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Abstract—This paper presents a labeled multi-Bernoulli filter
for track-before-detect with a special focus on visual tracking of
multiple targets in video. We show that labeled multi-Bernoulli
distribution is a conjugate prior for an image likelihood function
with a specific separable form. Following a previously formulated
likelihood function (with the desirable separable form) using
background subtraction, we apply our proposed labeled multi-
Bernoulli filter. Our simulation results show that the proposed
solution can successfully track multiple targets in a public visual
tracking dataset. Comparative results show superior tracking
performance compared with recent competing methods.

I. INTRODUCTION

In multi-target tracking, the data is often preprocessed into

point measurements which are commonly known as detec-

tions. While this will reduce the computational and memory

requirements, some valuable information can be lost during

the detection process, specially under low signal-to-noise ratio

(SNR). This may drastically reduce the tracker accuracy. A

potential remedy is to formulate Bayesian filters that directly

use all the information embedded in the image observations

to update the prior. This approach has led to a relatively large

family of multi-object filtering solutions called track-before-

detect (TBD). In such solutions, the key point is to formulate

a likelihood function (for image observations) for which a

particular multi-object distribution is a conjugate prior.

Many particle filter-based TBD solutions have been de-

veloped for typical multi-target tracking in highly noisy im-

ages [1], [2], and an excellent survey of such solutions can

be found in [3]. The track-before-detect approach has been

also taken by many researchers to devise solutions for specific

applications such as tracking with airborne radars [4] and

STAP radars [5], acoustic source localization [6], distributed

sensor networks [7] and visual tracking [8], [9].

Following the development of finite set statistics (FISST)

by Mahler [10]–[12] and its extension to devise random set

filtering solutions for particular multi-target tracking applica-

tions [13]–[20], various track-before-detect solutions in that

framework were also formulated for tracking from noisy radar

images [21] and visual tracking with training datasets [22],

[23] and without training using background subtraction [8],

[24], [25]. These techniques can successfully track multiple

targets, without explicitly solving the data association problem

(hence, fast computation due to relaxing from the burden of

exponential explosion caused by data association in presence

of numerous targets). However, the target labels are not

managed by the filters and a label management strategy is

usually employed after each iteration of the filter to propagate

the target labels.

Recently, Vo and Vo [26] introduced two families of labeled

random finite set distributions, namely the labeled multi-

Bernoulli (LMB) and the generalized LMB (GLMB) distri-

butions and devised the Vo-Vo filter for propagating those

distributions in multi-target tracking applications with point

measurements [27], [28]. While the LMB distribution is not

a conjugate prior for point measurements, Reuter et al. [29]

showed how the update step can be approximated based on

the conjugacy of the GLMB distribution. Soon after, a track-

before-detect solution for visual tracking devised for GLMB

filters, showing that for image likelihood functions with a

particular separable form, the GLMB prior is conjugate [30].

This paper presents a track-before-detect LMB filter with

particular application for visual tracking. We prove that for

a specific family of likelihood functions for image observa-

tions, the LMB prior is conjugate, and show how this can

be exploited to implement as a multi-target visual tracking

technique in which the labels are automatically managed and

propagated within the TBD-LMB filter. Simulation results

demonstrate that the proposed algorithm can successfully track

multiple targets in a public visual tracking dataset.

II. BACKGROUND

A random finite set is a spatial point pattern on the space

of interest. Intuitively, it is a set with a random number of

elements where the elements are also random variables. In

this paper we use FISST density notion to develop the labeled

RFS and for simplicity, the difference between FISST density

and probability density is disregarded.

A. Notation

In this paper we use lowercase letters to represent single-

object states (e.g. x and x), uppercase letters to represent

multi-object states (e.g. X and X), blackboard bold letters to

represent the spaces (e.g. N,X and L) and bold letters (e.g.

x and X) are used to denote labeled entities, so that they are

distinguishable from the unlabeled entities [26].

