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Abstract—The paper deals with the fusion of multiobject
information over a network of heterogeneous and geographically
dispersed nodes with sensing, communication and processing
capabilities. To exploit the benefits of sensor networks for
multiobject estimation problems, like e.g. multitarget tracking
and multirobot SLAM (Simultaneous Localization and Mapping),
a key issue to be addressed is how to consistently fuse (average)
locally updated multiobject densities. In this paper we discuss the
generalization of Kullback-Leibler average, originally conceived
for single-object densities (i.e. probability density functions) to
(both unlabeled and labeled) multiobject densities. Then, with a
view to develop scalable and reliable distributed multiobject esti-
mation algorithms, we review approaches to iteratively compute,
in each node of the network, the collective multiobject average
via scalable and neighborwise computations.

Index Terms—multiobject estimation; sensor networks; dis-
tributed fusion; random finite sets; consensus; multitarget track-
ing.

I. INTRODUCTION

The recent breakthrough in wireless sensor technology

has opened up the possibility to develop efficient surveil-

lance/monitoring systems consisting of radio interconnections

of a multitude of low cost and low energy consumption devices

with sensing, communication and processing capabilities. To

best exploit this emerging technology, it is however fundamen-

tal to redesign multiobject estimation algorithms taking into

account the following issues: 1) the single node has limited

sensing and computational capabilities and must also limit

data transmission, which is primarily responsible for energy

consumption; 2) processing must be carried out in a distributed

fashion with no coordination of a central unit and in a scalable

way with respect to the network size; 3) each node is unaware

of the correlations existing between its own information and

the information received from other nodes.

In recent years, consensus has emerged as a powerful tool

for distributed computation over networks [1], [2] and has

been widely used in distributed parameter/state estimation

algorithms [3]–[10]. In particular, a consensus algorithm can

be used for distributed averaging over a network; each node

(agent) aims to compute the collective average of a given

quantity by iterative regional averages, where the terms col-

lective and regional mean over all network nodes and, respec-

tively, over neighboring nodes only. Central to consensus for

distributed state estimation is the notion of Kullback-Leibler

average for probability density functions [10]. An important

functionality of a surveilance/monitoring sensor network is

multiobject estimation (i.e. the joint detection and state es-

timation of multiple objects of interest in a given area under

surveillance/monitoring) for which consensus on multiobject

information among the different nodes of the network becomes

a key issue.

In this paper, we provide an overview of Kullback-Leibler

average for multiobject probability density functions. In par-

ticular, we review the generalization of the Kullback-Leibler

average to multiobject probability densities proposed in [11],

and how this concept is exploited to develop an effective

distributed multiobject estimation algorithm based on the

Gaussian Mixture Cardinalized Probability Hypothesis Den-

sity (GM-CPHD) filter [12], [13]. We also review the recent

application of Kullback-Leibler fusion for multiobject den-

sities developed in [11] to the recently introduced labeled

random finite set models [14]–[16], which have lead to more

accurate distributed multitarget tracking algorithms proposed

in [17].

The rest of the paper is organized as follows. Section

II introduces the necessary background for modelling mul-

tiobjects as random finite sets and reviews different (both

unlabeled and labeled) multiobject representations. Section

III recalls from [11] the notion of Kullback-Leibler aver-

age (fusion) of multiobject distributions and, in particular,

provides new analytical expressions for the Kullback-Leibler

fusion of certain labeled multiobject densities. Section IV

shows how consensus can be exploited in order to fuse, in

a scalable fashion, multiobject densities over a peer-to-peer

(coordination-free) network. Section V outlines the structure

of a general distributed multiobject estimation algorithm based

on Kullback-Leibler fusion and consensus. Section VI shows

a case-study concerning the application of Kullback-Leibler

fusion and consensus to multitarget tracking. Finally section
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VII provides concluding remarks and perspectives for future

work.

II. MULTIOBJECT REPRESENTATION

Notation

Throughout the paper, the following notation will be

adopted. R,R+,N denote the sets of real, nonnegative real

and, respectively, positive integer numbers. E [·] denotes the

expectation operator. |X| denotes the cardinality (number of

elements) of the finite set X . Given two real-valued functions

f and g defined over the same domain, their inner product is

defined as < f, g >
△
=
∫

f g where the integral (possibly a set

integral to be defined later) is extended to the whole domain.

