


Abstract— A distributed net-centric environment consist of a

large variety of data fusion nodes, where each node represents a
sensor, software program, machine, human operator, warfighter,
or a combat unit. Fusion nodes can be conceptualized as
intelligent autonomous agents that communicate, coordinate, and
cooperate with each other in order to improve their local
situational awareness (SA), and to assess the situation of the
operational environment as a whole. In this paper, we describe
how we model this net-centric SA problem using a distributed
belief propagation paradigm. A local fusion node maintains the
joint state of the set of variables modeling a local SA task at hand
using Bayesian network (BN) fragments. Local fusion nodes
communicate their beliefs and coordinate with each other to
update their local estimates of the situation and contribute to the
global SA of the environment. We have implemented the
propagation paradigm to determine threat out of terrorist dirty
bombs with agents searching unstructured intelligence reports
for evidence and assessing local situations via BN fragments. The
paradigm provides an important foundation of our company’s
cutting-edge predictive analytics platforms offering to solve
enterprise distributed big data search and analytics problems.

Index Terms—Net-centric environment; high-level fusion;

situation assessment; distributed belief propagation; Bayesian
networks.

I. INTRODUCTION
The concept of distributed fusion [12] refers to

decentralized processing environments consisting of
autonomous sensor nodes, and additional processing nodes
without sensors, if necessary, to facilitate message
communication, data storage, relaying, information
aggregation, and assets scheduling. Some of the advantages of
distributed fusion are reduced communication bandwidth,
distribution of processing load, aggregation of distributed and
proprietary knowledge sources, and improved system
survivability from a single point failure. The distributed fusion
concept naturally fits within the net-centric multi-agent
paradigm[17]. In this paper, we describe a framework for
distributed high-level fusion developed by the author and
presented earlier in chapter 10 of [12]. The main development
since then is a robust implementation of the framework,
making use of both structured and unstructured data sources
stored in traditional relational databases and cloud.

This work was supported in part by the U.S. Department of Defense under

the Army Grant W15P7T-13-C-A752.
Subrata Das is with Machine Analytics, Cambridge, MA 02138, USA (e-

mail: sdas@machineanalytics.com).

As a concrete example of distributed fusion, consider the
decentralized processing environment as shown in Figure 1
(left). In this example, we assume there is a high-value target
within a region of interest, and that the designated areas A and
B surrounding the target are considered to be the most
vulnerable. These two areas must be under surveillance in
order to detect any probing activities, which indicate a
possible attack threat. The sensor coverage in areas A and B,
shown in grey, is by an infrared sensor (MASINT) and a video
camera (IMINT), respectively. In addition, a human observer
(HUMINT) is watching the area in common between A and B.
There are two local fusion centers for the two areas to detect
any probing activity. The infrared sensor has wireless
connectivity with the local fusion center for area A, whereas
the video camera has wired connectivity with the local fusion
center for area B for streaming video. Moreover, the human
observer communicates wirelessly with both local fusion
centers. Each of the two local centers fuses the sensor data it
receives in order to identify any possible probing activity. The
centers then pass their assessments (i.e., higher-level
abstraction, rather than raw sensor information, thus saving
bandwidth) to another fusion center that assesses the overall
threat level, based on the reports of probing activities and
other relevant prior contextual information.

Figure 1: (left) An example distributed fusion environment; (right) A

centralized BN model for situation assessment

In a centralized fusion environment, where observations
from IMINT, HUMINT, and MASINT are gathered in one
place and fused, a BN model, such as the one in Figure 1
(right), can be used for an overall SA. This model handles
dependence among sensors and fusion centers via their
representation in nodes and interrelationships. A probing
activity at an area will be observed by those sensors covering
the area, and the lower half of the BN models this. For
example, MASINT and HUMINT reports will be generated
due to a probing activity at area A. Similarly, IMINT and
HUMINT reports will be generated due to a probing activity at
area B. The upper half of the BN models the threat of an

Local Fusion
Center A

Infrared
Sensor

Local Fusion
Center B

Human
Observer

Video

Global Fusion
Center

Area A

Area B

High-Value
Target (T)

Attack
Threat

Probe at
Area A

Probe at
Area B

HUMINTMASINT IMINT

Context

Distributed Belief Propagation for Situation
Assessment in Net-Centric Environment

Subrata Das

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 1444

attack based on the probing activities at areas A and B,
together with other contextual information.

