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Abstract—We introduce a new trend detection problem in-
spired by real-time monitoring applications where the origin of
the measurements is uncertain: The observed sequence under the
alternative hypothesis is the result of a random switching between
two sequences, each with a trend. The association between each
measurement sample and the two sequences is unknown to the
detector.

We propose a Generalized Mann-Kendall trend detection
algorithm, and show via simulation that it achieves better
performance than the Mann-Kendall algorithm for problems with
randomly switched measurements.

We show that the test statistic can be calculated using an Mixed
Integer Linear Programming (MILP) solver. We also show that
computing the Generalized Mann-Kendall test statistic can be
cast as a Max-Bisection problem, connecting the computation of
test statistics to graph optimization.

Index Terms—Trend detection, Mann-Kendall test, randomly
switched measurement, graph theory, switched system, Max-
Bisection, mixed integer programming.

I. INTRODUCTION

The goal of detecting a trend is to determine whether the

values of a random variable generally increase (or decrease)

over some period of time in statistical terms [1]. One of the

earliest and most widely-used trend detection methods is the

Mann-Kendall test [2], [3]. It is the omnipotent non-parametric

trend test of choice [4]. As a non-parametric test, it makes no

assumption on the probability distribution of each data point.

Compared to the parametric tests which typically assumes a

known distribution and homoscedasticity (homogeneous finite

variance), Mann Kendall test’s performance is significantly

better when the data is not normally distributed. Yet for

normally distributed data, Mann Kendall test’s performance is

still very close to that of parametric tests [5]. Moreover, it is

robust against outliers because its test statistic is based on the

sign of differences. These advantages make it a universally ap-

plicable test. Mann-Kendall test has received a lot of research

attention, as evidenced by more than 2000 citations to Mann

and Kendall’s work. Many extensions have been proposed to

accommodate other practical issues such as seasonality and

autocorrelation (see, e.g., [6], [7]). It is a basic component of

many analytic tools such as R, and commonly used in many

applications such as ecology studies, hydrology, physiology,

market analysis, social media and industrial diagnostic appli-

cations [8], [9], [10], [11]. For the new trend detection problem

with random switched measurement introduced in this paper,

we restrict our attention to extensions of Mann-Kendall test.
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Fig. 1. Notional sketch (top panel) of the addressed problem with the RSMs
marked by red circles and blue dots. However, with no access to the state
information, one is left with the data points as in the bottom panel.

Trend detection in time-series signals will be automated

in future real-time monitoring applications. In many such

applications, signals might be affected or corrupted by other

unmeasured events. The trend detection implementation should

be made robust to these corruptions, eliminating the need for

human intervention. In this paper, we focus on a particu-

lar issue which we call Randomly Switched Measurements

(RSMs). As an example of RSMs, in the event of a failure,

a machine could be randomly switching between alternative

discrete operating modes. In another example, a machine could

be operated by different operators and exhibit varying behavior

between shifts. In the top panel of Fig. 1 we depict a notional

example where red (circle) and blue (filled-in dot) samples are

measurements corresponding to two different states. Both red

and blue sequences exhibit an increasing trend starting at time

t = 50. As shown in the bottom panel of Fig. 1, when the state

information is not available, the trend might not be as visually

significant as it was with the state information. As we will

show in this paper, instead of applying the traditional Mann-

Kendall test on the entire time series, one could achieve better

detection performance by simutaneously estimating the state

and computing Mann-Kendall test statistic on the sequence for

each state.
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A. Related work

The RSM trend detection framework in this paper is related

to the areas of switched system [12], target tracking [13] and

correlation clustering [14].

The RSMs could be generated by a system that exhibits

switching between several subsystems [15]. Estimation of the

state could be achieved if one uses a detailed control model

under each different discrete state [16]. However, such a model

might not be available in real-time monitoring applications

considered in this paper, especially in the event of an anomaly.

This is the reason why the use of non-parametric tests in this

scenario is probably more effective.

In the context of target tracking, the two sequences with a

trend could be recast as two target states where it is unknown

to the tracker which measurement comes from which target.

This is the data association problem [17]. However, for this

data association approach to work, a probabilistic parametric

measurement model is needed.

The proposed RSM framework is also related to the correla-

tion clustering literature in which the data points are clustered

based on their correlation [14]: The proposed framework

groups the data points based on their alignment on a potential

trend, introducing a new type of “correlation” between data

points.

In this paper, the computation of the proposed test statistic is

mapped to a graph optimization problem, making it possible to

leverage a large body of research and software. A different way

to represent Kendall’s tau statistic using a graph is applied in

[18], where Kendall’s tau is treated as the cost of the associated

permutation and the cost is defined based on the functional

digraph of permutations.