Then, the operators ⊕ and ⊙ [10], [11], [18] are defined as

follows:

f ⊕ g
△
= f g < f, g >−1

ω ⊙ f
△
= fω < fω, 1 >−1

for any ω > 0.

Multiobject estimation

Multiobject estimation aims to jointly detect an unknown

number of objects of interest in a given area of competence and

to estimate their states. This has relevant applications, for in-

stance, in multitarget tracking [19]–[23], SLAM (Simultaneous

Localization and Mapping) [24] and multisource estimation

[25] wherein the objects of interest are respectively targets

moving in the surveillance area, relevant elements (landmarks)

of the environment surrounding a navigating robot or vehicle,

sources diffusing heat or pollutants in a monitored area. Since

the multiobject to be estimated is characterised by a twofold

randomness in both the number of objects and in their states,

a natural approach that will be pursued in this paper is to

represent it in terms of a Random Finite Set (RFS).

Random finite sets

An RFS X ⊂ X is a random variable taking values

in F(X), the collection of all finite subsets of the single-

object state space X. While F(X) does not inherit the usual

Euclidean notion of probability density from X, a measure-

theoretic notion of probability density on F(X) is available

[26]. However, we adopt the Finite Set Statistic (FISST)

notion of density since it is convenient and by-passes measure

theoretic constructs [27], [28]. Hereafter, the basic concepts of

FISST needed for the subsequent developments will be briefly

reviewed.

An RFS X is completely characterized by its multiobject

density. Multiobject densities of RFSs are defined with respect

to the reference measure µ given by

µ(T ) =
∞
∑

i=0

1

i!Ki

∫

Xi

1T ({x1, . . . , xi})d(x1, . . . , xi) (1)

for any (measurable) subset T of F(X). The measure µ is

analogous to the Lebesgue measure on X (indeed it is the

unnormalized distribution of a Poisson RFS with unit intensity

u = 1/K when the state space X is bounded). Moreover, it

was shown in [26] that for this choice of reference measure,

the integral of a function π : F(X) → R, given by

∫

π(X)µ(dX) =

∞
∑

i=0

1

i!Ki

∫

Xi

π({x1, . . . , xi})d(x1, . . . , xi),

(2)

is equivalent to Mahler’s set integral [28], which is defined for

a generic function g(·) as follows:

∫

S

g (X) δX
△
=

∞
∑

n=0

1

n!

∫

Sn

g ({x1, . . . , xn}) d(x1, . . . , xn) .

(3)

In particular,

β(S)
△
= Prob (X ⊂ S) =

∫

S

f (X) δX

gives the probability that the RFS X is included in the subset S
of X, and f(·) is called the FISST density. Note that while the

FISST density f(·) is not a probability density, it is equivalent

to the multiobject probability π(·) as shown in [26]. This result

is key to the generalization of concepts involving probability

density to multioject FISST densities. Hence, in this work, we

use the FISST density as a probability density.

The first-order moment of the multiobject density, better

known as Probability Hypothesis Density (PHD) or intensity

function, has been found to be a very successful characteriza-

tion [28]. In order to define the PHD function, let us introduce

the number of elements of the RFS X within S ⊆ X which

is clearly given by

n(S) =

∫

S

∑

ξ∈X

δξ(x)dx

where δξ(·) is the Dirac delta centered at ξ. The PHD function

is defined such that the expected number of elements of X in

S is obtained by

E [n(S)] =

∫

S

d(x) dx . (4)

Without loss of generality, the PHD function can be expressed

as

d (x) = n s (x) (5)

where

n = E [n] = E [n (X)] =
∞
∑

n=0

np(n) (6)

s (x) = d (x) /n . (7)

are respectively the expected number of objects and a single-

object PDF, and p(n) denotes the cardinality PMF (Probability

Mass Function) i.e. the probability that the RFS X have n
elements.
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Poisson and iid cluster RFSs

Hereafter, two commonly used unlabeled representations of

multiobjects, i.e. Poisson and iid cluster RFSs (processes) will

be reviewed. A Poisson RFS is uniquely characterised by its

intensity function d(·) as follows.