B. Labeled RFS

In order to integrate a unique label to each target, each

state x ∈ X is coupled with a unique label ℓ = (ℓt, ℓb) ∈ L =
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{αi : i ∈ N}, where N denotes the set of positive integers and

all the αi’s are distinct [26]. Each label has two elements by

convention: ℓt is the time stamp at which the object was born,

and ℓb is an index to count the objects born at the same time

stamp, which is used to distinguish targets born at the same

time.

A labeled RFS X with state space X and discrete label

space L is a subset of X × L with distinct labels, if X and

its labels L(X) = {L(x) : x ∈ X} have the same cardinality,

which can be mathematically denoted as |L(X)| = |X| or

∆(X) , δ|X|L(x) = 1.

The density of a labeled RFS X is a function

π : F(X× L) → R
+ ∪ {0}

with unit integration over the labeled multi-object state space,

i.e.
∫

X×L
π(X)δX = 1 where the set integral is defined for

any function h : F(X× L) → R by [26]:

∫

h(X)δ(X) =

∞
∑

i=0

1

i!

∫

h({x1, . . . ,xi})d(x1, . . . ,xi).

(1)

C. Labeled Multi-Bernoulli Distribution

A labeled multi-Bernoulli RFS X with state space X, label

space L and finite parameter set {(r(ς), p(ς))} : ς ∈ Ψ, is a

multi-Bernoulli RFS on X, augmented with labels correspond-

ing to the successful non-empty Bernoulli components. If the

Bernoulli component (r(ς), p(ς)) yields a non-empty set, then

the label of the corresponding state is given by α(ς), where

α : Ψ → L is a 1-1 mapping [28]. The LMB density with the

above mentioned parameters is given by [28]:

π(X) = ∆(X)1α(Ψ)(L(X))[Φ(X; ·)]Ψ. (2)

where

Φ(X; ς) =

{

1− r(ς) if α(ς) /∈ L(X),

r(ς)p(ς)(x) if (x, α(ς)) ∈ L(X)

Under the assumption that α mapping is an identity map-

ping, the above multi-target density can be compactly written

as:

π(X) = △(X)w(L(X ))pX , (3)

where

w(L) =
∏

i∈L

(

1− r(i)
)

∏

ℓ∈L

1L(ℓ) r
(ℓ)

1− r(ℓ)
(4)

p(x, ℓ) = p(ℓ)(x). (5)

For the sake of simplicity in notation, we denote the above

density by π = {r(ℓ), p(ℓ)}ℓ∈L.

D. LMB Propagation

Let Lk = {k} × N denote the label space for the targets

born at time k, and x ∈ X×Lk is the state of a target born at

time k. The label space for all the targets at time k, including

all the label spaces at previous label spaces is denoted by L0:k

and is recursively constructed by L0:k = L0:k−1 ∪ Lk.
Let yk denotes the image observation at time k, and y1:k

denotes the ensemble of all observations acquired up to time

k. Denote the density of the multi-object state at time k by

πk(X|y1:k). In a Bayesian paradigm, the labeled density is

recursively predicted and updated as follows [28]:

πk+1|k(X|y1:k) =

∫

fk+1|k(X|Xk)πk(Xk|y1:k)δXk (6)

πk+1(X|y1:(k+1)) =
gk+1(yk+1|X)πk+1|k(X)

∫

gk+1(yk+1|Xk)πk+1|k(Xk)δXk

(7)

where fk+1|k(·|·) is the multi-object transition density from

time k to k + 1, gk+1(·|yk+1) is the multi-object likelihood

function at time k for the given image observation yk+1, and

the integrals are set integrals as defined in (1). Henceforward,

for the sake of brevity in notations, we will drop the “given

observation parts” (|y1:k and |y1:(k+1)) of the density argu-

ments, as the dependence of evolved densities on the past and

current observations is obvious.