Figure 2: Distributed parts of the BN models

In a decentralized environment [27], as illustrated in Figure
2, each of the three fusion centers contains only a fragment of
the above BN model. Local fusion centers A and B assess
probing activities based on their local model fragments, and
send their assessments to the global fusion center via
messages. The global fusion center then uses its own models
to determine the overall attack threat. If the same HUMINT
report is received by both local fusion centers, the process has
to ensure that this common information is used only once;
otherwise, there will be a higher-than-actual level of support
for a threat to be determined by the global fusion model. This
is called the data incest problem in a distributed fusion
environment, which is the result of repeated use of identical
information. Pedigree needs to be traced, not only to identify
common information, but also to assign appropriate trust and
confidence to data sources. An information graph [18], for
example, allows common prior information to be found.

For situation and threat assessment in a distributed net-
centric environment, each node is an agent representing
[3][6][8] a sensor, software program, machine, human
operator, warfighter, or a unit. A fusion node maintains the
joint state of the set of variables modeling a local SA task at
hand. Informally, the set of variables maintained by a fusion
node is a clique (maximal sets of variables that are all pairwise
linked), and the set of cliques in the environment together
form a clique network to be transformed into a junction tree,
where the nodes are the cliques. Thus the cliques of a junction
tree are maintained by local fusion nodes within the
environment. Local fusion nodes communicate and coordinate
with each other to improve their local estimates of the
situation, avoiding the repeated use of identical information.

A junction tree can also be obtained by transforming [16] a
Bayesian Belief Network (BN) [24][16][7] model representing
a global SA model in the context of a mission, thereby
contributing to the development of a Common Tactical Picture
(CTP) of the mission via shared awareness. Each clique is
maintained by a local fusion node. Inference on such a BN
model for SA relies on evidence from individual local fusion
nodes. We make use of the message-passing inference
algorithm for junction trees that naturally fits within
distributed NCW environments. A BN structure with nodes
and links is a natural fit for distributing tasks in a NCW

environment at various levels of abstraction and hierarchy.
BNs have been applied extensively for centralized fusion (e.g.,
[28][4][21][26]) where domain variables are represented by
nodes.

II. RELATED WORK
There are approaches along these lines, namely Distributed

Perception Networks (DPN) [23] and Multiply Section
Bayesian Networks (MSBN) [29], but the proposed approach
leverages existing algorithms and reduces the overall message
flow to save bandwidth. Please refer to [22] for a more
detailed account of a junction tree-based distributed fusion
algorithm along the lines of the one presented here. The
algorithm presented later in the paper, in addition, optimizes
the choice of junction tree to minimize the communication and
computation required by inference.

There is an abundance of work in the area of distributed
agent-based target tracking and, more generally, in the area of
distributed fusion. In general, a distributed processing
architecture for estimation and fusion consists of multiple
processing agents. Here we mention only some of them.

Horling et al. [13] developed an approach to real-time
distributed tracking, where the environment is partitioned into
sectors to reduce the level of potential interaction between
agents. Hughes and Lewis [14] investigated the Track-Before-
Detect (identify tracks before applying thresholds) problem
using multiple intelligent software agents. Martin and Chang
[19] developed a tree based distributed data fusion method for
ad hoc networks, where a collection of agents share and fuse
data in an ad hoc manner for estimation and decision making.

Graphical models and graphical Bayesian belief networks
have been applied extensively by the fusion community to
perform estimation [2] and situation assessment [4]. A
network structure, modeling a situation assessment problem,
with nodes and links is a natural fit for distributing tasks at
various levels of abstraction and hierarchy, where nodes
represent agents with message flows between agents along the
links. An approach along these lines has been adopted by
Pavlin et al. [23]. Mastrogiovanni et al. [20] developed a
framework for collaborating agents for distributed knowledge
representation and data fusion based on the idea of an
ecosystem of interacting artificial entities. Mobile agents [5]
have also been employed for distributed fusion.