Definition 1 - Given a function d(·) : X → R+, an RFS

on F (X) with multiobject density

f(X) = e−
∫
d(x)dx

∏

x∈X

d(x) = e−n n|X|
∏

x∈X

s(x) (8)

is called Poisson process with PHD function (intensity) d(·),
or equivalently expected number of objects n =

∫

d(x)dx and

location PDF s(·) = d(·)/n.

An iid (independent identically distributed) cluster RFS is

completely characterised by its intensity function d(·) and

cardinality PMF p(n) as follows.

Definition 2 - Given a PMF p(n) on the nonnegative

integers and a PDF s(·) on X, an RFS on F (X) with

multiobject density

f (X) = |X|! p (|X|)
∏

x∈X

s (x) (9)

is called iid cluster process with cardinality PMF p(·) and

location PDF s(·), or equivalently PHD function d(·) = ns(·)
where n =

∑∞
n=0 np(n).

Comparing (8) and (9), it is clear that a Poisson RFS is

nothing but a special case of iid cluster RFS wherein the

number of objects is restricted to be Poisson-distributed with

parameter n, i.e. p(n) = e−n nn / n!. Assuming that the

multitarget RFSs are Poisson or iid cluster processes is at

the basis of the PHD [29] or, respectively, Cardinalized PHD

(CPHD) [12] filtering approaches to multiobject estimation.

For this reason, Poisson and iid cluster RFSs will be also

referred to in the sequel as PHD and, respectively, CPHD

representations of multiobjects.

Labeled random finite sets

In certain applications of multiobject estimation (e.g. mul-

titarget tracking) the aim is not only to estimate the number

and the states of the objects, but also to keep track of their

trajectories over time. To this end, the notion of label is

introduced in the RFS framework [15]- [16] so that each object

can be uniquely identified and its track be reconstructed. Let

L = {ℓi : i ∈ N} be the discrete label set. To incorporate

object identity, a label ℓ ∈ L is appended to the state x ∈ X

of each object and a multiobject is accordingly regarded as

an RFS on the labeled state space X × L, i.e. a labeled

state x = (x, ℓ) ∈ X × L is assigned to each object. Let

L : X×L → L be the projector of the labeled state space into

the label set so that L ((x, ℓ)) = ℓ. Then, to avoid situations

in which multiple objects have the same label, the following

definition of labeled RFS is introduced.

Definition 3 - A labeled RFS X with state space X and

label set L is an RFS on X × L such that any realization

satisfies

|X| = |L (X)| . (10)

Notice that the condition (10) imposes that all elements of X

have distinct labels. The set integral (3) is extended to any

function g : F (X× L) → R defined on a labeled RFS, as

follows:

∫

g (X) δX
△
=

∞
∑

n=0

1

n!

∑

ℓ1,...,ℓn∈L
∫

g ({(x1, ℓ1), . . . , (xn, ℓn)}) d(x1, . . . , xn) .

(11)

Hereinafter labeled states, spaces, multiobject densities will

be denoted by bold symbols, e.g. x, X, f(·) instead of their

unlabelled counterparts x, X , f(·).

Labeled multi-Bernouilli RFS

A labeled multi-Bernouilli (LMB) RFS is a labeled version

of the multi-Bernouilli RFS which, in turn, is a multiobject

extension of the Bernouilli RFS. Recall that a Bernouilli RFS

X on X has probability r of being a singleton whose unique

element is distributed on X according to a suitable PDF s(·),

and probability q
△
= 1 − r of being empty. Then, a multi-

Bernouilli RFS X on X is the union of a fixed number I of

independent Bernouilli RFSs X(i) with existence probability

r(i) ∈ (0, 1) and distributed on X according to the PDF s(i)(·).
An LMB RFS X with state space X and label set L is obtained

from an unlabeled multi-Bernouilli RFS by appending distinct

labels to the Bernouilli components.

