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Abstract—We consider the directions-of-arrival tracking of
multiple narrowband waveforms impinging on a sonar array. As
the captured measurements do not provide any information about
the labeling of the objects, a challenge is to resolve the directions-
of-arrival coming from closely-spaced objects. In order to prevent
track coalescence, we pursue the recently introduced concept of
Minimum Mean OSPA (MMOSPA) estimation and propose a
Gaussian particle filter that is tailored to the Optimal Sub-Pattern
Assignment (OSPA) distance for sets. The main contribution of
this work is to illustrate the benefits of MMOSPA estimation
with a real data set from a large-aperture passive sonar array
mounted in the east of Ft. Lauderdale in Florida, USA.

I. INTRODUCTION

A sensor array such as a sonar or a radar array [17], [24],
[25], [28], [31] consists of several individual sensors arranged
in a specific geometric pattern. In this manner, a sensor array
allows for an increased directional gain and a quick adjustment
of the scan direction. A fundamental signal processing task
for sensor arrays is the determination of the directions-of-
arrival (DOAs) of impinging signals. As measurements from
narrowband signals captured with a sensor array do not provide
any information about the labeling of the objects, a major
challenge is to separate directions-of-arrival of closely-spaced
objects. Traditional methods are MUSIC [31], which is based
on a spectral decomposition, and both Maximum Likelihood
(ML) and Maximum a Posteriori (MAP) estimators [28].

Recent works [3], [10], [11] discussed coalescence effects
of ML/MAP and Minimum Mean Squared Error (MMSE)
estimates for DOAs in the case of extremely closely-spaced
objects. The reason is that the likelihood function is symmetric
with respect to objects labels, i.e., it is impossible to find
out which object is which. A solution is to ignore the object
labels inherently by means of using the concept of Minimum
Mean OSPA (MMOSPA) estimation [3], [9]–[11], [18], [29].
As a MMOSPA estimator is based on the Optimal Sub-Pattern
Assignment (OSPA) metric [27] for sets, it allows for a well-
grounded incorporation of symmetric likelihood functions.
Several multi-target tracking algorithms that are optimized
with respect to the OSPA distance have been developed, e.g.,
there is the Set-JPDAF [29], the Set Multiple Hypothesis
Tracker (MHT) [13], and tailored particle filters [16]. Much
of the groundwork for random finite set (RFS) estimation and
filtering was laid by Mahler, see for example [22], [23].

In this work, we demonstrate the benefits of MMOSPA
techniques for directions-of-arrival tracking by means of a
real data set captured as part of “The Shallow Water Ar-
ray Performance (SWAP)” project [7], [19], [26]. For this

purpose, we develop a MMOSPA-tailored Gaussian particle
filter (named in the following Set-GPF) that is capable of
tracking directions-of-arrival over time without suffering from
coalescence. The experiments clearly show that the Set-GPF
is capable of tracking two closely-spaced objects while the
standard Gaussian particle filter suffers from significant track
coalescence.

The SWAP data set has also been used in [21] for eval-
uating a fuse-before-track approach for multi-object tracking.
While [21] focuses on the fusion of Bearing-Time Records
(BTRs) from different sub-arrays, our approach directly works
with the captured raw data as our focus is to resolve closely-
spaced objects as good as possible. There are several works
about particle filtering techniques for DOA estimation, e.g.,
[30], [33], [34]. The objective of this paper is not to compare
different particle filters for DOA estimation; we want to
demonstrate the benefits of MMOSPA estimation by compar-
ing a particle filter with and without MMOSPA enhancement.

II. PROBLEM DESCRIPTION

We consider a large-aperture passive sonar array in a
shallow-water environment, which is investigated as part of the
“The Shallow Water Array Performance (SWAP)” project [7],
[19], [26]. The array is located in the east of Ft. Lauderdale in
Florida. It consists of 475 hydrophones and is approximately
900 meters long. We are interested in tracking the directions-
of-arrival of waveforms impinging on the sonar array. As a
ground truth, the Automatic Identification System (AIS) data
from surface ships in the surveillance region is available. A
map of the setting is shown in Fig. 1a and the Bearing-Time
Record (BTR) for the considered time span is depicted in
Fig. 1b. The BTR, which is the standard method to display
sonar data, plots the received energy from all directions over
time.