Mobile agents are able to travel between nodes of a network
in order to make use of resources that are not locally available.
Mobile agents enable the execution code to be moved to the
data sites, thus save the network bandwidth and provide an
effective way to overcome network latency. Qi et al. [25]
developed an infrastructure for Mobile-agent-based
Distributed Sensor Networks (MADSNs) for multisensor data
fusion. Bai et al. [1] developed a Mobile Agent-Based
Distributed Fusion (MADFUSION) system for decision
making in Level 2 Fusion. The system environment consists of
a peer-to-peer ad-hoc network in which information may be
dynamically distributed and collected via publish/subscribe
functionality. Jameson’s Grapevine architecture [15] for data
fusion integrates intelligent agent technology, where an agent
generates the information needs of the peer platform it
represents. Gerken et al. [11] embedded intelligent agents into

Attack
Threat

Probe at
Area A

Probe at
Area B

HUMINTMASINT IMINT

Context

Fragment A Fragment B

Fragment T

HUMINT

Probe at
Area A

Probe at
Area B

1445

the Mobile Commander’s Associate (MCA) decision aiding
system to improve the situational awareness of the commander
by monitoring and alerting based on the information gathered.

III. IMPLEMENTATION
Our approach to complex analytics and fusion1 is to make

use of a computational model and its mobile agent-based
distributed belief propagation presented in this paper. Figure 3
presents a Bayesian network model to help in assessing the
level of a dirty-bomb threat from a rogue nation. In our model,
the site maintaining the root node (for example) continually
updates the state (i.e., the probability distribution) of an
overall threat based on evidence it receives from its child
node, representing terrorism indication and warning, which in
turn receives evidence of indications and warnings from its
four children, namely, planning, acquisition, making, and
deployment. The state of these nodes can be maintained by
various sites based on the evidence received from their
children nodes. This hierarchical breakdown process
continues, and model fragments are determined. A fragment is
defined here as a connected sub-network of the entire belief
network model. For the purpose of our demonstration we
assume all the fragments are two levels deep as shown in
Figure 3.

Figure 3: Some fragmented models distributed across remote sites

The specific strategy for evaluating a fragment at a remote
site is determined based on the site’s capability of
accumulating evidence from multiple sources. Figure 4 shows
the current state of the interface for controlling and monitoring
the distributed execution, with nine list components for the
following nine purposes respectively:

1. Text area where the analyst poses a full or partial
analytics query in key words.

2. Lists all the model fragments stored in a directory such as
the ones from the BN in Figure 3, filters the models based
on the analyst query, and lets user select one.

3. The selected dependent model fragments based on the
user selection that are to be distributed and maintained
across remote sites.

4. Publishes available http addresses of the remote sites
running Aglets servers to host computation.

1 Analytics and data fusion are two sides of the same coin (Das, 2014)

5. Lists search nodes of the fragments (same as the list of
model fragments above).

6. Provides probability distributions corresponding to the
search nodes as model fragments.

7. Graphically display a selected fragment from the library.
8. Displays messages that are received and also the evidence

that are found.
9. Overall assessment of threat which is 0.25 based on

evidence searched so far.

Users can dispatch fragments individually by selecting a
fragment from the area marked 3 to a remote site selected
from the area marked 4 by pressing the Dispatch Agent button.
Users can also dispatch all fragments at once just by pressing
the Random Dispatch button. Evidence on a child node at a
remote site can be set by selecting the node in the area marked
6 and then by pressing the button Set Evidence. Various
messages will be passed among fragments as described earlier
in the section on complex analytics. These messages will be
displayed in the area marked 8. The probability distributions
of each child node will be updated in areas marked by 6. To
start execution of the analytics model, a user dispatches all
fragments at once by pressing the Random Dispatch button in
the analytics interface.