Definition 4 - Given r(ℓ) ∈ (0, 1) and PDFs s(ℓ)(·) on X,

for any ℓ ∈ L, an RFS on F (X× L) with multiobject density

f (X) = ∆(X)
∏

ℓ∈L(X)

r(ℓ)
∏

ℓ∈L\L(X)

[

1− r(ℓ)
]

∏

(x,ℓ)∈X

s(ℓ)(x)

(12)

∆(X) =

{

1, if |X| = |L (X)|
0, otherwise

is called LMB with labeled existence probabilities r(ℓ) and

location PDFs sℓ(·).

III. MULTIOBJECT FUSION

The focus in this paper is on multiagent multiobejct es-

timation. More precisely, multiple agents try to cooperatively

estimate the multiobject of interest combining their own infor-

mation. Let N denote the finite set of agents and assume that,

for each individual agent i ∈ N , a labeled (or unlabeled) mul-

tiobject density fi(·) (or fi(·)) be available. Then, a key issue

is how to consistently fuse such multiobject densities taking

into account that the agents may share common information

and that such common information is impossible to single

out. Hence, optimal (Bayes) fusion [30], [31] has to be ruled

out and some robust suboptimal fusion approach has to be

undertaken. In this respect, the paradigm of Kullback-Leibler

fusion (average) has been successfully introduced in [10]

for single-object PDFs and has been extended to unlabeled

(CPHD) multiobject densities in [11].
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Kullback-Leibler fusion

Let us first define the Kullback-Leibler divergence (distance)

(KLD) between two (possibly labeled) multiobject densities

f(X) and g(X) by

DKL (f ‖ g)
△
=

∫

f (X) log
f(X)

g(X)
δX (13)

where the integral in (13) must be interpreted as a set integral

according to the definition (11). Then, the weighted Kullback-

Leibler average (KLA) f of the agent multiobject densities fi,

i ∈ N , is defined as follows

f = arg inf
f

∑

i∈N

ωi DKL

(

f ‖ f i
)

. (14)

with weights ωi satisfying

ωi ≥ 0,
∑

i∈N

ωi = 1 . (15)

Notice from (14) that the weighted KLA of the agent densities

is the one that minimizes the weighted sum of distances from

such densities. In particular, the choice ωi = 1/|N | for any

i ∈ N in (14) provides the (unweighted) KLA which averages

the agent densities giving to all of them the same level of

confidence. An interesting interpretation of such a notion can

be given recalling that, in Bayesian statistics, the KLD (13)

can be seen as the information gain achieved when moving

from a prior g(X) to a posterior f(X).
The following fundamental result holds.

Theorem 1 (Kullback-Leibler fusion of general multiobject

densities) - The weighted KLA defined in (14) turns out to

be given by

f (X) =

∏

i∈N

[fi (X)]
ωi

∫

∏

i∈N

[fi (X)]
ωi δX

. (16)

Proof: The result for labeled multiobject densities can be

proved in the same way as its unlabeled counterpart, i.e.

Theorem 1 in [11], by replacing the set integral (3) with (11).

Notice that (16) states that the fused density f is nothing

but the normalized weighted geometric mean of the agent

densities. Making use of the operators ⊕ and ⊙ previously

introduced, (16) can be more compactly rewritten as

f =
⊕

i∈N

(ωi ⊙ fi) . (17)

It must be pointed out that the fusion rule (16), which has

been derived as Kullback-Leibler average of the local multi-

object densities, coincides with the Generalized Covariance

Intersection for multiobject fusion first proposed by Mahler

[31] and is also called Exponential Mixture Density in [35].

Hereafter, the above result on Kullback-Leibler fusion of

general multiobject densities will be specialized to PHD,

CPHD and LMB representations in the following corollaries

whose proofs will be omitted due to lack of space.

