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Abstract—We consider the problem of clustering set-valued
observations, i.e., each observation is a set that consists of a
finite number of real vectors. For this purpose, we develop a k-
means algorithm that employs the OSPA distance for measuring
the distance between sets. In particular, we introduce a novel
alternating optimization algorithm for the OSPA barycenter of
sets with varying cardinalities that is required for calculating
cluster centroids efficiently. The benefits of clustering set-valued
data with respect to the OSPA distance are illustrated by means
of simulated experiments in the context of target tracking and
recognition.

Keywords—Clustering, k-means, set-valued data, point sets,
OSPA distance, Wasserstein distance, barycenter.

I. INTRODUCTION

Cluster analysis [25], [26] arises in many fields such
as machine learning, data mining, image processing, signal
processing, and sensor data fusion. The objective of cluster
analysis is to find structure in a data set by partitioning the
observations into clusters that contain (in some way) similar
observations. One of the most common clustering techniques is
the k-means algorithm [26]. The standard k-means algorithm
clusters vector-valued observations with respect to the squared
error. For this purpose, it aims to find clusters that minimize
the Within-Cluster Sum of Squares (WCSS), i.e., the sum of
squared distances between the data and the cluster centroid.
The k-means algorithm starts with initial clusters that are
iteratively improved using an assignment and update step.
In the assignment step, each observation is associated to the
closest cluster centroid. In the update step, the cluster centroids
are updated by calculating the arithmetic mean of the cluster
members.

In many applications, the available data to be clustered is
not in vector format and the squared error criterion cannot be
applied. In this context, many variants of k-means have been
developed in the past. For example, a variant for spherical
data has been developed in [15]; data that consists of intervals
instead of vectors has been considered in [21]; and the squared
error criterion has been replaced by the more general Bregman
divergence in [3]. It was proposed to employ the Wasserstein
distance instead of the squared error for comparing histograms
in works such as [24], [37], [38]. In general, extending the stan-
dard k-means approach to non-Euclidean data types consists of
two steps: (1) Define a reasonable similarity measure on the
data. (2) Develop an algorithm to compute cluster centroids
(also called prototypes). Typically, the second step is the more
challenging as it involves a potentially difficult optimization
problem.

This work considers the clustering of observations that
are set-valued instead of vector-valued, i.e., we are given a

collection of point sets, where each point set consists of a finite
number of real vectors. Set-valued data frequently occurs in
many applications, most especially of interest to us is multi-
object tracking with sensors that do not provide object labels,
and feature extraction methods that extract features without a
specific order. In this work, we propose to cluster set-valued
data with respect to the Optimal Sub-Pattern Assignment
(OSPA) distance [34]. The OSPA distance, which is a variant
of the Wasserstein distance [22], [36], is the standard metric in
multi-object tracking. Hence, we argue that clustering with the
OSPA distance is especially suitable for multi-object tracking
applications.

A. Contributions

The main contributions of this work are the followings:
First, we present the first (provably correct) alternating opti-
mization algorithm for computing the OSPA barycenter for sets
with varying cardinalities. Second, we integrate this algorithm
into the k-means framework in order to cluster set-valued
data with respect to the OSPA distance. Finally, the benefits
of OSPA-based set clustering are demonstrated by means of
two example scenarios in the context of automatic target
recognition and unsupervised learning.

B. Related Work

The OSPA barycenter has its origin in the Minimium Mean
OSPA (MMOSPA) estimator [20] that is used to optimize
multi-target tracking algorithms to perform well with respect
to the OSPA distance. In this context, many algorithms have
been developed for calculating OSPA barycenters in case all
sets have the same cardinalities [6], [8], [12], [13], [20].
Preliminary investigation of the unknown target case can be
found in [2]. In computer vision, a related concept called
the Wasserstein barycenter recently gained significant interest
[1], [14], [27], [32], [38]. For a detailed discussion about
the relation between Wasserstein barycenters and MMOSPA
estimation, we refer to [7].

