic, Modality, 
and Probability, published by the World Scientific/Imperial 
College Press, and Deductive Databases and Logic 
Programming, published by Addison-Wesley. Subrata has also 
co-authored the book entitled Safe and Sound: Artificial 
Intelligence in Hazardous Applications, published by the MIT 
Press. 

Subrata served as a member of the editorial board of the 
Information Fusion journal, published by Elsevier Science. He 
has been a regular contributor, a technical committee member, 
a panel member, and a tutorial lecturer at the International 
Conference on Information Fusion. Subrata has published 
many conference and journal articles, and conceived and 
developed the in-house tools aText, iDAS and RiskAid. 

 
 
 
    
    
 

 

1450