Figure 4: Distributed analytics interface

IV. DISTRIBUTED FUSION ENVIRONMENTS

Figure 5: A typical distributed fusion environment

2 3 4

5 6

7 8

91

Relay Switch

Sensor

Sensor

Sensor

Sensor

Cluster
Fusion

Local Fusion

Sensor
Fusion
Center

Fusion
Center

Sensor

Fusion
Center

Fusion
Center

Fusion
Center

Cluster
Fusion

Sensor

Fusion
Center

Local Fusion

Sensor

Local Fusion

Sensor

Sensor
SensorX1

X2

X5
X6

X4 X7 X8 X9

X3

X10

X11

X12

X10X11

Fusion
Center

A2X5X6

A1X2
A2X6

A1A2

A3

A5X9

A6X9

A7

X9

X11X12

A6

A6

Database

1

2

3 4

7
65

8

9

10

11 12 13

A4

1446

As shown in Figure 5, a typical distributed fusion
environment is likely to contain a variety of fusion nodes that
do a variety of tasks:

 Process observations generated from a cluster of
heterogeneous sensors (e.g., the local fusion centers A
and B in Figure 1, and nodes labeled 5 and 9 in Figure 5).  Process observations generated from a single sensor (e.g.,
nodes labeled 11, 12, and 13 in Figure 5).  Perform a task (e.g., Situation Assessment (SA) and
Threat Assessment (TA), Course of Action (COA)
generation, planning and scheduling, Common Tactical
Picture (CTP) generation, collection management) based
on information received from other sensors in the
environment and from other information stored in
databases (e.g., nodes labeled 1, 2, 3, 4, 6, 7, and 10 in
Figure 5).  Relay observations generated from sensors to other nodes
(e.g., the node labeled 8 in Figure 5).

As shown in Figure 5, a fusion node receives values of
some variables obtained either from sensor observations (X
variables) or via information aggregation by other nodes (A
variables). Such values can also be obtained from databases.
For example, the fusion center labeled 6 receives values of the
variables A2, X5, and X6 from the cluster fusion node labeled
9, and values of the variable X3 from a database. Note that an
arrow between two nodes indicates the flow of information in
the direction of the arrow as opposed to a communication link.
The existence of an arrow indicates the presence of at least a
one-way communication link, though not necessarily a direct
link, via some communication network route. For example,
there is a one-way communication link from node 3 to node 1.
A reverse communication link between these two nodes will
be necessary in implementing our message-passing distributed
fusion algorithm to be presented later.

Figure 6: Network of distributed fusion nodes

Each node (fusion center, cluster fusion, relay switch, or
local fusion) in a distributed fusion environment has
knowledge of the states of some variables, called local
variables, as shown in Figure 6 (ignore red cross for now). For
example, the fusion node labeled 6 has knowledge of the X
variables X3, X5, and X6, and A variables A2 and A3. The
node receives values of the variables A2, X5, and X6 from the
node labeled 9, and the variable X3 from a database. The node

generates values of the variable A3 via some information
aggregation operation. On the other hand, fusion node 9
receives measurements X4, X5, and X6 from a cluster of
sensors and generates A2; fusion node 8 relays values of the
variables X10, X1, and X12 to other nodes; and fusion node
12 obtains measurements of X8 from a single sensor.

There are four possible distributed fusion environments:
centralized, hierarchical, peer-to-peer, and grid-based. In a
centralized environment, only the sensors are distributed,
sending their observations to a centralized fusion node. The
centralized node combines the sensor information to perform
tracking or SA. In a hierarchical environment, the fusion
nodes are arranged in a hierarchy, with the higher-level nodes
processing results from the lower-level nodes and possibly
providing some feedback. The hierarchical architecture will be
natural for applications where situations are assessed with an
increasing level of abstraction along a command hierarchy,
starting with the tracking of targets at the bottom level.
Considerable savings in communication effort can be achieved
in a hierarchical fusion environment. In both peer-to-peer and
grid-based distributed environments, every node is capable of
communicating with every other node. This internode
communication is direct in the case of a peer-to-peer
environment, but some form of “publish and subscribe”
communication mechanism is required in a grid-based
environment.

V. ALGORITHM FOR DISTRIBUTED BELIEF PROPAGATION
As mentioned in the introduction, there are two ways in

which we can accomplish SA in a distributed environment: 1)
each local fusion node maintains the state of a set of variables;
2) there is a BN model for global SA.