Clustering set-valued data is also considered in [31] using
a random finite set model [29], where a cluster is modeled
as a Poisson random finite set characterized by its mean,
covariance, and Poisson rate. This model-based approach is
fundamentally different from our distance-based (model-free)
approach. The work [19] treats the clustering of set-valued data
with a similiarity function that became popular for point set
registration [18]. However, the employed similiarity function is
not a true metric on sets and it is not suitable if the cardinalities
of the cluster centroids are unknown.

There are several works about clustering histograms [24],
[37], [38] with the Wasserstein and earth mover’s distance
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(EMD) [30], [33], [38], which are both related to the OSPA
distance. However, histograms are one-dimensional discrete
quantities for which centroids can be computed analytically
as only the weights are free parameters. For point sets, only
the point locations are free parameters so that the calculation
of centroids is quite different. In [28], a novel similarity
measure named “intersection coefficient” is developed in order
to cluster non-ordered discrete data sets.

A further related problem is the unsupervised discovery of
structures in point clouds, e.g., from a laser scanner or depth
sensor [17]. These approaches typically do not work with the
raw point clouds but perform learning on extracted features.

C. Structure

The following Section II introduces the concept of an
OSPA barycenter and derives the novel alternating optimiza-
tion algorithm for its calculation. Based on these results,
Section III develops a set-variant of the k-means algorithm.
Section IV presents simulations and the conclusions are given
in Section V.

II. OSPA BARYCENTER

An essential component of a clustering algorithm such as k-
means is the ability to calculate a cluster centroid (also called
prototype). In the standard k-means formulation for vector-
valued data, the cluster centroid is given by the mean of the
cluster members. However, as we have to deal with sets instead
of vectors, it is unclear how to define a reasonable centroid
using the arithmetic mean. Instead, we employ the Fréchet
mean [10], which generalizes the concept of a mean to general
metric spaces: If we agree on a distance for sets – in this case
the OSPA distance – the “mean set” is defined as the set that
minimizes the squared distance to all other sets.

A. Definitions

The Optimal Sub-Pattern Assignment (OSPA) distance is a
distance measure on finite point sets. It has been introduced in
[34] for the purpose of evaluating the performance of multi-
target trackers. Essentially, the OSPA distance is based on
the Wasserstein distance [22], [36], which is important in
many areas such as computer vision. For sets with the same
cardinality, the OSPA distance and the Wasserstein distance
coincide.

In this work, we focus on the OSPA distance of order 2
and the thresholded Euclidean distance as a base distance.

Definition 1 (2-OSPA Distance). The Optimal Sub-Pattern
Assignment (OSPA) distance [34] of order 2 between two finite
point sets X = {x1, . . . , xm} ⊂ R

d and Y = {y
1
, . . . , y

n
} ⊂

R
d is defined as

OSPAc(X,Y ) :=
(

1

n
min
π∈Πn

m
∑

i=1

dc(xi, yπ(i))
2 + c2 · (n−m)

)1/2

(1)

if m ≤ n, and OSPAp,c(X,Y ) := OSPAp,c(Y,X) if m > n,
where the base distance

dc(x, y) := min{c, ||x− y||} (2)

is the Euclidean distance with threshold c > 0 .

Remark 1. The threshold c is also called cut-off parameter or
clamping factor.

Remark 2. In order to evaluate (1), an optimal assignment
problem has to be solved. For this purpose, several efficient
algorithms are available in literature. For example, the Hungar-
ian algorithm [22], [34] leads to a cubic runtime in max(m,n).

In order to avoid case distinctions, we will use a slightly
rewritten version of (1) as described as follows.

Remark 3. If we introduce the symbol ∞, which stands for a
point in infinity, i.e., dc(·,∞) = c, the squared OSPA distance
(1) can be written as

OSPA(X,Y )2 =

1
max{m,n} min

π∈Πmax{m,n}

max{m,n}
∑

l=1

dc(y
l
, xπ(l))

2 , (3)

where yl := ∞ if l > n and xl := ∞ if l > m.

Equipped with the OSPA distance, we are now ready to
define the Fréchet mean [10] for point sets, which will be
called OSPA barycenter. For this purpose, we are given np

finite point sets

{Xi}
np

i=1 , (4)

where the i-th point set is given by

Xi = {x1,i, . . . , xm(i),i} ⊂ R
d (5)

in which m(i) is the number of points in the set. Note that the
number of points varies from set to set. The point clouds are
associated to weights

{wi}
np

i=1 ⊂ R (6)

with
∑np

i=1 wi = 1.