According to Reuter et al. (see [29], proposition 2), if the

multi-object density is LMB with state space X and label

space L and its density parametrized by π = {r(ℓ), p(ℓ)}ℓ∈L

and provided that the multi-object birth model is an LMB

with the same state space X, a label space B that is disjoint

from L (i.e. X ∩ B = ∅) and parametrized density πB =
{r(ℓ)

B
, p(ℓ)

B
}ℓ∈B, then the predicted multi-object density is also

an LMB with state space X and label space L+ = L ∪ B.

Furthermore, the parameters of the predicted LMB density are

π+ = {r(ℓ)
+,S

, p(ℓ)
+,S

}ℓ∈L

⋃

{r(ℓ)
B

, p(ℓ)
B

}ℓ∈B, where

r(ℓ)
+,S

= η(ℓ)
S

r(ℓ) (8)

p(ℓ)
+,S

(x) = 〈p
S
(·, ℓ)f(x|·, ℓ), p(ℓ)(·)〉

/

η(ℓ)
S

(9)

in which p
S
(x, ℓ) is the state-dependent probability of sur-

vival for an existing Bernoulli component with label ℓ,
f(xk+1|xk, ℓ) denotes the single-object transition density, and

η
S
(ℓ) = 〈p

S
(·, ℓ), p(ℓ)(·)〉. This is simply equivalent to predict-

ing the existing unlabeled Bernoulli components according to

equations of multi-Bernoulli filter and retaining the labels of

the predicted components, then unifying them with the birth

Bernoulli components that come with new labels.

III. LMB UPDATE WITH IMAGE OBSERVATIONS

Let us assume that the multi-object likelihood function for

a given image observation y has the following separable form:

g(y|X) = f(y)
∏

(x,ℓ)∈X

gy(x, ℓ). (10)

In a visual tracking application, the colour image sequence

can be processed via background subtraction and the resulting

grey-scale image can be used as the image observation for
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which a separable likelihood function in the form of (10) can

be formulated (more details on this formulation can be found

in [24], [30]). The update formula for a generalized labeled

multi-Bernoulli (GLMB) density with the above separable

likelihood has been derived in [30]–see equations (21)-(24).

Treating the LMB density as a GLMB with only one term,

we can use those results to derive the posterior density for an

LMB prior with the likelihood function in the form of (10).

Suppose that the LMB prior is given by equations (3)-(5). The

posterior density will then be given by:

π(X|y) ∝ ∆(X)wy(L(X)) [p(·|y)]X (11)

where

wy(L) = [ηy]
L w(L) (12)

p(x, ℓ|y) =
p(ℓ)(x)gy(x, ℓ)

ηy(ℓ)
(13)

ηy(ℓ) = 〈p(ℓ)(·), gy(·, ℓ)〉. (14)

Proposition 1. The posterior density introduced by equa-

tions (11)-(14) represents an LMB density.

Proof. Substituting w(L) from (4) in (12) and replacing the

resulting wy(L(X)) term in the update equation (11) leads to:

π(X|y) ∝ ∆(X)[ηy]
L(X) w(L(X)) [p(·|y)]X

∝ ∆(X)
∏

i∈L

(1− r(i))
∏

ℓ∈L(X)

1L(ℓ)r
(ℓ)ηy(ℓ)

1− r(ℓ)
[p(·|y)]X

∝ ∆(X)
∏

i∈L

(1− r(i))
∏

ℓ∈L(X)

1L(ℓ)
r(ℓ)ηy(ℓ)

1−r(ℓ)+r(ℓ)ηy(ℓ)

1−r(ℓ)

1−r(ℓ)+r(ℓ)ηy(ℓ)

[p(·|y)]X

∝ ∆(X)
∏

i∈L

(1− r(i))
∏

ℓ∈L(X)

1L(ℓ)
r(ℓ)ηy(ℓ)

1−r(ℓ)+r(ℓ)ηy(ℓ)

1− r(ℓ)ηy(ℓ)

1−r(ℓ)+r(ℓ)ηy(ℓ)

[p(·|y)]X

= ∆(X)
∏

i∈L

(

1−
r(i)ηy(i)

1− r(i) + r(i)ηy(i)

)

∏

ℓ∈L(X)

1L(ℓ)
r(ℓ)ηy(ℓ)

1−r(ℓ)+r(ℓ)ηy(ℓ)

1− r(ℓ)ηy(ℓ)

1−r(ℓ)+r(ℓ)ηy(ℓ)

[p(·|y)]X .