In the first case, we start with a distributed fusion
environment such as the one shown in Figure 5. Our
distributed SA framework in this case has four steps: 1)
Network formation; 2) Spanning tree formation; 3) Junction
tree formation; and 4) Message passing. The nodes of the
sensor network first organize themselves into a network of
fusion nodes, similar to the one shown in Figure 6. Each
fusion node has partial knowledge of the whole environment.
This network is then transformed into a spanning tree (a
spanning tree of a connected, undirected graph, such as the
one in Figure 6, is a tree composed of all the vertices and
some or all of the edges of the graph), so that neighbor nodes
establish high-quality connections. In addition, the spanning
tree formation algorithm optimizes the communication
required by inference in junction trees. The algorithm can
recover from communication and node failures by
regenerating the spanning tree. Figure 6 with (red crosses
indicating link severed) describes a spanning tree obtained
from the network in Figure 5. The decision to sever the link
between nodes 4 and 6, as opposed to between nodes 3 and 6,
can be mitigated using the communication bandwidth and
reliability information in the cycle of nodes 1, 3, 6, and 4.

Using pairwise communication-link information sent
between neighbors in a spanning tree, the nodes compute the
information necessary to transform the spanning tree into a
junction tree for the inference problem. Finally, the inference
problem is solved via message-passing on the junction tree.

Fusion Node
8

Fusion Node
9

Fusion Node
11

Fusion Node
10

Fusion Node
7

Fusion Node
6

Fusion Node
4

Fusion Node
3

Fusion Node
5

Fusion Node
1

Fusion Node
12

Fusion Node
13

X9
Fusion Node

2

X10X11X12

X7X8 X8X9

A1A2X2X6

A3A6A7
X9X10X11

A5A6
X9X11X12

A2A3X3
X5X6

A6X7A2X4X5 X6

A1X1X2

A5A6X9

X X

X

A1A2A4A7

1447

During the formation of a spanning tree, each node chooses
a set of neighbors, so that the nodes form a spanning tree
where adjacent nodes have high-quality communication links.
Each node’s clique is then determined as follows. If i is a node
and j is a neighbor of i, then the variables reachable to j from i,

ijR , are defined recursively as

   ij i ki
k nbr i j

R D R
 



where iD is the set of local variables of node i. A base case
corresponds to a leaf node, which is simply a collection of a
node’s local variables. If a node has two sets of reachable
variables to two of its neighbors that both include some
variable V, then the node must also carry V to satisfy the
running intersection property of a junction tree. Formally,
node i computes its clique iC as

 ,
i i ji ki

j k nbr i
j k

C D R R


 

A node i can also compute its separator set ij i jS C C 
with its neighbor j using reachable variables as ij i jiS C R  .

Figure 7: A junction tree from the distributed fusion environment

Figure 7 shows the junction tree obtained from the spanning
tree in Figure 6. The variables reachable to a leaf node, for
example, fusion node 9, are its local variables 2 4 5 6, , ,A X X X .
The variables reachable to an intermediate node, for example,
fusion node 1, from its neighboring nodes 3 and 4 are  

 31 1 2 3 1 2 3 4 5 6

41 3 5 6 7 7 8 9 10 11 12

, , , , , , , ,
, , , , , , , , ,

R A A A X X X X X X

R A A A A X X X X X X




The local variable of the fusion node 1 is  1 1 2 4 7, , ,D A A A A . Therefore, its clique is

 1 1 2 3 4 7, , , ,C A A A A A . The formation of a suitable junction
tree from a BN model for SA is the only part of our distributed
fusion approach that is global in nature.

A. Junction Tree Construction and Inference
The moral graph of a BN is obtained by adding a link

between any pair of variables with a common “child,” and
dropping the directions of the original links in the BN. An
undirected graph is triangulated if any cycle of length greater
than 3 has a chord, that is, an edge joining two nonconsecutive
nodes along the cycle. The nodes of a junction tree for a graph
are the cliques in the graph (maximal sets of variables that are
all pairwise linked).

Once we have formed a junction tree from either of the
above two cases, such as the one in Figure 7, a message-
passing algorithm then computes prior beliefs of the variables
in the network via an initialization of the junction tree
structure, followed by evidence propagation and
marginalization. The algorithm can be run asynchronously on
each node responding to changes in other nodes’ states. Each
time a node i receives a new separator variables message from
a neighbor j, it recomputes its own clique and separator
variables messages to all neighbors except j, and transmits
them if they have changed from their previous values. Here we
briefly discuss the algorithm, and how to handle evidence by
computing the posterior beliefs of the variables in the network.