Corollary 1 (Fusion of PHDs [11]) - The Kullback-Leibler

fusion of agent Poisson RFSs with PHD functions di(x) =
nisi(x), i ∈ N , and fusion weights ωi satisfying (15), is a

Poisson RFS with PHD function d(x) = n s(x), where

n =

∫

∏

i∈N

[ni si(x)]
ωi dx (18)

s(x) =

∏

i∈N

si(x)
ωi

∫

∏

i∈N

si(x)
ωi dx

=
⊕

i∈N

(ωi ⊙ si) (x) (19)

d(x) =
∏

i∈N

di(x)
ωi . (20)

Corollary 2 (Fusion of CPHDs [11]) - The Kullback-

Leibler fusion of agent iid cluster RFSs with cardinality PMFs

pi(·) and location PDFs si(·), i ∈ N , and fusion weights ωi

satisfying (15), is an iid cluster RFS with location PDF s(·)
given by (19) and cardinality PMF

p(n) =

∏

i∈N

pi(n)
ωi

{

∫

∏

i∈N

si(x)
ωidx

}n

∞
∑

j=0

∏

i∈N

pi(j)
ωi

{

∫

∏

i∈N

si(x)
ωidx

}j
. (21)

Corollary 3 (Fusion of LMBs [17]) - The Kullback-Leibler

fusion of agent LMBs with existence probabilities
{

r
(ℓ)
i

}

ℓ∈L

and location PDFs
{

s
(ℓ)
i (·)

}

ℓ∈L

, i ∈ N , and fusion weights

ωi satisfying (15), is an LMB with existence probabilities
{

r(ℓ)
}

ℓ∈L
and location PDFs

{

s(ℓ)(x)
}

ℓ∈L
given by

r(ℓ) =

∫

∏

i∈N

[

r
(ℓ)
i s

(ℓ)
i (x)

]ωi

dx

∏

i∈N

(

1− r
(ℓ)
i

)ωi

+

∫

∏

i∈N

[

r
(ℓ)
i s

(ℓ)
i (x)

]ωi

dx

(22)

s(ℓ)(x) =
⊕

i∈N

(

ωi ⊙ s
(ℓ)
i

)

(x) . (23)

It is worth to notice that for all the considered represen-

tations (PHD, CPHD and LMB), the Kullback-Leibler fused

(average) location PDFs are obtained by normalised weighted

(by ωi) geometric averaging of the agent location PDFs.

Conversely, the fused expected number of objects n for PHD

representations, cardinality PMF p(·) for CPHD representa-

tions and existence probabilities r(ℓ)) for LMB representations

are given by more complicated expressions involving location

PDFs as well.

IV. MULTIOBJECT CONSENSUS

From now on, it is assumed that agents are interconnected

to form a network so that each agent can actually interchange

multiobject information only with a subset of neighbours. The

key issue to be addressed in this section is how to carry out
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the multiobject fusion described in the previous section over

the network in a fully scalable, consistent and distributed way.

Network model

Let us consider a network of multiobject estimation agents

(nodes) as schematized in Fig. 1. The network consists of

Fig. 1. Network model

heterogeneous and geographically dispersed nodes that have

processing, communication and sensing capabilities. More

specifically, each node can process local data as well as

exchange data with the neighbors and can get measurements

related to objects present in the surrounding environment. The

network of interest is characterized by the following features:

1) it has no central fusion node; 2) nodes are unaware of

the network topology, i.e. the number of nodes and their

connections.

The network can be described in terms of a directed graph

G = (N ,A) where N is the set of nodes (agents) and

A ⊆ N ×N the set of arcs, representing links (connections)

between agents. In particular, (i, j) belongs to A if node

j can receive data from node i. For each node j ∈ N ,

Nj
△
= {i ∈ N : (i, j) ∈ A} denotes its set of in-neighbors,

i.e. the set of nodes from which node j can receive data. By

definition, (j, j) ∈ A for any node j ∈ N and, hence, j ∈ Nj

for all j.

Consensus

Consensus [1], [2] has emerged as a powerful tool for dis-

tributed computation (e.g. averaging, minimisation, maximisa-

tion, . . . ) over networks and has found widespread application

in distributed parameter/state estimation [3]–[10]. In essence,

consensus aims to perform a collective computation over a

whole network by iterating, in each node i of the network, a

sequence of regional computations of the same type involving

the subnetwork Ni of its in-neighbors.