B. Summary of results and contributions

The main contributions of this work are threefold:

1) A new mathematical formulation of the trend detection

problem with RSM is proposed.

2) The Generalized Mann-Kendall test is proposed to ad-

dress the RSM trend detection problem, and shown to

perform better than the Mann Kendall test.

3) A connection is made between test statistic computation

and graph optimization. It is shown that Generalized

Mann-Kendall test can be cast as a graph Max-Bisection

problem.

The paper is organized as follows: The mathematical for-

mulation of the RSM trend detection problem is introduced in

Section II. The Mann-Kendall test is presented in Section III.

The Generalized Mann-Kendall test to address RSM is pro-

posed in Section IV. We describe the algorithm to compute the

test statistic using Mixed Integer Linear Programming (MILP)

in Section V. The numerical results on the test performance are

given in Section VI. The connection to Max-Bisection problem

is given in Section VII. A few directions to extend this work

are discussed in Section VIII and the paper is concluded in

Section IX.

II. PROBLEM STATEMENT

The RSM trend detection problem in the case of increasing

trend can be described using the following hypothesis testing

formulation: Consider a real-valued random vector Y
n =

{Y1, . . . , Yn} of length n with independent elements. There

are two composite hypotheses:

a) The null hypothesis H0: The distribution of the ran-

dom vector satisfies:

Prob{Yj ≥ Yi} = 0.5, where time j > i. (1)

b) The alternative hypothesis H1: The observation Y
n

is associated with an i.i.d. Bernoulli random vector U
n =

{U1, . . . , Un}, with parameter p := Prob{Ui = 1} = 0.5,

which takes value in {0, 1}n. The vector U
n divde the data

into two sub-sequences: Y(0) = {Yi : Ui = 0} and Y
(1) =

{Yi : Ui = 1}. Under H1, for the data points in the same

group has an increasing trend.

Prob{Yj ≥ Yi} > 0.5, when time j > i and Ui = Uj . (2)

The relationship between Yj and Yi when Ui 6= Uj is arbitrary.

The value of U
n is unknown to the detection algorithm:

A detection algorithm is a binary-valued function φ of the

sequence Y
n, where φ(Yn) = 1 indicates that the algorithm

decides in favor of H1, i.e., there is a trend.

In other words, under the alternative hypothesis, the mea-

surement Yn is a sequence obtained from randomly switching

between two vectors: Y
(0) and Y

(1), of which each has an

upward trend. But the state of the switch at each time is

unknown.

III. MANN-KENDALL TEST

The Mann-Kendall test statistic [19] is defined as:

TMK =

n−1
∑

i=1

n
∑

j=i+1

sign(Yj − Yi), (3)

where the value of sign(x) is 1 when x > 0, 0 when x = 0
and −1 when x < 0. The Mann-Kendall test is given by

φMK(Yn) = I(TMK ≥ η) where I is the indicator function.

The Mann-Kendall statistic is calculated through pair-wise

comparisons of each data point with all preceding data points,

and determining the number of increases, decreases, and ties.

A positive value for TMK implies an upward or increasing

temporal trend, whereas a negative value implies a downward

or decreasing trend. A value of TMK near zero suggests there

is no significant upward or downward trend.

IV. GENERALIZED MANN-KENDALL TEST

Under the alternative hypothesis, each data point comes

from one of two possible states, and the data sequence for

each state has an increasing trend. If the state Ui of each data

Yi is known (we refer to this case as “Oracle”), then the Mann-

Kendall test should be applied to each sequence separately and

then combined as in [20], [21]. Mathematically, we would

have:
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TOracle =
∑

i:Ui=0

∑

j:Uj=0,j>i

sign(Yj − Yi)

+
∑

i:Ui=1

∑

j:Uj=1,j>i

sign(Yj − Yi) (4)

When the state is unknown we need to estimate it. Following

the Generalized Likelihood Ratio Test principle [22], we

extend the Mann-Kendall test to jointly detect the trend and

estimate the state for each data point: We call the new test the

Generalized Mann-Kendall (GMK) test.