Definition 2 (OSPA Barycenter). The OSPA barycenter [20]
for a collection of point clouds (4) with weights (6) is defined
as the set Y = {y

1
, . . . , y

n
} ⊂ R

d with cardinality n that
minimizes the Mean Squared OSPA distance

MOSPA(Y, {Xi}
np

i=1, {wi}
np

i=1) :=
np
∑

i=1

wi · OSPAc(Y,Xi)
2 =

np
∑

i=1

wi

max{n,m(i)} · min
π∈Πmax{n,m(i)}

max{n,m(i)}
∑

l=1

dc(y
l
, x

(i)
π(l))

2 .

(7)

Many algorithms have been developed for calculating
OSPA barycenters in case all sets have the same cardinalities
n = m(1) = . . . = m(np), see [6], [8], [12], [13], [20]. For
example, in [20], an alternating optimization algorithm for sets
with equal cardinalities and the Euclidean distance as the base
metric (c = ∞) has been proposed.
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Algorithm 1 Computes the barycenter (9) for vector-valued
data {x(i)}

np

i=1 with weights {w(i)}
np

i=1, see (8), using a base
distance (2) with threshold c.

1: Choose an initial estimate y(0) ∈ R
d

2: t := 0
3: repeat
4: Determine all points with distance less than c to y(t)

I(t+1) = { i ∈ {1, . . . , np} | ||y(t) − xi|| ≤ c} (10)

5: Update barycenter

y(t+1) :=
1

∑

i∈I(t+1) wi

∑

i∈I(t+1)

wi · xi

6: t := t+ 1
7: until Converged
8: return y(t)

B. Alternating Optimization Algorithm for OSPA Barycenters

Calculating an OSPA barycenter in its most general form as
in (7) is extremely challenging. First, one has to optimize over
all possible cardinalities. Second, a thresholded base distance –
which is required for sets with different cardinalities – renders
the problem much more difficult as one cannot resort to the
variational property of the “mean”.

In the following, we will derive a novel (provably correct)
alternating optimization algorithm for solving (7), i.e., the
algorithm is capable to deal with different cardinalities and
with the thresholded base distance.

1) Barycenter for Vectors Using a Thresholded Ground
Distance: For didactic purposes, we first consider the sub-
problem of finding the barycenter of a vector-valued data set
with respect to the thresholded base distance (2). Hence, given
are np vectors

{xi}
np

i=1 ⊂ R
d (8)

and corresponding weights {wi}
np

i=1 ⊂ R. Then, the problem
is to find a vector ŷ ∈ R

d so that

ŷ = argmin
y

np
∑

i=1

wid
c(y, xi)

2 . (9)

For c = ∞, i.e., the Euclidean distance, the solution is
given by the mean

∑np

i=1 wixi. The case c < ∞ is challenging
as the thresholded distance is not differentiable, e.g., it is not
obvious how to derive a Newton method.

We propose an iterative optimization algorithm, see Al-
gorithm 1. The key idea is as follows: Based on an initial
barycenter estimate y(0) ∈ R

d, an “improved” barycenter is

given by the mean of all xi, i ∈ {1, . . . , np}, for which

||y(0) − xi|| < c holds.

It can be shown that each iteration of Algorithm 1 improves
the quality of the current barycenter estimate.

Proof of Algorithm 1: First, we define cost function

Costc(y, I) :=
∑

i∈I

wi||y − xi||
2 + c ·

∑

i∈{1,...,np}\I

wi . (11)

Then, we have to show that

Costc(yj+1, I(t+1)) ≤ Costc(yj , I(t)) , (12)

which is achieved in the following steps:

1) Costc(y(t+1), I(t)) ≤ Costc(yj , I(t)) due to the prop-
erties of the mean.

2) Let I(t+1) = I(t) \ D ∪ A, where A denotes the
particles that are moved “below” the threshold and D
are the particles that are moved “above” the threshold
c.