In the context of this work, it is assumed that each node

i is provided with a local (labeled or unlabelled) multiobject

density fi and wishes to compute, in a distributed and scalable

way, the collective Kullback-Leibler fusion

f =
⊕

i∈N

(

1

|N |
⊙ fi

)

=
1

|N |
⊙

(

⊕

i∈N

fi

)

. (24)

To this end, let f̂i,0 = fi, then a consensus algorithm for the

computation of (24) takes the iterative form

f̂i,k+1(X) =
⊕

j∈Ni

(

ωi,j ⊙ f̂j,k(X)
)

, ∀i ∈ N (25)

where the consensus weights must satisfy the conditions

ωi,j ≥ 0 ∀i, j ∈ N ;
∑

j∈Ni

ωi,j = 1 ∀i ∈ N . (26)

In fact, thanks to the properties of the operators a)-f) listed in

[11, p. 513], it can be seen that

f̂i,k(X) =
⊕

j∈N

(

ω
(k)
i,j ⊙ fj(X)

)

, ∀i ∈ N (27)

where ω
(k)
i,j is defined as the element (i, j) of the matrix Ωk

and Ω is the consensus matrix whose generic (i, j)-element

coincides with the consensus weight ωi,j (if j /∈ Ni then ωi,j

is taken as 0). In this respect, it is well known that if Ω is

primitive (i.e. there exists an integer m such that all entries of

Ωm are strictly positive) and doubly stochastic (i.e. all it rows

and columns sum up to one), one has

lim
k→+∞

ω
(k)
i,j =

1

|N |
, ∀i, j ∈ N .

Hence, as the number of consensus steps increases, each local

multiobject density “tends” to the collective KLA (24).

A necessary condition for the matrix Ω to be primitive

is that the graph G associated with the sensor network be

strongly connected [9]. In this case, a possible choice ensuring

convergence to the collective average for undirected graphs is

given by the so-called Metropolis weights [2], [9].

ωi,j =
1

max{|Ni|, |Nj |}
, i ∈ N , j ∈ Ni, i 6= j

ωi,i = 1−
∑

j∈Ni,j 6=i

ωi,j .

The consensus iteration (25) can clearly be specialised to

PHDs, CPHDs and LMBs making use of Corollaries 1-3 and

replacing in (18)-(23) the products over N with exponential

weights ωi with products over Ni with exponential weights

ωi,j , to be carried out in each node i. For instance, the LMB

consensus iteration at node i takes the form

r
(ℓ)
i,k+1 =

∫

∏

j∈Ni

[

r
(ℓ)
j,ks

(ℓ)
j,k(x)

]ωi,j

dx

∏

j∈Ni

(

1− r
(ℓ)
j,k

)ωi,j

+

∫

∏

j∈Ni

[

r
(ℓ)
j,ks

(ℓ)
j,k(x)

]ωi,j

dx

s
(ℓ)
i,k+1(x) =

⊕

j∈Ni

(

ωi,j ⊙ s
(ℓ)
j,k

)

(x)

which, under the initialisation r
(ℓ)
i,0 = r

(ℓ)
i and s

(ℓ)
i,0(·) = s

(ℓ)
i (·),

converges to r(ℓ) and s(ℓ)(·) in (22)-(23) (with ωi = |N |−1

for all i) as k → ∞ for any label ℓ ∈ L and any agent i ∈ N
provided that the consensus weights ωi,j are suitably chosen.

PHD and CPHD consensus iterations, which are omitted due

to lack of space, can be obtained in a similar way.

In [18] it has been proved that the Kullback-Leibler fusion

guarantees immunity to double counting of information and

that, further, the consensus approach always give rise to mul-

tiobject densities which avoid double counting irrespectively

of the number of consensus iterations being carried out.
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V. DISTRIBUTED MULTIOBJECT ESTIMATION

Combining Kullback-Leibler fusion and consensus with

multiobject (labeled or unlabeled) filters, it is possible to

develop effective and computationally feasible distributed

multiobject estimation algorithms to be applied to, e.g.,

multitarget tracking, multirobot SLAM or multisource

estimation. The general structure of such algorithms is

outlined below. Different variants are clearly possible

depending on the type of multiobject representation (e.g.