For our experimental analysis, we assume that the number
of objects Nt in the surveillance region is known. For each
object/ship, we aim at tracking the direction-of-arrival of the
impinging wavefront. We consider a scenario where ships can-
not be differentiated via their acoustic signatures. All signals
are assumed to be narrowband with known carrier frequency
but unknown complex amplitude. The direction-of-arrival of a
sound source is modeled to evolve over time according to a
discrete-time constant velocity model. Hence, the state vector
xl
k of the l-th object, l = 1, . . . , Nt, at discrete time k is given

by

xl
k =

[

θlk, θ̇
l
k

]T
, (1)
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(a) Map of the surveillance region including the sonar array and the
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(b) Bearing-Time Record (BTR) and closest ships (according to AIS
information).

Fig. 1: Setting of the SWAP experiment in the east of Ft. Lauderdale, Florida, on September 7, 2007.

where θlk denotes the direction-of-arrival and θ̇lk is the DOA
rate. The system equation for the constant velocity model is

xl
k = A · xl

k−1 + wl
k , (2)

where

• A
l =

(

1 ∆T
0 1

)

is the system matrix with scan

period ∆T and

• wl
k is white Gaussian system noise with covariance

matrix Cw = q0

(

∆T 4

4
∆T 2

2
∆T 2

2 ∆T 2

)

and parameter q0.

As the ships might be close together (in DOA space), we
aim at estimating the joint state vector of all ships, i.e.,

xk :=
[

(x1
k)

T , . . . , (xNt

k )T
]T

∈ R
2·Nt (3)

where, as implied in our MMOSPA discussion, the ordering
amongst the Nt contacts in (3) is immaterial. Finally, we obtain
the joint system equation

xk+1 = Axk + wk (4)

with A = diag(A1, . . . ,ANt) and wk =
[

(w1
k)

T , . . . , (wNt

k )T
]T

.

A. Signal Processing

The raw data from the hydrophones is acquired with
sampling frequency 1 kHz. As described in [19], we apply a
short-term Fourier transform to each hydrophone time series
in order to transfer to the frequency domain (1024 bins,
50% overlap). In this manner, a complex spectrum output is
obtained every 0.5 s.

B. Measurement Model

The sonar array consists of Na hydrophones with known
locations c1, . . . , cNa ∈ R

2 in two-dimensional space, where
we assume that the first hydrophone is located at the origin,

i.e., c1 =
[

0, 0
]T

.

Each sound source (i.e., ship) emits a planar wavefront
impinging on the sonar array. The time difference of the
planar wavefront from the l-th ship with respect to the first
hydrophone c1 is given by

dl,m(xl
k) = (cm)T rlk ,

where rlk =
[

cos(θlk), sin(θ
l
k)
]T

.

For narrowband signals, time-delays result in phase shifts
so that the complex envelope of the received signal zmk at the
m-th hydrophone becomes [3], [17], [24], [25], [28], [31]

zmk =

Nt
∑

l=1

hm(xl
k) · s

l
k + vmk , (5)

where

• slk is the unknown complex signal of l-th ship, which
is distributed according to a zero-mean complex Gaus-
sian random variable,

• hm(xl
k) = ej

2π
λ

dl,m(xl
k) denotes the response of the

m-th hydrophone to a signal with wavelength λ, and

• vmk models additive zero-mean Gaussian noise.