A junction tree maintains a joint probability distribution at
each node, cluster, or separator set in terms of a belief
potential, which is a function that maps each instantiation of
the set of variables in the node into a real number. The belief
potential of a set of variables X will be denoted as X , and

 X x is the number onto which the belief potential maps x.
The probability distribution of a set of variables X is just the
special case of a potential whose elements add up to 1. In
other words,    X 1

x x
x p x

 
  

X X

The marginalization and multiplication operations on
potentials are defined in a manner similar to the same
operations on probability distributions.

Belief potentials encode the joint distribution  p X of the
BN according to the following:

  C

S

i

j

i

j

p

 X

where Ci
 and S j

 are the cluster and separator set
potentials, respectively. We have the following joint
distribution for the junction tree in Figure 7:

  1 2 13

13 14 24 35 12 13

1 9 1 12
S S S S S

...
,..., , ,...,

...
C C Cp A A X X
  

    

where iC represents the variable in clique i and

ij i jS C C  represents the separator set between nodes i and
j. It is imperative that a cluster potential agrees with its
neighboring separator sets on the variables in common, up to
marginalization. This imperative is formalized by the concept
of local consistency. A junction tree is locally consistent if, for
each cluster C and neighboring separator set S, the following
holds: C S

C\S
  . To start initialization, for each cluster C

and separator set S, set the following: C S1, 1   . Then
assign each variable X to a cluster C that contains X and its
parents  pa X . Then set the following:

  C C |p X pa X  .
When new evidence on a variable is entered into the tree, it

becomes inconsistent and requires a global propagation to
make it consistent. The posterior probabilities can be
computed via marginalization and normalization from the

Fusion Node
8

Fusion Node
9

Fusion Node
11

Fusion Node
10

Fusion Node
7

Fusion Node
6

Fusion Node
4

Fusion Node
3

Fusion Node
5

Fusion Node
1

Fusion Node
12

Fusion Node
13

X9
Fusion Node

2

X10X11X12

A1A2A3
X2X6

A1A2A3A4A7

A3A6A7
X9X10X11

A5A6X9
X10X11X12

A2A3X3
X5X6

A2X4X5 X6

A1X1X2

A6X7X9 X7X8X9 X8X9

A1X2
A2A3X6

A1A2A3

A3A7

X9

A6X9X10
X11X12

A5A6X9

A5A6X9

X10X11X12

X8X9X7X9
A2X5 X6

A6X9

1448

global propagation. If evidence on a variable is updated, the
tree requires re-initialization. Next, we present initialization,
normalization, and marginalization procedures for handling
evidence.

As before, to start initialization, for each cluster C and
separator set S, set the following: C S1, 1   . Then
assign each variable X to a cluster C that contains X and its
parents  pa X , and then set the following:

  C C | , 1Xp X pa X    , where X is the likelihood
vector for the variable X. Now, perform the following steps for
each piece of evidence on a variable X:

 Encode the evidence on the variable as a likelihood new
X .

 Identify a cluster C that contains X (e.g., one containing X
and its parents).

 Update as follows: ,
new

newX
C C X X

X

    

Now perform a global propagation using the two recursive
procedures Collect Evidence and Distribute Evidence. Note
that if the belief potential of one cluster C is modified, then it
is sufficient to unmark all clusters and call only Distribute
Evidence(C). The potential C for each cluster C is now

 ,p eC , where e denotes evidence incorporated into the tree.

Now marginalize C into the variable as   C
C\{ }

,
X

p X e   .

Compute posterior  |p X e as follows:

       , ,
|

,
X

p X e p X e
p X e

p e p X e
   .

To update evidence for each variable X on which evidence
has been obtained, first update its likelihood vector. Then
initialize the junction tree by incorporating the observations.
Finally, perform global propagation, marginalization, etc.

VI. CONCLUSIONS
We have presented an agent based approach to distributed

belief propagation in net-centric environments. The approach
provides the foundation of the company’s predictive analytics
products. We are currently enhancing the product with agent-
based approach distributed semantic search to find evidence to
propagate in Bayesian network fragments. We are
investigating the best way to make use of any types of local
model fragments such as rules, neural networks, and decision
trees.