PHD, CPHD, LMB) and on the type of multiobject filter

implementation (e.g. Gaussian mixture or particle filter) being

adopted.

Distributed multiobject estimation algorithm

At each time cycle t ≥ 1, each agent i ∈ N carries out the

following steps.

Step 1 - Local filtering: A multiobject (e.g. PHD or CPHD

or LMB) filter updates the current local (PHD or CPHD or

LMB) representation exploiting the multiobject time evolution

model and the available sensor measurements.

Step 2 - Consensus: The multiobject representation of agent

i resulting from the local filtering step is repeatedly fused, for

K consensus iterations, with the ones from the neighbouring

agents j ∈ Ni.

Step 3 - Estimate extraction: estimates of the number

of objects and of the relative states are suitably extracted

from the fused multiobject representation resulting from the

consensus step.

Details about the local (non distributed) multiobject fil-

ters can be found in [29], [33] for PHD, [12], [13] for

CPHD and respectively [14] for LMB. Please notice that, in

principle, multiobject (but also single-object) representations

are infinite-dimensional. Hence, for implementation purposes,

finite-dimensional parametrizations of such representations

need to be adopted. In this respect, the main problem is

to finitely parameterize location PDFs as the support of the

cardinality PMF for the CPHD representation can be restricted

to a finite set by imposing a maximum number of objects while

the label set L for the LMB representation is, by definition,

discrete and finite. As for the location PDF, two finitely-

parameterized representations based on the particle (Monte

Carlo) or, respectively, Gaussian Mixture (GM) approaches are

the most commonly employed. In [35]- [36], a Monte Carlo

implementation of a distributed PHD filter has been presented.

For distributed multiobject estimation over a network, how-

ever, the limited processing power and energy resources of the

individual agents seem to suggest the more parsimonious GM

approach, as usually the number of involved Gaussian compo-

nents is orders of magnitude lower than the number of particles

required for a satisfactory estimation performance. Motivated

by this consideration, a GM implementation of a consensus-

based distributed CPHD filter has been proposed in [11]. As

pointed out in [11], the Kullback-Leibler fusion of GMs is no

longer a GM due to exponentiation. Hence, to preserve the

GM form of the various location PDFs involved in the (PHD,

CPHD or LMB) distributed multiobject estimation algorithms,

a suitable approximation of the GM exponentiation, suggested

in [34] and already used in [11], can be adopted.

VI. MULTITARGET TRACKING CASE-STUDY

The present section reports a multitarget tracking case-

study for the distributed multiobject estimation algorithm of

Section V relying on the fusion rules of Corollaries 1-3. Three

algorithms will be considered and referred to as Consensus

PHD [11], Consensus CPHD [11] and Consensus LMB [17]

filters, respectively, for the PHD, CPHD and LMB fusion.

A 2-dimensional tracking scenario consisting of 5 targets

(depicted in Fig. 3) moving over a surveillance area of 50 ×
50 [km2] is considered, wherein a sensor network of 4 range-

only (Time Of Arrival, TOA) and 3 bearing-only (Direction

Of Arrival, DOA) (see Fig. 2) is deployed.

[m]
×10

4

0 1 2 3 4 5

[m
]

×10
4

0

1

2

3

4

5

Surv. Area TOA sensor DOA sensor Links

Fig. 2. Network with 7 sensors: 4
TOA and 3 DOA.
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Fig. 3. Target trajectories considered
in the simulation experiment. The
start/end point for each trajectory is
denoted, respectively, by •\�. The
⋆ indicates a rendezvous point.

The kinematic object state is denoted by x =
[px, ṗx, py, ṗy]

⊤
, i.e. the planar position and velocity. The

motion of objects is modeled by the filters according to the

Nearly-Constant Velocity (NCV) model [19]–[22]:

xk+1 =









1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1









xk + wk

where wk has zero-mean and variance

Q = σ2
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with σw = 5 [m/s2] and sampling interval Ts = 5 [s].
The TOA and DOA sensors are characterized by the fol-

lowing measurement functions:

hi(x) =







∠[
(

px − xi
)

+ j
(

py − yi
)

], DOA
√

(px − xi)
2
+ (py − yi)

2
, TOA
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where (xi, yi) represents the known position of sensor i.
The standard deviation of the measurement noises are taken

respectively as σDOA = 1 [◦] and σTOA = 100 [m]. The

Unscented Kalman Filter (UKF) [37] is used in each sensor

to cope with the non linearity of the sensor measurement

functions.