We note that in the last step, the proportionality turns

into equality as we find the normalizing term to be
∏

i∈L

(

1− r(i) + r(i)ηy(i)
)−1

. The validity of this derivation

stems from the fact that the resulting density has the same

form of the LMB density (3) and integrates to 11. Thus, the

posterior density is LMB.

1Note that besides finding the arrangement of probabilities of existence in
the product terms being similar to (3), the p(·|y) terms each integrate to 1

Remark 1. The posterior LMB can be parametrized by

πupdated = {r
(ℓ)
updated, p

(ℓ)
updated}ℓ∈L where

r
(ℓ)
updated =

r(ℓ) 〈p(ℓ)(·), gy(·, ℓ)〉

1− r(ℓ) + r(ℓ) 〈p(ℓ)(·), gy(·, ℓ)〉
(15)

p
(ℓ)
updated(x) =

p(ℓ)(x) gy(x, ℓ)

〈p(ℓ)(·), gy(·, ℓ)〉
. (16)

IV. IMPLEMENTATION

Assume that at time step k the multi-Bernoulli posterior

multi-target density πk = {r(ℓ), p(ℓ)}ℓ∈L is given. In a sequen-

tial Monte Carlo (SMC) implementation, each density p(ℓ) is

represented by a set of weighted particles
{

(w(ℓ,j), x(ℓ,j))
}

,

and its particle approximation is given by:

p(ℓ) ≅
∑

j

w(ℓ,j)δx(ℓ,j)(x). (17)

If the proposal densities q
(ℓ)
+ and b

(ℓ)
+ are given, then the pre-

dicted labeled multi-Bernoulli multi-target density πk+1|k =
{(

r
(ℓ)
+,S , p

(ℓ)
+,S

)}

ℓ∈L

∪
{(

r
(ℓ)
B , p

(ℓ)
B

)}

ℓ∈B

can be computed as

r
(ℓ)
+,S = r(ℓ)

∑

j

w(ℓ,j)pS,k(x
(ℓ,j)), (18)

p
(ℓ)
+,S =

∑

j

w̄
(ℓ,j)
P,+ δ

x
(ℓ,j)
+

(x), (19)

r
(ℓ)
B = parameter given by the birth model (20)

p
(ℓ)
B =

∑

j

w̄
(ℓ,j)
B δ

x
(ℓ,j)
B

(x), (21)

where

x
(ℓ,j)
+ ∼ q

(ℓ)
+ (·|x

(ℓ,j)
B , y) (22)

w
(ℓ,j)
P,+ =

w(ℓ,j)f(x
(ℓ,j)
+ |x(ℓ,j))pS,k(x

(ℓ,j))

q(ℓ)(x
(ℓ,j)
+ |x(ℓ,j), y)

, (23)

w̄
(ℓ,j)
P,+ = w

(ℓ,j)
P,+ \

∑

j

w
(ℓ,j)
P,+ , (24)

x
(ℓ,j)
B ∼ b

(ℓ)
+ (·|y), (25)

w
(ℓ,j)
B =

pB(x
(ℓ,j)
B )

b
(ℓ)
+ (x

(ℓ,j)
B |y)

, (26)

w̄
(ℓ,j)
B = w

(ℓ,j)
B \

∑

j

w
(ℓ,j)
B . (27)

Suppose that the predicted labeled multi-Bernoulli multi-

object density π+ =
{

(r
(ℓ)
+ , p

(ℓ)
+ )

}

ℓ∈L+

is given with its den-

sity components , p
(ℓ)
+ being represented by a set of weighted

particles,

p
(i)
+ ≅

∑

j

w
(ℓ,j)
+ δ

x
(ℓ,j)
+

(x). (28)