VII. REFERENCES
[1] Bai, L., Landis, J., Salerno, J., Hinman, M., and Boulware,

D. (2005). “Mobile Agent-Based Distributed Fusion
(MADFUSION) System,” Proceeding of the 8th International
conference on Information Fusion, Philadelphia.

[2] Chong, C-Y and Mori, S. (2004). “Graphical models for
nonlinear distributed estimation,” Proceedings of the Conference
on Information Fusion, Vol. I, pp. 614–621.

[3] Das, S. and Grecu, D. (2000). “COGENT: Cognitive agent to
amplify human perception and cognition.” Proc. of the 4th Int.
Conf. on Autonomous Agents, Barcelona, June.

[4] Das, S., Grey, R., and Gonsalves, P. (2002a). “Situation
assessment via Bayesian Belief Networks,” Proc. of the 5th Int.
Conference on Information Fusion, Annapolis, Maryland.

[5] Das, S., Shuster, K., and Wu, C. (2002b). “ACQUIRE:
Agent-based Complex QUery and Information Retrieval
Engine,” Proceedings of the 1st International Joint Conference
on Autonomous Agents and Multi-Agent Systems, Bologna, Italy.

[6] Das, S. (2008a). Foundations of Decision-Making Agents:
Logic, Probability, and Modality, World Scientific/Imperial
College Press, Singapore/London.

[7] Das, S. (2008b). High-Level Data Fusion, Artech House,
Norwood, MA.

[8] Das, S. (2010). Agent-based information fusion, Guest
Editorial, Information Fusion, Elsevier Science, Vol. 11, pp.
216–219.

[9] Das, S. (2014). “Computational Business Analytics,”
Chapman & Hall/CRC Data Mining and Knowledge Discovery
Series.

[10] Durrant-Whyte, H. and Stevens, M. (2006). “Data Fusion in
Decentralised Sensing Networks,” Australian Centre for Field
Robotics, The University of Sydney NSW 2006,
http://www.acfr.usyd.edu.au.

[11] Gerken, P., Jameson, S., Sidharta, B., and Barton, J. (2003).
“Improving Army Aviation Situational Awareness with Agent-
Based Data Discovery,” American Helicopter Society 59th
Annual Forum, Phoenix, Arizona.

[12] Hall, D., Liggins, M., and Chong, C. (eds) (2012).
Distributed Data Fusion for Network-Centric Operations, CRC
Press.

[13] Horling, B., Vincent, R., Mailler, R., Shen, J., Becker, R,
Rawlins, K., and Lesser, V. (2001). “Distributed sensor network
for real time tracking,” Proceedings of the 5th International
Conference on Autonomous Agents, Montreal, 417–424.

[14] Hughes, E. and Lewis, M. (2009). “An Intelligent agent
based Track-Before-Detect system applied to a range and
velocity ambiguous radar,” Electro Magnetic Remote Sensing
Defence Technology Center (EMRS DTC) Technical
Conference.

[15] Jameson, S. (2001). “Architectures for Distributed
Information Fusion to Support Situation Awareness on the
Digital Battlefield,” Proc. of the 4th Int. Conf. on Data Fusion,
pp. 7–10.

[16] Jensen. F. V. (2001). Bayesian Networks and Decision
Graphs. Springer-Verlag, NY.

[17] Lichtblau, D. E. (2004). “The critical role of intelligent
software agents in enabling net-centric command and control,”
Command and Control Research and Technology Symposium,
The Power of Information Age Concepts and Technologies, San
Diego, CA.

[18] Liggins, M. E., Chong, C.-Y., Kadar, I., Alford, M. G.,
Vannicola, V., and Thomopoulos, S. (1997). “Distributed fusion
architectures and algorithms for target tracking,” Proceedings of
the IEEE, 85(1):95–107.

[19] Martin, T. and Chang, K. (2005). “A distributed data fusion
approach for mobile ad hoc networks,” Proceedings of the 8th
Int. Conference on Information Fusion, pp. 25–28.