In the GMK test, the test statistic TGMK is given by the

optimal value of the objective function related to the following

optimization problem:

TGMK = max
Un:|{i:Ui=1}|=⌊n/2⌋

{

∑

i:Ui=0

∑

j:Uj=0,j>i

sign(Yj − Yi)

+
∑

i:Ui=1

∑

j:Uj=1,j>i

sign(Yj − Yi)
}

, (5)

where ⌊x⌋ is the largest integer not greater than x and |{i :
Ui = 1}| is the number of Uis equal to one. Note that the

vector Un is the optimization variable to be solved. The GMK

test is given by

φGMK(Yn) = I(TGMK ≥ η). (6)

V. ALGORITHM

In this section, we show that GMK test statistic has an

equivalent Mixed Integer Linear Programming (MILP) for-

mulation [23], and thus can be solved using an MILP solver.

Many commercial and open source solvers are available for

MILP. In our numerical experiment, we use the open source

package PULP in the COIN-OR project [24].

The following notations are used when defining the equiv-

alent MILP problem:

1) wi,j = sign(Yj − Yi) is defined over all i, j for 1 ≤ i <
j ≤ n.

2) u ∈ ℜn and will be restricted to {0, 1}n in the MILP

formulation.

The equivalent MILP problem is given by:

max
∑

i,j:wi,j>0 wi,j(1− |ui − uj |)

+
∑

i,j:wi,j<0 wi,j(|ui + uj − 1|),

s.t.
∑

i ui = ⌊n/2⌋,
u ∈ {0, 1}n.

(7)

where we economized the notation by using a single summa-

tion sign
∑

i,j in the objective function. The sign
∑

i,j:wi,j>0

means that the summation is over all i, j satisfying 1 ≤ i <
j ≤ n and wi,j > 0.

Proposition 5.1: The MILP problem (7) is equivalent to the

GMK optimization (5).

The proof is given in the Appendix.

A solver might not return the optimal solution to (7). In

fact, as we will show in Section VII, the optimization in (5)

can be cast into a Max-Bisection problem which is in general

NP-hard. Although it remains to be seen whether the structures

imposed by the GMK formulation can be leveraged to change

the computaional complexity of the problem. For these prob-

lems, there are approximation algorithms with performance

guarantees. An algorithm is a α−approximation algorithm for

a problem if and only if for every instance of the problem it

can find a solution within a factor α of the optimal solution

[25].

Proposition 5.2: Let Fn be the cumulative distribution

function of the test statistic TGMK under the null hypothesis

H0, assuming that optimal solution is used. Let η be the

threshold to achieve a certain probability of detection PD

and probability of false alarm PF . Suppose an approximation

algorithm with relative performance ratio α for (5) is used.

Then the test based on the approximation algorithm using

the threshold αη has the following detection performances

measured in terms of P ′
D and P ′

F :

P ′
D ≥ PD, (8)

and

P ′
F ≤ 1− Fn

(

αF−1
n (1− PF ))

)

, (9)

where the right-hand-side is greater than or equal to PF

provided that α ≤ 1 and it converges to PF as α → 1.

The proof is given in the Appendix.

VI. NUMERICAL RESULTS

We perform the following numerical experiment to demon-

strate the performance of the Generalized Mann-Kendall test:

Under the null hypothesis, the simulated data is given by

Yt = Nt,

where Nt is a sequence of independent, identically distributed

(i.i.d.) Gaussian random variables N (0, σ2). Under the al-

ternative hypothesis, the data Yt is generated according the

following model:

Yt = β1t+ Utβ2 +Nt,

where Nt is a sequence of i.i.d. Gaussian random variables

N (0, σ2), Ut is sequence of i.i.d. Bernoulli random variables

with p = 0.5 and t = 1, . . . , 10.

We compare the performances of the following tests:

1) Mann Kendall test;

2) GMK test, with the test statistic given by the optimal

solution to (5) calculated using an exhaustive enumeration

over all feasible solutions;

3) GMK test calculated using the solver PULP to the MILP

formulation (7);

4) Oracle: Mann Kendall test when the state information

U
n is known to the detector. The Oracle case is only

presented as an upper-bound on the best possible perfor-

mance since it requires information that is not available.

The performances,of these tests in terms of Receiver Oper-

ating Characteristic (ROC) curve are depicted in Figure 2. The

proposed GMK test achieves larger probability detection than

Mann Kendall test for the same probability of false alarm.
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Fig. 3. Null distribution of Mann-Kendall and GMK test statistic for n = 10
samples.

There is a gap between the performance of the Oracle case

and our proposed GMK test.

The threshold to achieve a certain probability of false alarm

can be determined numerically via Monte-Carlo simulations.

The distributions of the Mann-Kendall test and the GMK test

statistics under the null hypothesis H0, are shown in Figure 3.

It is observed that the GMK test statistic has a nonzero mean

under the null hypothesis while the Mann Kendall test statistic

is known to have a zero mean under the null hypothesis [19].

