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Abstract—We attack the problem of persistently tracking
cooperative people such as children, the elderly or patients
by combining passive tracking and active tracking techniques.
Passive tracking uses visual signals from surveillance cameras,
but vision based people tracking becomes a hard problem in
challenging scenarios such as long-term/heavy occlusion, people
changing their movement patterns during occlusion, or people
temporarily moving out of the visual field. Active tracking uses
sensor signals from Inertial Measurement Unit (IMU) carried by
targets themselves. IMU-based tracking is independent of visual
signals, so it keeps working when people are visually occluded
and offers clues where the target could be, helping the visual
tracking to reidentify the target. Meanwhile, when visual signals
on people are available, visual tracking can calibrate IMU-based
tracking to avoid sensor drift. The experimental results show that
the IMU and visual tracking are complementary to each other
and their combination performs robustly on tracking cooperative
people in many challenging scenarios.

I. INTRODUCTION

A. Problem

People tracking has a wide range of applications such as

tracking people in public crowded environments for security

surveillance and tracking family members to avoid losing

loved ones. Typically, people tracking techniques can be

classified as “passive” or “active” tracking. Passive track-

ing utilizes devices that are not carried by people, such as

surveillance cameras. Active tracking locates targets by sensors

carried by the cooperative targets themselves, such as the

Global Positioning System (GPS), WiFi receiver and Inertial

Measurement Unit (IMU). This paper attacks the problem

of persistently tracking cooperative targets (e.g., children,

teens, the elderly, patients with autism/alzheimers/dementia)

by combining passive and active tracking.

B. Related Work

1) Passive Visual Tracking: Passive vision-based people

detection and tracking have been studied for several decades

[2][3]. The challenges are to track people persistently through

occlusion or clutter. For partial occlusion, Wu and Nevatia

[14] represented humans as an assemble of four body parts

and combined body part detectors and human detectors to

track humans when they were occluded. Papadakis et al. [10]

formed the representation of visible and occluded parts and

segmented the two parts by graph cuts. Tang et al. [12] trained

an occlusion-aware person detector, which was a joint model

Fig. 1. Visual people tracking and its challenges. (a) