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Abstract—The paper presents a dynamic data-driven sym-
bolic approach to construct generative models of causal
cross-dependence among different sources of (possibly het-
erogeneous) measurements. The main objective here is to
identify the input-output relationships in the underlying
dynamical system using sensory data only. Synchronized
pairs of input and output time series are first independently
symbolized via partitioning the individual data sets in their
respective range spaces. A generative model is then obtained
to capture cross-dependency in the symbolic input-output
dynamics as a variable-memory cross D-Markov (also called
xD-Markov) machine, which is different from the standard
PFSA. The proposed input-output model has been validated
on charging-discharging data sets of a lead-acid battery. The
cross-dependency features of current-voltage patterns during
charging-discharging cycles have been used to estimate and
predict the parameters of battery performance (e.g., State-
of-Charge (SOC)) and health (e.g., State-of-Health (SOH)).
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1. MOTIVATION AND INTRODUCTION

Modeling causal dependence between variables, events

or physical processes is important in almost all data-

driven scientific inquiry to discern statistical relationships

between them. It finds applications in various fields like

statistics, physics, medicine, economics and more recently,

machine learning [1], [2], [3], [4]. Much of the work

available in literature has been focused on defining mea-

sures to test existence of a causal relationship between

two stochastic processes [5], [6], [7]. In this regard,

information-theoretic measures have been defined to estab-

lish and test existence of causality among observed vari-

ables (e.g., transfer entropy and directed information) [3],

[4], [8], [9], [10]. However, most of the work is focused

on measuring the degree of causal dependence between

stochastic processes. Apparently, very little work has been

presented to infer the causal generative structure between

two observed variables that can be used for prediction

and estimation of a dependent variable, based on the

observations of the other. We present a symbolic analysis

based statistical modeling approach to construct generative

models of causal cross-dependence between two stochastic

processes.

Symbolic time-series analysis (STSA) is a non-linear

statistical tool for modeling temporal patterns in sequential

data. Symbolic analysis of time-series for precise modeling

of the underlying dynamics must simultaneously satisfy

the following two criteria.

1) Symbolization: The process of projecting

continuously-varying time-series data onto a

symbol space.

2) Depth Estimation: The task of estimating the tem-

poral memory of the underlying dynamical system.

Once the data sets are symbolized and the depth (i.e.,

memory) for the symbol sequence is estimated, the symbol

stream can be compressed into generative models as prob-

abilistic finite state automata (PFSA). A class of PFSAs,

called the D-Markov machine, has been proposed as a sub-

optimal but computationally efficient approach to encode

the statistical behavior of a symbol stream having the

algebraic structure of a deterministic finite state machine

(DFSA) [11], [12].

This paper presents a method of inferring generative

models of causal dependence between two observed vari-

ables, where the generative model is built upon a Markov

structure between the observed variables. A causal cross-

dependence between the two synchronized data streams

is represented as crossed automata known as cross D-

Markov (xD-Markov) machines which was introduced

earlier in [13]. The motivation is to be able to predict

the behavior of a dynamical system using observations

on the input states. The Markov dynamics apply to the

input states for prediction on output states as opposed to

the output states themselves. In an input-output setting,

this approach becomes analogous to transfer function

representation for finite-dimensional linear time-invariant

(FDLTI) systems studied in the classical control theory,

which has been routinely used in different fields (e.g.,

health-monitoring, cyber-security, and power grids) for

online system identification and fault/anomaly detection.

In the D-Markov setting, the equivalence class of states
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(i.e., strings of symbols) is inferred for a symbol stream to

make predictions on the probabilities of symbol emission

for the the other stream. A key difference from most

of the work, reported in technical literature, is that this

paper only considers the dependence of a symbol sequence

on the other (synchronized) symbol sequence, instead of

joint observations on both of them. This approach greatly

alleviates the complexity as there is no need to create the

product state-space for the two symbol sequences.

The proposed approach is similar to mixed-memory

Hidden Markov Models (HMMs) which models a complex

stochastic process as a mixture of simpler processes [14].

However, instead of considering a weighted combina-

tion of the cross-transition matrices [14], [13] to accu-

rately model the Markov dynamics, this paper makes use

of directed information contents between the observed

variables to construct a variable-memory cross-transition

model. This approach has the potential benefit of reducing

the model complexity without any significant compromise

of modeling details; the rationale is that there is no need

to separately infer the models with different memories.

Contributions: To the best of the authors’ knowl-

edge, this paper, for the first time, introduces a variable-

memory xD-Markov machine to model the causal cross-

dependency between two time-series. Under the assump-

tions of statistical stationarity of the underlying data, the

variable-memory structure in the xD-Markov machine

setting [13], [15] is inferred using entropy rate as the

metric to measure the directed information content of

the cross-dependency model. Using only the sequential

observations on the two variables, we infer the non-

heuristic generative models of cross-dependence without

any assumptions on the nature of the hidden dynamics,

linear or non-linear. Furthermore, the proposed algorithm

has been validated using experimental data for a lead-acid

battery which is charged and discharged using variable

input current. The xD-Markov setting is used to learn

the input-output relationship for a lead-acid battery. These

relationships are then used to estimate the parameters

of battery performance (e.g., State-of-Charge (SOC)) and

health (e.g., State-of-Health (SOH)).

Organization: The paper is organized in seven sections

including the current one. Section 2 briefly outlines the

pertinent mathematical concepts that serve as foundations

of the work presented in this paper. Section 3 presents the

proposed approach to infer the hidden cross-dependence

between two observed time series in the PFSA setting.

Section 4 describes the procedure for acquisition of time

series data from a lead-acid battery. Section 5 presents

xD-Markov modeling of the input-output characteristics

of the battery dynamics. Section 6 presents the results on

identification of SOH and SOC parameters of the battery

system. Finally the paper is summarized and concluded in

Section 7.

2. MATHEMATICAL PRELIMINARIES

This section introduces mathematical concepts that

serve as foundations of the work presented in this paper.

Definition 2.1 (PFSA [11], [12] A probabilistic finite

state automaton (PFSA) is constructed on the algebraic

structure of deterministic finite state automata (DFSA)

G = (Σ, Q, δ) as a pair K = (G, π), i.e., the PFSA K is

a 4-tuple K = (Σ, Q, δ, π), where:

1) Σ is a non-empty finite set, called the symbol alpha-

bet, with cardinality |Σ| < ∞;

2) Q is a non-empty finite set, called the set of states,

with cardinality |Q| < ∞;

3) δ : Q × Σ → Q is the state transition map;

4) π̃ : Q×Σ → [0, 1] is the symbol generation function

(also called probability morph function) that satis-

fies the condition
∑

σ∈Σ
π̃(q, σ) = 1 ∀q ∈ Q, and

πij is the probability of emission of a symbol σj ∈ Σ
when the state qi ∈ Q is observed.

Definition 2.2 (D-Markov [11], [12]) A D-Markov ma-

chine is a statistically stationary stochastic process S =
· · · s−1s0s1 · · · (modeled by a PFSA in which each state

is represented by a finite history of D symbols), where the

probability of occurrence of a new symbol depends only

on the last D symbols, i.e.,

P [sn | · · · sn−D · · · sn−1] = P [sn | sn−D · · · sn−1] (1)

• D is called the depth of the Markov machine;

• Q is the finite set of states with cardinality |Q| ≤
|Σ|D, i.e., the states are represented by equivalence

classes of symbol strings of maximum length D.

• δ : Q × Σ → Q is the state transition function.

Definition 2.3 (Symbol Block [12]) A symbol block, also

called a word, is a finite-length string of symbols be-

longing to the alphabet Σ, where the length of a word

w , s1s2 · · · sℓ with si ∈ Σ is |w| = ℓ, and the length of

the empty word ǫ is |ǫ| = 0.

• The set of all words constructed from symbols in Σ,

including the empty word ǫ, is denoted as Σ⋆,

• The set of all words, whose suffix (respectively, prefix)

is the word w, is denoted as Σ⋆w (respectively, wΣ⋆).

• The set of all words of (finite) length ℓ, where ℓ > 0,

is denoted as Σℓ.

Definition 2.4 (Conditional Entropy [12])The entropy of

a PFSA (Σ, Q, δ, π) conditioned on the current state q ∈ Q

is defined as follows.

H(Σ|q) , −
∑

σ∈Σ

P (σ|q) log P (σ|q)) (2)
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where P (σ|q) is the conditional probability of a symbol

σ ∈ Σ given that a PFSA state q ∈ Q is observed.

Definition 2.5 (Entropy Rate [12]) The entropy rate of a

PFSA (Σ, Q, δ, π) is defined in terms of the conditional

entropy as follows.