[20] Mastrogiovanni, F., Sgorbissa A., and Zaccaria, R. (2007).
“A Distributed Architecture for Symbolic Data Fusion,”

1449

Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI), Hyderabad, India.

[21] Mirmoeini, F. and Krishnamurthy, V. (2005).
“Reconfigurable Bayesian networks for adaptive situation
assessment in battlespace,” Proceedings of the IEEE Conference
on Networking, Sensing and Control, pp. 810–815.

[22] Paskin, M., and Guestrin, C. (2004). “Robust probabilistic
inference in distributed systems,” Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence (UAI),
Banff, Canada.

[23] Pavlin, G., de Oude, P., Maris, M., and Hood, T. (2006).
“Distributed perception networks,” Proc. of the International
Conference on Multisensor Fusion and Integration for
Intelligent Systems, Heidelberg, Germany.

[24] Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference, Morgan Kaufmann,
San Mateo, CA.

[25] Qi, H., Wang, X., Iyengar, S., and Chakrabarty, K. (2001).
“Multisensor Data Fusion in Distributed Sensor Networks Using
Mobile Agents,” Proceedings of 5th International Conference on
Information Fusion, pp. 11–16.

[26] Su, X., Bai, P., Du, F., and Feng, Y. (2011). “Application of
Bayesian Networks in Situation Assessment,” Intelligent
Computing and Information Science, Communications in
Computer and Information Science, Volume 134, Springer
Berlin Heidelberg.

[27] Waldock, A. and Nicholson, D. (2007). “Cooperative
decentralised data fusion using probability collectives,” Proc. of
the 1st Int. Work. on Agent Technology for Sensor Networks.

[28] Wright, E., et al, T. (2002). “Multi-entity Bayesian networks
for situation assessment,” Proceedings of the 5th International
Conference on Information Fusion, pp. 804–811.

[29] Xiang, Y., Poole, D., and Beddoes, M. (1993). “Multiply
sectioned Bayesian networks and junction forests for large
knowledge based systems,” Computational Intelligence,
9(2):171–220, 1993.

Dr. Subrata Das is the founder of Machine Analytics, a
company in the Boston area providing
business analytics and data fusion
consultancy services and developing
customized solutions for clients in
government and industry. Subrata is
also providing consulting services to
several companies. Subrata’s technical
expertise includes mathematical logics,
probabilistic reasoning including
Bayesian belief networks, symbolic
argumentation, particle filtering, and a broad range of

computational artificial intelligence techniques.
Subrata recently spent two years in Grenoble, France, as the

manager of over forty researchers in the document content
laboratory at the Xerox European Research Centre. Subrata
guided applied analytics research and development in the
areas of unstructured data analyses, machine translation,
image processing, and decision-making under uncertainty.
Subrata was one of the five-members in the high-profile Xerox
task force Knowledge Work 2020, alongside colleagues from
the Palo Alto Research Center (PARC), to explore a strategic
vision of the future of work.

Before joining Xerox, Subrata held the Chief Scientist
position at Charles River Analytics in Cambridge, MA,
working on projects funded by DARAP, NASA, US Air
Force, Army and Navy, ONR and AFRL. In the past, Subrata
held research positions at Imperial College and Queen Mary
and Westfield College, both part of the University of London.
He received his PhD in Computer Science from Heriot-Watt
University in Scotland, a Master’s in Mathematics from the
University of Kolkata, and an M.Tech from the Indian
Statistical Institute.

Subrata has published many journal and conference articles.
He is the author of the books Computational Business
Analytics, published by CRC Press/Chapman and Hall, High-
Level Data Fusion, published by the Artech House,
Foundations of Decision Making Agents: Logic, Modality,
and Probability, published by the World Scientific/Imperial
College Press, and Deductive Databases and Logic
Programming, published by Addison-Wesley. Subrata has also
co-authored the book entitled Safe and Sound: Artificial
Intelligence in Hazardous Applications, published by the MIT
Press.

Subrata served as a member of the editorial board of the
Information Fusion journal, published by Elsevier Science. He
has been a regular contributor, a technical committee member,
a panel member, and a tutorial lecturer at the International
Conference on Information Fusion. Subrata has published
many conference and journal articles, and conceived and
developed the in-house tools aText, iDAS and RiskAid.

1450