By defining the stacked measurement vector zk =
[

z1k, . . . , z
Na

k

]T
∈ R

Na , the overall measurement equation
becomes

zk = H(xk) · sk + vk (6)

with array response matrix H(xk) = (hm(xl
k))m,l ∈ R

Na·Nt

and stacked noise vector vk =
[

v1k, . . . , v
Na

k

]T
∈ R

Na . From
(6), the following likelihood function can be derived

p(zk |xk) = CN (zk − 0,Cv +H(xk)Cs(H(xk))
H) , (7)

which is a zero-mean complex Gaussian distribution with a
covariance matrix that depends on the covariance matrix Cs

of the signals slk and the covariance matrix Cv of the noise
vk.
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III. GAUSSIAN PARTICLE FILTER FOR DOA ESTIMATION

The purpose of this paper is to demonstrate the effective-
ness of MMOSPA estimation and tracking on real data. To
this end, we discuss an extant multi-target tracking algorithm,
the Gaussian Particle Filter. The GPF may be used directly.
However, in the following we discuss its shortcomings – in
terms of track coalescence – and in the following section we
re-work it with MMOSPA in mind. By using a fixed algorithm,
respectively without and with our MMOSPA enhancement, it
is hoped that the benefits be clear. We make no special claim
that the GPF is the best tracker; that is not our point.

Based on the system and measurement model introduced in
Section II, the objective is to recursively calculate the posterior
density of the joint state vector (3)

p(xk|Zk) , (8)

where Zk := {z1, . . . , zk}. For this purpose, alternating
prediction and measurement update steps are performed, where
the prediction step is given by

p(xk|Zk−1) =

∫

p(xk|xk−1) · p(xk−1|Zk−1) dxk−1 (9)

and the measurement update step follows from Bayes rule

p(xk|Zk) = c · p(zk|xk) · p(xk|Zk−1) (10)

with normalization constanct c.

In this work, we aim at a Gaussian state estimator, i.e., the
posterior density (10) and prediction (9) are approximated as
Gaussians according to

p(xk|Zk) = N (xk − µk,Σk) (11)

and

p(xk|Zk−1) = N (xk|k−1 − µk|k−1,Σk|k−1) . (12)

As the system model is linear, the prediction step can be
performed analytically according to

µk|k−1 = A · µk−1 , (13)

Σk|k−1 = A · Σk−1 ·A
T +Cv . (14)

The measurement equation (6) is highly nonlinear, e.g., it
is symmetric in the object states and it contains non-additive
measurement noise. In order to perform the measurement
update step, we proffer the Gaussian particle filter [20], which
allows for working with the mean and covariance matrix for
the state as in (11) and (12).

With the prediction as a proposal density [20], we obtain
the following algorithm for the measurement update:

1) Draw Np samples {x(i)}
Np

i=1 from the prediction
N (xk|k−1 − µk|k−1,Σk|k−1).

2) Calculate a particle approximation of the posterior

consisting of the particle locations {x(i)}
Np

i=1 and
weights

wi =
p(zk | x

(i))
∑Np

i=1 p(zk | x
(i))

. (15)

3) Calculate the sample mean and covariance of

{x(i)}
Np

i=1

µk =

Np
∑

i=1

wi · x
(i) , (16)

Σk =

Np
∑

i=1

wi · (x
(i) − µk) · (x

(i) − µk)
T .(17)

The Gaussian particle filter in its original formulation is
tailored for optimizing the posterior mean of the state, i.e., it
minimizes the mean squared error

x̂MMSE
k := argmin

x̂k

∫

||x̂k − xk||
2 p(xk |Zk) dxk . (18)

But MMSE estimates suffer markedly from track coalescence
where there is a symmetric likelihood, as might happen due to
exchangeability of objects [3]. In fact, the received signal zmk
in (5) is composed of sums representing the individual signals,
i.e., xl and sl. Hence, the ship states can be permuted without
changing the measurement zmk . For example, let there be two
ships with

• θ1 = 0.1 and s1 = 2 for ship 1, and

• θ2 = 0.3 and s2 = 1 for ship 2.

If we switch the labels “ship 1” and “ship 2”, the received
signal zmk does not change, i.e.,

• θ2 = 0.1 and s2 = 2 for ship 1, and

• θ1 = 0.3 and s1 = 1 for ship 2.

This means that the received signal does not contain labeling
information about the ships, i.e., it is unknown which signal
comes from which ship. Hence, the likelihood function (7) for
DOA estimation is symmetric in the ship states.