H(Σ|Q) ,
∑

q∈Q

P (q)H(Σ|q)

= −
∑

q∈Q

∑

σ∈Σ

P (q)P (σ|q) log P (σ|q) (3)

where P (q) is the probability of a PFSA state q ∈ Q.

The entropy rate represents the overall predictability of a

PFSA.

3. PROPOSED APPROACH

This section presents the proposed approach to infer

the hidden cross-dependence between two observed time

series in the PFSA setting. Previous attempts on modeling

cross-dependence between symbol sequences using xD-

Markov machines have focused on building a fixed depth

model, where the depth parameter is either manually

selected or searched using a wrapper-like method while

cross-dependence between the symbolic processes is mea-

sured using mutual information [15]. Apparently, such

information measures have never been used to infer the

generative structure between the sequences. Formally, the

xD-Markov machine is defined as follows:

Definition 3.1 (xD-Markov) Let M1 and M2 be the

PFSAs corresponding to symbol streams {s1} and

{s2}, respectively. Then, an xD-Markov machine (from

{s1} to {s2}) is defined as a 5-tuple M1→2 ,

(Q1, Σ1, Σ2, δ1, Π12) such that:

• Q1 = {q1, q2, . . . , q|Q1|} is the state set correspond-

ing to symbol sequence {s1}
• Σ1 = {σ1

0 , ..., σ
1

|Σ1|−1
} is the alphabet set of symbol

sequence {s1}
• Σ2 = {σ2

0 , ..., σ
2

|Σ2|−1
} is the alphabet set of symbol

sequence {s2}
• δ1 : Q1 × Σ1 → Q1 is the state transition mapping

for M1

• Π12 is the cross morph matrix of size |Q1| × |Σ2|;
the ijth element (π12(qi, σ

2
j )) of Π12 denotes the

probability of finding the symbol σ2

j in the symbol

string {s2} at next time step while making a transition

from the state qi of the PFSA constructed from the

symbol sequence {s1}.

The states of the PFSAs, M1 and M2, in Definition 3.1

are constructed by symbols when those individual PFSAs

are represented by D-Markov machines. The D-Markov

machines with depth D = 1 represent the states as symbols

of the corresponding alphabet set. For D > 1, the states of

the D-markov machines are obtained via state splitting and

merging method [12] to restrict the dimensionality of state

space while modeling the essential dynamics of the PFSA.

State splitting is based on the process of minimizing the

entropy rate of PFSA. However, the states of PFSA M1

may not be able to capture the cross-dependence from

symbol strings {s1} to {s2} optimally via an xD-Markov

machine as they are modeled based only on {s1}. This

paper proposes a method to construct the state space of

M1 such that it captures the optimal cross-dependance

via Π12 and yields better input-output characterization of

dynamical systems (e.g., a battery system).

A. Time series symbolization

The first step in the construction of an optimal xD-

Markov machine from one time-series to another is to

symbolize them. This step requires independent partition-

ing of the two time series. The signal space of a time-series

is partitioned into a finite number of cells that are labeled

as symbols, i.e., the number of cells is identically equal to

the cardinality of the (symbol) alphabet. These mutually

exclusive and exhaustive regions form a partition, where

each region is labeled with one symbol from the alphabet

sets Σ1 (for first time series) or Σ2 (for second time series).

If the value of time series at a given instant is located in a

particular cell, then it is coded with the symbol associated

with that cell [16]. Thus, finite arrays of symbols {s1}
and {s2}, called symbol strings, are generated from the

two (finite-length) time series data.

There are different types of partitioning tools such as

maximum entropy partitioning (MEP), uniform partition-

ing (UP) [16] and supervised optimal partitioning [17].

MEP maximizes the entropy of the generated symbols

by putting (approximately) equal number of data points

in each partition cell and therefore, the information-rich

portions of a time-series are partitioned finer and those

with sparse information are partitioned coarser. In UP, the

partitioning lines create uniform (by size on signal space)

cells.