Then the updated labeled multi-Bernoulli multi-object param-

eters π(·|y) =
{

(r(ℓ), p(ℓ))
}

ℓ∈L+
is given by

1355



r(ℓ) =
r
(ℓ)
+ ̺

(ℓ)
+

1− r
(ℓ)
+ + r

(ℓ)
+ ̺

(ℓ)
+

, (29)

p(ℓ) =
1

̺
(ℓ)
+

∑

j

w
(ℓ,j)
+ gy(x

(ℓ,j)
+ )δ

x
(ℓ,j)
+

(x), (30)

where (31)

̺
(ℓ)
+ =

∑

j

w
(ℓ,j)
+ gy(x

(ℓ,j)
+ ). (32)

A. Techniques to Guarantee Computational Tractability

The updated particles are resampled so that each labeled

Bernoulli component retains a certain number of particles

which is proportional to its existence probability r(ℓ). Further,

the number of particles is constrained between a minimum of

Lmin and a maximum of Lmax, following [21], [23], [25], [31].

During the pruning step, we discard all the labeled Bernoulli

components which have a probability of existence r(ℓ) less

than a threshold denoted by rth. This enables us to keep track

of the growing number of labeled Bernoulli components which

has an exponential growth with the number of targets, ensuring

that only the Bernoulli components with a high probability of

representing an existing target are retained and all the other

components are discarded.

At the merging step, labeled Bernoulli components with an

overlapping ratio of more than a threshold are merged together.

In our visual tracking experiments, rectangular target blobs

were used to represent targets. We calculate the overlapping

ratio as the ratio of the area of intersection between two

components to the area of the smaller rectangular target. In

our experiments, targets with an overlapping ratio of more

than 60% were merged. During the merging procedure, the ex-

istence probability of the merged labeled Bernoulli component

is set to be the minimum between 0.999 and the addition of

the existence probabilities of the two merged labeled Bernoulli

components. All the particles used to represent the two merged

labeled Bernoulli components are present in the resultant

labeled Bernoulli component. The particle weights are scaled

according to the probabilities of existence, and they sum up

to 1.

When selecting a threshold for the overlapping ratio, we

must consider the targets which evolve very close to each

other. If a low overlapping ratio is used, the targets which

are very close to each other may be tracked as a single target

and this will reduce the accuracy of our tracker. On the other

hand, if we use a very high overlapping ratio, two labeled

Bernoulli components which represent the same target may

not be merged and hence, the particular single target will be

tracked as two different targets, resulting in a degradation of

accuracy.

B. State Extraction

The most widely used state extraction methodology of

extracting the targets with an existence probability higher than

a certain threshold is used in our work. The threshold is

application specific and a target X̄ is extracted

X̄ =
{

(x̄, ℓ) : r(ℓ) > ε
}

, (33)

where ε is the threshold and x̄ = argx maxp(ℓ)(x). Using

a high ε will prune the clutter tracks while delaying the

inclusion of new tracks, whereas a low ε will include new

tracks immediately at the expense of including more clutter

tracks.

V. SIMULATION RESULTS

We elaborate the results of our tracker using video se-

quences available in CAVIAR benchmark dataset. In our

MATLAB implementation, targets are assumed to be rectan-

gular blobs with a variable width and height, though they

are constrained. The variability of the width and the height

enables us to represent the targets moving towards and away

from the camera–see Figure 1. The target state is a 4D vector

comprising of the location of the top left corner of the blob

(x,y), the width w and the height h of the blob.

We use a random walk model x(k+1) = x(k)+e(k) where

e(k) is the Gaussian noise with zero mean and a covariance

of Σ = diag(σ2
x, σ

2
y, σ

2
w, σ

2
H). All the targets are assumed to

follow the aforementioned system model and the rationale

behind using this model is that it is general enough to be

compatible with almost all the human targets. Human targets

are free to move in any direction and are mainly constrained in

the amount of distant that they can travel in a single time step.