The analytical characterization of this null distribution will be

investigated in future work.

VII. GRAPH REPRESENTATION AND MAX-BISECTION

In this section, we show that the optimization problem in

(5) can be cast into a well-known graph problem called Max-
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Fig. 4. Observations Y n with n = 10. The state for a red round observation
is 1 and the state for a blue square observation is 0.

Bisection, which is a constrained version of the Max-Cut prob-

lem [26]. This connection leads to alternative computational

algorithms to solve (5). In addition, other non-parametric test

such as the Theil-Sen slope estimator [27], [28] can be defined

on a graph by adjusting the weights of the graph edges.

Consider a weighted complete undirected graph G = (V,E)
with n vertices where V = {1, . . . , n} is the set of vertices

and the edge set E = {(ij) : 1 ≤ i, j ≤ n} is the set of

unordered pairs of indices (ij). Let w(ij) denote weight of

the edge (ij) ∈ E. The assignment of edge weight for Mann-

Kendall is given as follows:

w(ij) = sign(Yj − Yi)sign(j − i). (10)

The toy example shown in Figure 4 illustrates a 10-point se-

quence with two states. Its corresponding graph representation

depicted in Figure 5.

The Mann Kendall test statistic can be written as the total

weight of all edges over the graph:

TMK =
∑

(ij)∈E

w(ij).

Similarly, the GMK test statistic can be represented as

TGMK = max
S⊆V :|S|=⌊n

2
⌋

∑

(ij):i,j∈S

w(ij) +
∑

(ij):i,j∈S̄

w(ij), (11)

where S is a subset of V and S̄ := V \ S. In other words,

the GMK test statistic is the maximum of the sum of the total

weight of edges in the subgraphs induced by S and S̄. The

corresponding graph with the optimal Sopt that solves (11) is

depicted in Figure 6. Only edges within the two subgraphs are

depicted. A suboptimal Ssub−opt, which might be obtained by

randomly cutting the graph, would lead to more purple edges

as depicted in Figure 7.
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Fig. 5. Original graph for the Mann-Kendall test: A solid purple line is an
edge with a negative weight w(ij). A dotted black line is an edge with a
positive weight w(ij).
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Fig. 6. Graph for GMK / Max-Bisection: The vertices are partitioned into two
subsets represented by blue square nodes and red round nodes. Only edges of
the two induced subgraphs are shown since those are the weights counted
towards the summation in GMK test statistic. The partition is calculated
from GMK, and it correctly recovers the actual states of the observations.
Comparing to Figure 5, the number of solid purple lines is significantly
reduced.

A cut of a graph is a partition of the vertices of a graph into

two disjoint subsets S and S̄. The cut set is the set of edges

crossing the two sub-graphs:

E(S, S̄) = {(ij) : i ∈ S, j ∈ S̄}.

The objective of Max-Bisection problem is to find a bi-

partition which maximizes the number of crossing edges with

the constraint that the cardinality of the two sub-graphs is the

same. For a graph whose edge weight is denoted by w′(ij),
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10

Fig. 7. Graph after a sub-optimal cut: Comparing to Figure 6, there are more
solid purple lines left after the suboptimal cut.

the Max-Bisection is the following optimization problem:

TBisection = max
S⊆V :|S|=⌊n

2
⌋

∑

(ij)∈E(S,S̄)

w′(ij) (12)

We now show that our proposed problem (5) can be cast

into the Max-Bisection problem (12) for a different but related

graph.

Theorem 7.1: The GMK test statistic can be written as

a linear function of the Max-Bisection problem’s objective

function value given in TBisection, where the weight w′(ij)
is defined as

w′(ij) = −0.5w(ij) + 0.5. (13)

The relationship is given by

TGMK = TMK + 2TBisection − ⌊
n

2
⌋⌈

n

2
⌉. (14)

The proof is given in the Appendix.

The general Max-Bisection problem is NP-hard [29]. There

is a large body of work to find approximation algorithms to

this problem (See [26] for references).

VIII. EXTENSIONS

In this section, we discuss several possible extensions of the

proposal GMK test.

A. General switching probability p

The test described in this paper only addresses the case

p = 0.5, i.e., under the alternative hypothesis the probability

that the observation comes from either state is the same.

This leads to the cardinality constraint in the Max-Bisection

problem and the equality constraint in (7). For other known

p, following the current framework, we can still formulate

the problem as a max-cut problem with a different cardinality

constraint or a different constant on the right-hand-side of the

equality constraint in (7). The main challenge is to address
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how the test statistic from the two Mann-Kendall tests should

be combined: The asymptotic distribution of the Mann-Kendall

test under the null hypothesis is shown to be a Gaussian of

which the variance is dependent on the number of samples in

the test.