As the prior density loses its influence on the posterior
density over time, the posterior progressively becomes more
symmetric (for closely-spaced ships). Reasonably, the mean
of a multi-object probability density that is symmetric in the
object states always coalesces objects.

A detailed discussion and illustration of this phenomenon
can be found in [3], for example. In the Gaussian particle filter,
the described problems of the MMSE estimate can result in a
mean (16) that coalesces closely-spaced ships, which is highly
undesired.

IV. SET GAUSSIAN PARTICLE FILTER (SET-GPF)

This section shows how the Gaussian particle filter pre-
sented in the previous section can be tailored to prevent track
coalescence with the help of MMOSPA estimation techniques.

A systematic solution to the problems of MMSE estimation
described previously is to ignore the labels of the objects. For
this purpose, the basic idea is to replace the squared error in
the MMSE definition with a permutation invariant criterion
called Optimal Sub-Pattern Assignment (OSPA) [27] distance.
The OSPA distance is considered as the standard metric for
performance evaluation of multi-object trackers. For two vec-
tors x = [(x1)T , . . . , (xNt)T ]T and y = [(y1)T , . . . , (yNt)T ]T ,
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which consist of Nt state vectors, the OSPA distance is defined
as

OSPA(x, y)2 :=
1

Nt

min
π∈ΠNt

||x− Pπ(y)||
2 , (19)

where ΠNt
denotes all permutations of the set {1, . . . , Nt}

and Pπ(x) := [(xπ(1))T , . . . , (xπ(Nt))T ]T permutes the single
object states in x according to π. The OSPA distance is a
metric on sets. For two sets with equal cardinality as in (19),
the OSPA distance coincides with the Wasserstein distance
[32].

Based upon (19), the Minimum Mean Optimal Sub-Pattern
Assignment (MMOSPA) can be defined [18] in analogy to the
MMSE estimate, i.e.,

x̂MMOSPA
k := argmin

x̂k

∫

OSPA(xk, x̂k)
2 p(xk|Zk) dx .

(20)
There are always Nt! equivalent MMOSPA estimates because

all permutations of a specific x̂MMOSPA
k also minimize (20).

Due to permutation invariance in the definition of the OSPA
distance, the MMOSPA estimate does not coalesce even for
closely-spaced objects, see also the discussion in [3].

There are various efficient approximations available [12],
[14], [18] for calculating MMOSPA estimates. In case of a
particle representation exact efficient algorithms are available
for two objects and one-dimensional objects [2], [5].

In order to tailor the Gaussian particle filter to perform well
with respect to the OSPA metric, we propose the following
modification of the measurement update step:

• Replace the sample mean of the particles {x(i)}
Np

i=1 in
(16) with the MMOSPA estimate of the particles, and

• replace the sample covariance matrix of the particles

{x(i)}
Np

i=1 in (17) with the unordered joint covariance
[10] of the particles,

which yields

µk = argmin
x̂k

Np
∑

i=1

wi · OSPA(x(i), x̂k)
2 , (21)

Σk =

Np
∑

i=1

wi · min
π∈ΠNt

(Pπ(x
(i))− µk) ·

(Pπ(x
(i))− µk)

T . (22)

instead of (16) and (17).

The above modifications ensure that the Gaussian approx-
imation of the symmetric posterior follows a single “mode”.
But of course, the labeling information of the ships gets lost.

There are efficient algorithms available for calculating
the MMOSPA estimate for empirical distributions, i.e., for
performing the optimization (21). For example, [18] proposed
an iterative approximate algorithm, and [2], [5] derived exact
algorithms. Having calculated the MMOSPA estimate (21), it
is straightforward to determine the unordered joint covariance
(22). Note that the problem of calculating (21) is equivalent to
the problem of calculating a Wasserstein Barycenter [1], [6],
[8], [15] as described in [4].