B. Algorithm Development

This subsection develops the algorithm for construction

of xD-Markov machines. For further analysis, a type

of entropy rate (Eq. (3)) called cross entropy rate is

defined here to represent the overall predictability of

a symbol stream when a PFSA from another symbol

stream is observed. The cross entropy rate from a PFSA
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(Σ1, Q1, δ1, π1) to a symbol stream (say, {s2} with alpha-

bet set Σ2) is defined as

H(Σ2|Q1) ,
∑

q1∈Q1

P (q1)H(Σ2|q1)

= −
∑

q1∈Q1

∑

σ2

1
∈Σ2

P (q1)P (σ2

1
|q1) log P (σ2

1
|q1)

(4)

where P (q1) is the probability of a PFSA state q1 ∈ Q1

and P (σ2
1 |q1) is the conditional probability of a symbol

σ2
1
∈ Σ2 given that a PFSA state q1 ∈ Q1 is observed.

Figure 1 shows a cross transition at time t from {s1} to

{s2} for varying depths of M1.

Fig. 1. Variable depth xD-Markov machine

In xD-Markov machines, a symbol block of (finite)

length D is sufficient to describe the current state for

the PFSA constructed from the symbol stream {s1}. In

other words, the symbols that occur prior to the last D

symbols do not affect the subsequent symbols observed

in symbol stream {s2}. Therefore, the number of states

of a xD-Markov machine of depth D is bounded above

by |Σ1|
D, where |Σ1| is the cardinality of the alphabet

Σ1. For example, with the alphabet size |Σ1| = 5 and a

depth D = 3, the xD-Markov machine could have at most

|Σ1|
D = 125 states. As this relationship is exponential

in nature, the number of states rapidly increases as D is

increased. However, form the perspective of modeling the

cross-dependance from {s1} to {s2}, some states may be

more important than others in terms of their embedded

causal information contents. Therefore, it is advantageous

to have a set of states that correspond to symbol blocks

of different lengths. This is accomplished by starting off

with the simplest set of states (i.e., Q1 = Σ1 for D = 1)

and subsequently splitting the current state that results in

the largest decrease of the cross entropy rate H(Σ2|Q1)
(see Eq. (4)). This underlying procedure is called state

splitting [12]. This way of creating the state space restricts

the exponential growth of states with increasing depth D.

The process of splitting a state q1 ∈ Q1 is executed by

replacing the symbol block q1 by its branches as described

by the set {σ1
1q1 : σ1

1 ∈ Σ1} of words, where σ1
1q1 rep-

resents the equivalence class of all (finite-length) symbol

strings with the word σq as the suffix. Figure 2 illustrates

the process of state splitting in a PFSA with alphabet

Σ1 = {0, 1}, where each terminal state is circumscribed by

Fig. 2. Tree-representation of state splitting in the PFSA M1

an ellipse. For example, the states in the third layer from

the top are: 00q1, 10q1, 01q1, and 11q1, of which all

but 10q1 are terminal states. Consequently, the state 10q1

is further split as 010q1 and 110q1 that are also terminal

states, i.e, Q = {00q1, 01q1, 11q1, 010q1, 110q1}, as

seen in the split PFSA diagram of Figure 2. Maximum re-

duction of the cross entropy rate is the governing criterion

for selecting the state to split. In addition, the generated

set of states must satisfy the self-consistency criterion for

the PFSA M1, which only permits a unique transition to

emanate from a state for a given symbol. If δ(q1, σ
1
1
) is not

unique for each σ1
1 ∈ Σ1, then the state q is split further. In

the state splitting algorithm, a stopping rule is constructed

by specifying the threshold parameter ηspl on the rate of

decrease of cross entropy rate. An alternative stopping rule

for the algorithm is to provide a maximal number of states

Nmax of PFSA M1 instead of the threshold parameter

ηspl.

At each step of state splitting, each element π12(q1, σ
2
1)

of the cross morph matrix Π12 is estimated by frequency

counting as the ratio of the number of times, N(q1σ
2
1
),

the state q1 from {s1} is followed by the symbol σ2 from

{s2} and the number of times, N(q1), the state q1 occurs.

Each element π̂12(q1, σ
2
1) of the estimated morph matrix

Π̂12 is obtained [12] as

π̂12(q1, σ
2

1
) ,

1 + N(q1σ
2
1)

|Σ2| + N(q1)
∀σ2

1
∈ Σ2 ∀q1 ∈ Q1 (5)

where
∑

σ2

1
∈Σ2

π̂12(q1, σ
2
1) = 1 ∀q1 ∈ Q1.