Other common motion models such as constant velocity model

are designed for objects like airplanes and cars that are limited

in their maneuvers. However with much higher computational

requirements we can use social behavioral models such as the

one suggested in [32].

To detect the targets which enter into the camera field of

view and to re-detect the targets which have been missed, we

use a birth model. We assume that one target may appear

in each of the four quarters of the image in each time

step with a constant existence probability of 0.02 throughout

the simulation. The location of the target is assumed to

be uniformly distributed within the particular quarter. When

additional information is available, such as positions of the

gate entrances and elevator access points, we can use other

complex birth models with different probability densities, such

as the one described in [33], in which the birth process is

modeled as a non-uniform probability distribution.

In our implementation, we do not use any information on

the appearance of the target (such as the color), but size

constraints on the targets are imposed. Upon applying back-

ground substation, we utilize morphological closing operation

(See [34, p. 136]) with a square structuring element of size

3 pixels to remove all the small targets that appear due to

noise after the thresholding step. The maximum and minimum

number of particles per target are set to Lmax = 1000 and

Lmin = 100, and probability of survival is assumed to be

constant at PS = 0.99.

To evaluate the accuracy of our tracker, we use CLEAR

MOT metrics, which were first introduced in [35], Multiple
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Table I
TRACKING PERFORMANCE COMPARISON FOR CAVIAR DATASET

Method MOTA % MOTP %

GM-PHD-STS 33.93 65.78
GM-PHD-DD 67.91 66.96

TBD-LMB (Ours) 76.63 85.37

Object Tracking Accuracy and Precision (MOTA and MOTP).

MOTP metric is a measure of the error in consistency of

tracked trajectories with the ground truth and MOTA is a

measure on the number of false positives, detections, and

identity switches throughout the tracking period. The MOTP

metric is defined by:

MOTP =

∑

i,k d
i
k

∑

k ck
(34)

where ck is the number of matches found for time k and di
is the distance between the target xi and its corresponding

hypothesis hi. The MOTA metric is defined by:

MOTA = 1−

∑

k(mk + fpk +mmek)
∑

k gk
(35)

where mk, fpk,mmek and gk are the number of misses, false

positives, mismatches and number of ground truth objects at

time k, respectively. These metrics have been widely utilized

by the visual tracking community [35], [36] and for fair

comparisons, we have computed them in our studies.

The test sequence is from CAVIAR dataset2. It shows four

persons entering a lobby, from the far left corner and walking

as a group to exit from an exit near the camera. The persons are

entering from a far corner and hence the size of the targets

are initially very small. Moreover, they exit from the seen

from a point near to the camera and the target sizes are much

larger. It is important to note that there is a small occlusion in

this scenario. Although, our tracker is not natively designed to

handle occlusions, it performs generally better than recently

established random set-based visual tracking methods, namely

the standard GM-PHD filter based Tracking System (GM-

PHD-STS) [9], and the GM-PHD visual tracker with Data

Driven importance sampling function (GM-PHD-DD) [37]. In

a number of other visual tracking methods, the same dataset

has been used for comparison purposes. The aforementioned

methods were chosen since they share the same approach as

our proposed method, that is, they all use random set-based

multi-object filters as the underlying mathematical framework.

The tracking results are given in Table I. They demonstrate that

our tracker outperforms both trackers in terms of MOTA and

MOTP values.

VI. CONCLUSION

A track-before-detect solution was proposed with labeled

multi-Bernoulli assumption for the multi-object distribution.

For a family of multi-object likelihood functions for image

2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

Figure 1. Screen shots of CAVIAR dataset tracking at t = 100, 150, 200, 250
and 300

observations, which have a particular separable form, the LMB

prior was proven to be conjugate, and the multi-Bernoulli

parameters of the posterior were formulated. The resulting

method was implemented using the Sequential Monte Carlo

technique and applied to track a number of people in a public

visual tracking dataset (CAVIAR). The results are promising,

showing that our proposed TBD-LMB filter outperforms the

competing random set-based tracking methods in terms of the

MOTP and MOTA metrics.
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