B. Mixed and Multiple Trends

We only address the case where there are two possible

states, and the measurements in both states have an increasing

trend under the alternative hypothesis. The test can be extended

to the case where it is an increasing trend for one state and a

decreasing trend for the other. The Generalized Mann-Kendall

test statistic for this case is given by

max
S⊆V

{|
∑

(ij):i,j∈S

w(ij)|+ |
∑

(ij):i,j∈S̄

w(ij)|.} (15)

It can also be extended to the cases where there are multiple

states where the number of states is k:

max
{S1,S2,..,Sk} is a partition of V

∑

k

|
∑

(ij):i,j∈Sk

w(ij)|. (16)

In many applications, it is unknown how many states the

alternative hypothesis might have. While the objective function

could be easily modified to be the average weight for a k-

partition of the graphs for any k, it is unclear how to choose

the optimal k. Inspirations could be drawn from the correlation

clustering literature (See [14] and references therein) where the

number of clusters is determined automatically .

C. Slope

In many practical trend detection applications, a trend is

important only if it has a significant slope. The Mann-Kendall

test is only concerned with the persistency of the trend, and it

is ignorant of the difference in values between samples. The

Theil-Sen estimator of the slope [27], [28], on the other hand,

calculates the median between slope between samples. Since

the Theil-Sen slope estimator can be interpreted as the median

weight of the graph where each weight is given by the slope

between two observations, the proposed generalization can be

also applied to the Theil-Sen slope estimator.

IX. CONCLUSIONS

In this paper we introduced the problem of detecting a

trend in a sequence obtained from randomly interleaving two

sequences, each exhibiting an upward trend. The problem is

complicated the unknown data association: it is unknown to

the detector which measurement sample belongs to which

sequence. We proposed a GMK trend detection algorithm,

which is based on the solution of a MILP problem, and we

showed via simulation that it out-performs the Mann-Kendall

algorithm. We also provided a graph formulation of the GMK

problem and demonstrated the equivalence between the GMK

test statistic computation and the Max-Bisection problem.
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APPENDIX

A. Proof of Proposition 5.1

Proof: On letting Ui = ui, it is easy to see that the sets

of feasible solutions to (5) and (7) are the same. It remains

to show that the objective function is equivalent: It is easy to

verify that:

1− |ui − uj | =

{

0, if ui = 0, uj = 1 or ui = 1, uj = 0,
1, if ui = uj = 0, or ui = uj = 1.

The same right-hand-side applies to |ui + uj − 1|. Therefore,

the objective function in (7) is equal to

∑

i,j:ui=uj ,wi,j>0

wi,j +
∑

i,j:ui=uj ,wi,j<0

wi,j =
∑

i,j:ui=uj

wi,j ,

of which the right-hand-side is equivalent to the objective

function in (5) by the definition of wi,j .

B. Proof of Proposition 5.2

Proof: Consider any sequence of observations Y
n, if

TGMK, using the optimal solution, satisfies TGMK ≥ η, then its

value TGMK′
based on the approximation algorithms, satisfies

TGMK′
≥ αη. Consequently, P ′

D ≥ PD.

For the probability of false alarm, it follows from TGMK′
≤

TGMK that P ′
F ≤ 1 − Fn(αη). This is equivalent to the

conclusion in (9) since η = F−1
n (1− PF ).

C. Proof of Theorem 7.1

Proof: It follows from the definition of w and w′ in (10)

and (13) that

w(ij) + 2w′(ij) = 1.

Summing this over all edges in E(S, S̄) and applying the fact

that there are ⌊n
2 ⌋⌈

n
2 edges in E(S, S̄) leads to,

∑

(ij)∈E(S,S̄)

w(ij) + 2
∑

(ij)∈E(S,S̄)

w′(ij) = ⌊
n

2
⌋⌈

n

2
⌉.

On the other hand,

∑

(ij):i,j∈S

w(ij) +
∑

(ij):i,j∈S̄

w(ij)

=
∑

(ij)∈E

w(ij)−
∑

(ij)∈E(S,S̄)

w(ij)

=
∑

(ij)∈E

w(ij) + 2
∑

(ij)∈E(S,S̄)

w′(ij)− ⌊
n

2
⌋⌈

n

2
⌉,

where the first term on the right-hand side of the last equation

is equal to TMK, and the second term is twice the objective

function in the definition of TBisection in (12). Substituting this

into (11) leads to the conclusion in (14).
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