Similar to Eq. (5) each element P (q1) of the stationary

state probability vector for the PFSA from {s1} at a certain

splitting stage is estimated by frequency counting [12] as

P̂ (q1) ,
1 + N(q1)

|Q1| +
∑

q′

1
∈Q1

N(q′
1
)
∀q1 ∈ Q1 (6)

where P̂ (q1) is an element of the estimated stationary state

probability vector, which implies the estimated stationary
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probability of the PFSA being in the state q1 ∈ Q1. Now

the cross entropy rate (see Eq. (4)) is computed in terms of

the elements of estimated state probability vector for the

PFSA from first time series and estimated cross morph

matrix as

H(Σ2|Q1) = −
∑

q1∈Q1

∑

σ2

1
∈Σ2

P (q1)P (σ2

1
|q1) log P (σ2

1
|q1)

≈ −
∑

q1∈Q1

∑

σ2

1
∈Σ2

P̂ (q1)π̂12(q1, σ
2

1
) log π̂12(q1, σ

2

1
)

(7)

Based on the specific threshold, the process of splitting

is continued till the optimal cross model is achieved. The

final estimated morph matrix Π̂12 is used as a represen-

tative feature of the causality from first to second time-

series.

4. DESCRIPTION OF DATA ACQUISITION

A brand new (12V AGM VRLA with 56Ah capacity)

lead-acid battery has been used in the experiments [18]. As

the battery is charged/discharged according to given input

(current) profiles at the room temperature and an ensemble

of synchronized time-series of the input charge/discharge

current and output voltage responses is collected at the

sampling frequency of 1Hz. A typical input current profile

for this experiment is depicted in Fig. 3. The duration of

a input profile is ∼ 150 hours, which consists of three

capacity measure cycles that are followed by 25 duty

cycles.

A capacity measurement cycle is a slow, full dis-

charge/discharge cycle, where the battery is fully dis-

charged followed by a full charge. In this constant-current

constant-voltage (CCCV) operation of the experiments, the

battery is discharged by a constant current of −20A for

∼ 2 hours at first. Then it is charged first by constant cur-

rent of 20A until its output reaches a voltage of 13.8V ; this

voltage is kept constant for the next 3 hours with gradually

decreasing charging current. The maximum capacity at

that time is measured by integrating the current during the

charge period. Three computed battery maximum capaci-

ties are obtained from these capacity measurement cycles,

the mean value of them is considered as the nominal

maximum capacity for that particular time. Since there are

five similar (i.e., same pattern) input profiles in total are

applied to the battery during the whole experiment. The

degradation of battery SOH (i.e., the ratio of maximum

capacity between ”now” and when it is brand new) is

obtained.

Total 25 duty cycles are divided into groups of five. The

transition time between two consecutive groups is ∼ 6
hours with charging to full capacity, while the transition

time between two consecutive duty cycles in one group is

∼ 1.2 hours with inadequate recharging. Each duty cycle

last ∼ 2.7 hours, which is composed of ∼ 75 ”Hotel-

Pulse” cycles, as depicted in Fig. 3(b). Each individual

”Hotel-Pulses” cycle (i.e., duration of 120s) consists of a

”hotel” load (i.e., relatively steady discharge due to ”hotel”

needs like lighting and other electrical equipments) and a

discharge pulse followed by a charge (i.e., regeneration)

pulse, as shown in Fig. 3(a). The amplitude of the ”hotel”

load and the discharging & charging pulses are not usually

monotonically increasing in a duty cycle, which makes

each duty cycle slightly different from others. This pattern

of input cycles largely simulates a real-time working

condition for an electric locomotive. Further details of the

time-series data characteristics could be found in [18].
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Fig. 3. Profile of input current data for the experiment

5. XD-MARKOV MODELING

Time-series data for both the input and output are first

normalized individually by subtracting the mean and di-

viding by the standard deviation of their elements; this step

corresponds to bias removal and variance normalization.

The input and output data are normalized in a moving

window fashion to get rid of any trend or drooling behavior

in the data. Then, a wavelet-based segmentation [18] is

done to extract relevant segments of the data based on

their frequency content.

Data from engineering systems is typically oversampled

to ensure that the underlying dynamics can be captured.