3) Costc(y(t+1), I(t) \ D) ≤ Costc(y(t+1), I(t)) as all

points in D have a distance more than c from y(t+1).

4) Costc(y(t+1), I(t) \D ∪A) ≤ Costc(y(t+1), I(t) \D)
as all points in A have a distance less than c from
y(t+1).

⇒ Equation (12) holds.

We note that Algorithm 1 resembles an instance of the
mean shift principle [11]. However, a direct derivation based
on the mean shift principle is not possible as the thresholded
distance is not differentiable. Also, (9) can be interpreted as an
M-estimator from robust statistics [23], where the traditional
squared error loss is replaced by a loss function that forgives
outliers (in our case the thresholded squared error loss).

2) General Case: Equipped with the previously introduced
algorithm for dealing with the thresholded distance, we are
now in the position to develop the alternating optimization
algorithm for the general OSPA barycenter of sets with varying
cardinalities (7). The algorithm shares the widely-used idea of
alternating solving subproblems, see for example [16], [19],
[20], [35].

For all possible cardinalities n of Y , we start with an initial
barycenter estimate and repeat the following two steps until
convergence is reached:

1) Calculate all optimal permutations in (7) with respect
to the current barycenter.

2) Determine an improved estimate by minimizing (7)
for the case that the permutations are given.

For the first step, np assignment problems have to be solved as
the OSPA distance has to be calculated np times, see Remark 2.
The second step requires to find the barycenter for vectors with
respect to the thresholded distance such as (9). Hence, for the
second step, we can transfer the idea from Algorithm 1.

Algorithm 2 shows the pseudo-code of overall barycenter
algorithm. Note that we integrated only one iteration from
Algorithm 1 in order to avoid nested optimizations. The
correctness of Algorithm 2 follows from the correctness of
Algorithm 1.

III. CLUSTERING SET-VALUED DATA

This section considers the problem of clustering set-valued
data. More precisely, given a data set consisting of np obser-
vations

{Xi}
np

i=1 , (14)
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Algorithm 2 Calculates the OSPA barycenter (7) of a set of
point sets {Xi}

np

i=1 with weights {wi}
np

i=1.

1: for n = 1, . . . , nmax do

2: Choose an initial estimate Y
(0)
n := {y(0)

1
, . . . , y(0)

n
}

3: t := 0.
4: repeat

5: Calculate optimal permutations w.r.t Y
(t)
n

πi := argmin
π∈Πmax{n,m(i)}

max{n,m(i)}
∑

l=1

dc(y(t)
l
, xπ(l),i)

2 .

6: Caclulate improved barycenter

Y (t+1)
n = {y(t+1)

1
, . . . , y(t+1)

n
}

with

y(t+1)
l

:= 1∑
i∈I w̃i

·
∑

i∈I
(t)
l

w̃i · xπi(l),i
,

for all l ∈ {1, . . . ,m(i)}, where

I
(t)
l := { i ∈ {1, . . . , np} | ||y(t)

l
− xπi(l),i

|| ≤ c

and xπi(l),i
< ∞}

and
w̃i = wi

/

max{n,m(i)} .

7: t := t+ 1
8: until Converged
9: Compute cost

C(n) := MOSPA(Y (t)
n , {Xi}

np

i=1, {wi}
np

i=1)

10: Save barycenter

Ŷn := Y (t)
n

11: end for
12: Find cardinality with minimum cost

n̂ := argmin
n

C(n) (13)

13: return Barycenter Ŷn̂ with cardinality n̂

where each observation is a finite point set. The i-th point set
is given by

Xi = {x1,i, . . . , xm(i),i} ⊂ R
d (15)

in which m(i) is the number of points in the set.

The objective is to partition the data set into k clusters C =
{Cj}

k
j=1, where Cj ⊂ {1, . . . , np}. Each cluster is associated

with a cluster centroid. For the vector-valued k-means, the
cluster centroid is the mean of all cluster members. For the
point cloud case, we propose to employ the OSPA barycenter
(7) of the cluster members as the cluster centroid, i.e., each
cluster Cj is associated to the cluster centroid

Ŷj = argmin
Y

1
|Cj |

∑

i∈Cj

OSPAc(Xi, Y )2 . (16)

According to the k-means approach, the quality of the clusters
is assessed with the help of the Within-Cluster Sum of Squares

Algorithm 3 Set-k-means: Performs a clustering (16) of the
set-valued data {Xi}

np

i=1 with respect to the OSPA distance.

1: Choose initial clusters {Ŷ
(0)
j }kj=1

2: t := 0
3: repeat
4: Cluster assignment step:

For all j ∈ {1, . . . , k}

C
(t+1)
j := {i ∈ {1, . . . , np} | OSPAc(Xi, Ŷj)

2 ≤

OSPAc(Xi, Ŷr)
2 for all r = 1 . . . k} . (18)

5: Cluster centroid update step:
For all j ∈ {1, . . . , k}

Ŷ
(t+1)
j := argmin

Y

1

|C
(t+1)
j

|

∑

i∈C
(t+1)
j

OSPAc(Xi, Y )2 .

(19)
6: t := t+ 1
7: until Converged

8: return {Ŷ
(t)
l }kj=1

(WCSS) [9] so that we aim at finding a clustering Ĉ with

Ĉ = argmin
C

k
∑

j=1

∑

i∈Cj

OSPAc(Ŷj , Xi)
2 . (17)

Hence, the objective is to find clusters that minimize the
sum of squared OSPA distances of the observations to the
cluster centroid.

In order to minimize (17), we propose the following “Set-
k-means” algorithm that starts with a (random) initial guess

of the cluster centers {Ŷ
(0)
j }kj=1 and iteratively calculates

improved clusters. The algorithm results from the standard
k-means algorithm from systematic replacement the squared
error with the OSPA distance, where instead of the arithmetic
mean the OSPA barycenter is used.

1) Cluster assignment step: Recalculates the cluster as-
signments by assigning each observation to its nearest
cluster center with respect to the OSPA distance.

2) Cluster set-centroid update step: Based on the up-
dated clusters, new cluster centroids are calculated
using the OSPA barycenter.

As both steps decrease the set version of the WCSS (17),
the Set-k-means algorithm eventually converges. In general,
it is not necessary that (19) finds the optimal barycenter; an
improved estimate is sufficient.

The calculation of (18) in Algorithm 3 requires the repeated
evaluation of the OSPA distance, which can be done as de-
scribed in Remark 2. The barycenter in (19) can be computed
efficiently with Algorithm 2.

IV. EVALUATION

We demonstrate the benefits of the Set-k-means algorithm
by means of two simulated experiments.
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(a) Point set X1. (b) Point set X2.

(c) Point set X3. (d) Point set X4.

(e) Point set X5. (f) Point set X6.

(g) Point set X7. (h) Point set X8.

(i) Point set X9. (j) Point set X10.

Fig. 1: Example data set {Xi}
10
i=1.

(a) Cluster centroid Y1. (b) Cluster centroid Y2.

Fig. 2: Clustering results.

A. Experiment 1

The first experiment is performed with an eye to unsu-
pervised target recognition and classification. Fig. 1 depicts
np = 10 sets (4). Each set Xi, i = 1 . . . , 10, represents a
radar scan of an extended target, where each point in Xi is a
single reflection, see [4], [5]. Note that the sets have different
cardinalities.

Assume we know that there are two different types of
extended targets. Then, the following two questions are of
high interest: How does the typical target of type 1 and type 2
look, and which set Xi belongs to which type? Actually, this
is a clustering problem where the number of clusters is known
(k = 2) and the data to be clustered is set-valued.

Fig. 2 depicts the clustering results of Algorithm 2 when
applied to the data set in Fig. 1. We used the OSPA distance
with threshold c = 0.5 (the size of the surveillance area is
2× 2). As the data set is quite small and there are no runtime
issues, we ran Algorithm 2 np times, using all observations
Xi as an initialization.

It can clearly be seen that the calculated cluster centroid
for cluster 1 is a star-shaped point pattern formed by 9 points,
and the cluster centroid of cluster 2 is an arrow-shaped point
pattern, also with 9 points. Note that the number of points per
cluster centroid was not known in advance. It is determined as
part of the clustering algorithm.