The clutter is assumed, for each sensor, as a Poisson RFS

with an average intensity of λc = 5 and a uniform spatial

distribution over the surveillance area. The probability of

object detection is PD = 0.99.

Incomplete prior information for target birth locations is as-

sumed and is modeled according to a 10-component LMB RFS

fB =
{(

r
(ℓ)
B , p

(ℓ)
B

)}

ℓ∈B

. Table I gives a detailed summary of

such components.

TABLE I
COMPONENTS OF THE LMB RFS BIRTH PROCESS AT A GIVEN TIME k.

r(ℓ) = 0.09

p
(ℓ)
B

(x) = N
(

x; m
(ℓ)
B

, PB

)

PB = diag
(

106, 104, 106, 104
)

Label (k, 1) (k, 2) (k, 3)

m
(ℓ)
B

[0, 0, 40000, 0]⊤ [0, 0, 25000, 0]⊤ [0, 0, 5000, 0]⊤

Label (k, 4) (k, 5) (k, 6)

m
(ℓ)
B

[5000, 0, 0, 0]⊤ [25000, 0, 0, 0]⊤ [36000, 0, 0, 0]⊤

Label (k, 7) (k, 8)

m
(ℓ)
B

[50000, 0, 15000, 0]⊤ [50000, 0, 40000, 0]⊤

Label (k, 9) (k, 10)

m
(ℓ)
B

[40000, 0, 50000, 0]⊤ [10000, 0, 50000, 0]⊤

The Optimal SubPattern Assignment (OSPA) metric [38]

with Euclidean distance, p = 2, and cutoff c = 600 [m] is

used to evaluate the performance of the distributed multiobject

filters. The reported metric is averaged over 100 Monte Carlo

trials for the same target trajectories but different, indepen-

dently generated, clutter and measurement noise realizations.

The duration of each simulation trial is fixed to 1000 [s] (200
samples).

A single consensus step K = 1 is employed for all the

simulations.

Figs. 4 and 5 display the statistics (mean and standard

deviation) of the estimated number of targets obtained, re-

spectively, with the Consensus CPHD and the Consensus

LMB filters. Such distributed algorithms estimate the object

cardinality accurately. Note that the difficulties introduced by

the rendezvous point (e.g. merged or lost tracks) are correctly

tackled by both (Consensus CPHD and LMB) distributed

algorithms. Conversely, in this case-study, the Consensus PHD

filter failed to achieve satisfactory performance compared to

Consensus CPHD and LMB filters. For this reason, results

obtained with the Consensus PHD filter are not reported.

Fig. 6 shows the OSPA metric. The more accurate localiza-

tion of the Consensus LMB filter can be attributed to two

factors: (a) the “spooky effect” [39] causes the Consensus

CPHD filter to temporarily drop targets which are subjected to

missed detections and to declare multiple estimates for existing

tracks in place of the dropped targets, and (b) the Consensus

LMB filter is generally able to better localize objects due to

a more accurate propagation of the posterior density.
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Fig. 4. Cardinality statistics for the Consensus CPHD filter under high SNR.
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Fig. 5. Cardinality statistics for the consensus CLMB filter under high SNR.
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Fig. 6. OSPA distance (c = 600 [m], p = 2) under high SNR.

VII. CONCLUSIONS

The paper has reviewed the concepts of Kullback-Leibler

fusion and consensus for both labeled and unlabeled RFSs and

their application to scalable distributed multiagent multiobject

estimation over a sensor network.

Possible topics for future work are 1) to consider sensors

with different and non-uniform field-of-view; 2) to compare

the proposed Gaussian mixture implementation of the consen-

sus multiobject filters with a particle filter implementation; 3)

to apply multiobject consensus filters to multirobot SLAM and

to estimation of multiple diffusive sources.
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