Due to coarse-graining from the symbolization process, an

over-sampled time-series may mask the true nature of the

system dynamics in the symbolic domain (e.g., occurrence

of self loops and irrelevant spurious transitions in the xD-

Markov machine). Time-series is first down-sampled to

1399



6

find the next crucial observation. The first minimum of

the absolute auto-correlation function generated from the

observed time-series is obtained to find the uncorrelated

samples in time. The data sets are then down-sampled

by this lag. The time lag for the output data is used to

downsample both the input and output data. The rationale

is to keep the data synchronous and not miss the relevant

dynamics of the observed output. To avoid discarding

significant amount of data due to downsampling, down-

sampled data using different initial conditions is concate-

nated. Further details of this pre-processing can be found

in [19], [20].

The down-sampled time-series data set is then parti-

tioned using maximum entropy partitioning (MEP) [16]. A

ternary alphabet A (i.e., |A| = 3) has been used to symbol-

ize both the input and output data individually. Clearly, the

choice of the partitioning method for symbolization will

affect the ability of the xD-Markov machine M1→2 to

resolve the dynamics of the underlying cross-dependence.

The choice of the partitioning method is dependent on

the goal of the modeling process, readers are referred to

survey papers [21], [22] for more details on the choice

of symbolization. Work presented here deals only with

the task of modeling the cross-dependence between the

symbol sequences given that some technique has already

been used for discretization of the observed time-series.

Once the data are symbolized, the state splitting algorithm

presented earlier in section 3-B is applied to infer the

variable depth (D) of the cross model from input current

to output voltage for different values of SOH.

6. RESULTS AND INTERPRETATION

This section presents the results to demonstrate the

efficacy of the proposed method for health monitoring of

a lead-acid battery.

5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of States

0 5 10 15 20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of splits

C
ro

s
s
 E

n
tr

o
p
y
 R

a
te

 

 

Variable depth

Uniform depth

D=3

D=2

D=1

Fig. 4. Cross entropy rate vs number of splits (SOH = 1, 3 symbols,
downsample time-lag = 7)Figure 4 shows the behavior of the change in cross

entropy rate (see Eq. (4)), that is defined from input

current to output voltage, with an increasing number of

state splitting in the PFSA constructed from input current

with alphabet A. The output voltage symbol sequence has

also the same cardinality. The analysis is carried out at

the perfect health of the battery i.e., SOH = 1. Figure 4

shows a monotonic decrease in the cross-entropy rate with

negligible improvement after the splitting tree contains

a certain number of states (implying convergence). In

the absence of a competing objective to minimize the

complexity of the model obtained by splitting, the state-

splitting is terminated when addition of new states does

not significantly improve the cross-entropy rate. After the

9th split at the state space of cardinality 21 (denoted

by vertical dotted line), the entropy rate improvement

becomes negligible as shown in Figure 4. This particular

state space is chosen subsequently for modeling the cross

dependence at different levels of SOH. Figure 4 also shows

that the cross entropy rate for uniform depth scenario

decreases with a lower rate than the variable depth scenario

proposed here.

5 10 15 20 25 30 35 40 45 50
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of States

N
o

rm
a
li
z
e
d

 H
a
m

m
in

g
 D

is
ta

n
c
e

Fig. 5. Normalized Hamming distance vs number of states (SOH = 1,
3 symbols, downsample time-lag = 7)

The accuracy of the model obtained by state-splitting

could be analyzed by using it for making predictions on

the output (i.e., voltage) symbol sequence based on the

observations on the input (i.e., current) states. The xD-

Markov model is first learned from 50% of the time-series

of current and voltage with the state splitting algorithm to

construct crossed PFSAs with different states (obtained as

trees of different lengths). All the models are then used to

predict the remaining output symbol sequence (i.e., from

the remaining 50% voltage time-series) using the remain-

ing input symbol sequence (i.e., from the remaining 50%
current time-series). Upon observation of an input state, a

maximum likely prediction on the output symbol is made

using the estimated morph matrix. The error in prediction

is then measured as the normalized Hamming distance

between the actual and the predicted test results for the

voltage symbol sequence which is shown in Figure 5.

The prediction error monotonically decreases and finally

saturates (i.e., no further reduction with extra states) after

the model with 21 states (after 9 splits) is reached, which

was earlier inferred using cross entropy rate.