Remark 4. The data set was generated by artificially perturbing
the ground truth with Gaussian noise and adding uniformly
distributed “false points”. However, as Set-k-means is not
model-based, all the details of how the point sets are generated
are not relevant. The only free parameter to adjust is the
threshold c in (2).

B. Experiment 2

The purpose of the second experiment is to show how Set-
k-means can be used to detect structure in a data set that re-
mains hidden with the standard vector k-means. Suppose each
observation in the data set consists of two two-dimensional
features. The feature values are generated as follows: With
equal probability draw the features either according to

• x1,i ∼ N (
[

2, 2
]T

, 1
2 I2) and x2,i ∼ N (

[

4, 4
]T

, 1
2 I2)

or

• x1,i ∼ N (
[

4, 2
]T

, 1
2 I2) and x2,i ∼ N (

[

6, 0
]T

, 1
2 I2),
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(a) Illustration of the data set and initial
cluster centroids.
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(b) Clustering results of the standard k-means
algorithm.
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(c) Clustering results of the Set-k-means al-
gorithm.

Fig. 3: Experiment 2: Each observation in the data consists of two two-dimensional features x1,i (green markers) and x2,i (red

markers), where i ∈ {1, . . . 30} is the index. The lines connect the first feature x1,i with the second feature x2,i. In (a), the
black markers indicate the two initial cluster centers (asterisk and cross indicate features 1 and 2, respectively). In (b) and (c),
the black markers show the cluster centroids and the line color for the observations indicates the cluster.

where I2 = diag([1, 1]) is the two-dimensional identity matrix.
As this is a Gaussian mixture density with two components,
we expect two clusters with cluster centroids at means of the
Gaussians.

However, the data is now corrupted by an additional noise
source: We introduce an association uncertainty by randomly
switching the values of x1,i and x2,i. As a consequence, the
ordering of the features in the observations gets lost. The
resulting data set consisting of 30 observations is visualized in
Fig. 3a.

First, we apply the standard k-means algorithm to the data
(with k = 2). For this purpose, we stack the two features in

one single vector
[

xT
1,i, x

T
2,i

]T
. Fig. 3b shows the clustering

results. Due to the random switching of the feature values, k-
means is not able to find the underlying structure of the data.
Next, we treat the observations as sets, i.e., Xi = {x1,i, x2,i}
and apply the Set-k-means Algorithm 3 this work. As all sets
have the same cardinalities, we set the thresholding parameter
of the OSPA distance to c = ∞, i.e., we use the Euclidean
distance. In this case, the OSPA distance coincides with the
Wasserstein distance. As depicted in Fig. 3c, the Set-k-means
algorithm is capable of perfectly identifying the underlying
structure of the data. The reason is that it does not make any
assumption on the ordering of the features and optimizes the
OSPA/Wasserstein distance.

V. CONCLUSIONS

Set-valued data occurs nearly everywhere – in computer
vision, machine learning, signal processing, data science, and
many more. A fundamental problem is to identify the structure
of set-valued data, i.e., to summarize similar sets in a cluster.

In this work, we have derived an algorithm for clustering
set-valued data with respect to a true distance metric on sets –
the OSPA distance. The key technique is a novel algorithm for
efficiently calculating the OSPA barycenter of sets with varying
cardinalities. The final algorithm is easy to implement and
comes with a low computational complexity. This approach

is not model-based, i.e., no assumption on the generation of
the data is exploited. The only free parameter to adjust is the
threshold for the base distance in the OSPA distance. We have
demonstrated two application scenarios for the Set-k-means
algorithm. (i) Set-k-means can be used in automatic target
recognition for identifying target types. (ii) In unsupervised
learning problems, Set-k-means might be able to discover
structures that are not visible with standard methods.

In future work, we will investigate initialization techniques
for the Set-k-means algorithm. Also, we will consider further
applications of both the OSPA barycenter algorithm and Set-
k-means. For example, the OSPA barycenter algorithm can be
used in multi-target trackers estimate the number of targets
systematically, such as in [2]. Specifically, we think that our
approach is especially useful for applications involving sparse
point clouds, where the extraction of features is not possible.
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