V. EXPERIMENTAL RESULTS

In order to evaluate the Set-GPF introduced in the pre-
vious section, we consider two scenarios from the SWAP
experiments where two ships cross each others’ paths in DOA
space. Specifically, on September 7, 2007, between 16:00 pm
and 17:20 pm the tracks of two ships “Island Adventure”
and “Seward Johnson” cross twice in DOA space. The ship
“Seward Johnson” is a research vessel that is part of the SWAP
experiments. It is equipped with an acoustic source for evalu-
ating the characteristic of the shallow water environment. We
do not have any information about the ship “Island Adventure”
available. Its signals are coincidentally detected by the sonar
array. The AIS data for the ships serves as a ground truth. In
both scenarios, we use 40 hydrophones from the sonar array.
In order emulate different conditions, the scenarios involve
different parameters for the signal processing.

A. Scenario 1

The first scenario deals with the first crossing of the two
ships between 16:00 pm and 16:40 pm. The specific parameters
are as follows:

• Passband: 200Hz-210Hz

• Carrier frequency: 205Hz

• Time interval: 5 s

• Total number of time steps: 280

• System noise: q0 = 0.000001

• Measurement noise: Cv = 0.001 and Cs = 0.001

• Number of particles: 5000

The ground truth and the estimation results are depicted in
Fig. 2. First, note that the Set-GPF apparently does not detect
the tracks’ crossing. This may seem unfortunate, but is actually
a rather natural by-product of its ability to maintain track on
even closely-spaced objects. That is: since identity (labeling)
has no meaning to MMOSPA (nor, hence, to the Set-GPF) the
event of a cross, as opposed to a “bounce”, is a similarly alien
concept to it. On the other hand, the results clearly show that
the standard GPF tends to coalesce the tracks; and the Set-
GPF does not. That is, the Set-GPF has done what it has been
designed to do.

B. Scenario 2

The second scenario consider the time span from 16:30 pm
and 17:20 pm in which the ships cross for the second time.
The specific parameters are as follows:

• Passband: 410Hz-415Hz

• Carrier frequency: 412.5Hz

• Time interval: 10 s

• Total number of time steps: 300

• System noise: q0 = 0.000001

• Measurement noise: Cv = 0.001 and Cs = 0.001

• Number of particles: 5000
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The ground truth and the estimation results are plotted in
Fig. 3. It appears that the passband from 410Hz to 415Hz
gives a more precise BTR of the tracks than the passband
in Scenario 1. In contrast to the first scenario, this scenario
considers a longer time frame, but the time steps are also
longer. The results are similar to the first scenario: The GPF
coalesces the target but the Set-GPF is able to follow the
tracks accurately. The Set-GPF does not exhibit a “crossing”
behavior; but that is not expected.

VI. CONCLUSIONS

Directions-of-arrival estimation of multiple signals imping-
ing on a sensor array is a fundamental signal processing
problem with many applications. A main challenge is to
resolve different directions-of-arrivals from closely-spaced ob-
jects. For this purpose, we proffer the concept of minimum
mean OSPA estimation, which was recently developed for
optimizing multi-object tracking algorithms with respect to a
set metric. MMOSPA estimation techniques have been applied
to DOA estimation before, see [3], [10], [11]. The contribution
of this work is to demonstrate the benefits of MMOSPA for
DOA tracking by means of real data from a large sonar array
that is part of the SWAP project. In order to deal with the
nonlinearity of the DOA estimation problem, we develop a
set-variant of the Gaussian particle filter (called Set-GPF),
which is in the line of the Set-JPDAF [29] and Set-MHT
[13]. We present two scenarios from the SWAP data set in
which the Set-GPF is able to track two crossing objects, while
the traditional Gaussian particle filter fails by coalescing the
tracks. As a simplifying assumption, we assumed that the
number of objects in the surveillance region is known in
advance. In future work, we plan to drop this assumption and
develop an integrated MMOSPA approach for simultaneous
object tracking and number estimation. Also, it is possible to
reintroduce the track labels such as in [16].
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Fig. 2: Ground truth and tracking results for Scenario 1.
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Fig. 3: Ground truth and tracking results for Scenario 2.
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