A change in battery health (i.e., SOH) should cause a
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Fig. 6. Error in prediction of output with decreasing health)

departure in the input-output behavior from the maximum-

likely behavior of the input-output model inferred at

perfect health, i.e., for SOH = 1. To see this, the model

learned at SOH = 1 is used to predict the maximum-

likely voltage symbol sequence based on observations on

current state-space for different health conditions. Figure 6

shows variations in the prediction error with deteriorating

heath of the battery measured as normalized Hamming

distance. The prediction error, based on the state space

from the xD-Markov model at SOH = 1, increases

monotonically as the battery health deteriorates (i.e., SOH

drops). Hence, this prediction error can be used as a

possible indicator of SOH degradation.
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Fig. 7. Anomaly measure vs state of health (SOH)

An anomaly measure for reflecting SOH degradation

is formulated based on the xD-Markov model at the

corresponding health condition of the battery. The xD-

markov machine at SOH = 1 is considered the reference

condition. The measure at an SOH level is defined as

the difference in Frobenius norms of the estimated morph

matrix at that SOH level and that of the estimated morph

matrix at SOH = 1. The morph matrices are estimated

by the approach that is shown in section 3. Based on the

analysis, presented in Figure 4, the stopping criteria for

state splitting is chosen to be 21. Figure 7 presents the

variation of the proposed anomaly measure with respect to

decreasing SOH. The proposed measure (nearly) monoton-

ically increases with decreasing SOH. It is noted that the

model used for estimating anomaly was inferred without

tying the objective function with any performance measure

(like anomaly detection or class separability). It is possible

to supervise the model inference depending on the tasks

like anomaly detection, classification etc. and get a better

behavior than that shown in Figure 7.
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Fig. 8. SOC estimation using the regression-based filter. SOH= 1

Finally, a regression-based filter is designed to estimate

the SOC for the battery. During a training phase, the

expected change in the SOC is learned using a k-Nearest

Neighbor-based (kNN) [23] regression using the input-

output data. For feature extraction, the input-output morph

matrices are first estimated using time-series data for 20

minutes in a sliding window fashion. For each calculation,

a new ”Hotel-Pulse” (see section 4. Pulse duration is 2

minutes) is added to the window while the last pulse

is pushed out. It is noted that the predictions are made

every two minutes (which is the original frequency of

SOC measurement during experiments). 50% of the data

is used for training while the remaining half is used

for test. For computational efficiency and limited data

(the probabilities need significant amount of data for

convergence), the state-splitting for xD-Markov machine

construction is terminated after 7 states with |A| = 3 (i.e.,

the morph matrix having 21 elements). To further reduce

the dimensionality of the feature space, the top 8 (out of

the 21, ∼ 40 %) features are selected by using Principal

Component Analysis (PCA) [23]. These features are then

used to learn the kNN-based regression with k = 4. During

test, the regression is used to make an estimate on the

expected change in the battery SOC. With the previous

SOC known, this is used to predict the current SOC for

the battery. The estimation results are presented in Figure 8

that shows a near-perfect estimation of SOC using the

proposed filter. The average absolute error in the prediction
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of SOC is ∼ 0.6%.

7. SUMMARY AND CONCLUSIONS

A dynamic data-driven symbolic analysis technique

is proposed in this paper to capture the causal cross-

dependence directed from input to output in dynamical

systems. The generative model for input-output depen-

dence is called xD-Markov machine, which is constructed

based on the algebraic structure of probabilistic finite state

automata (PFSA). The state space of the input PFSA in

the xD-Markov machine is obtained via state splitting after

independent symbolization of both input and output time-

series. The proposed approach essentially captures the

cross-dependence towards output without causing an expo-

nential growth in cardinality of the state space. The method

is validated on a set of charging-discharging data of lead-

acid batteries at different SOH conditions. It is shown

that the cross entropy rate, which is the objective function

for state splitting, drops drastically in the first few levels

of state splitting and subsequently gradually converges.

Different types of stopping criteria for state splitting are

described based on the validation data. The predictability

of the output data from observing the input data is also

tested for different levels of splitting in the xD-Markov

model construction. The variation of the prediction error

with respect to a growing extent of state-splitting shows a

similar nature as the cross entropy rate. The prediction

error based on the xD-Markov model at SOH = 1,

which is formulated as the Hamming distance between

actual and predicted output symbol sequences, increases

monotonically as the health of the battery deteriorates (i.e.,

as SOH decreases from 1). An anomaly measure is also

constructed based on the morph matrix of corresponding

xD-Markov machine to predict SOH online. A regression-

based filter is designed on the morph matrices of xD-

Markov machines, which yields in a SOC estimation error

of only ∼ 0.6%.
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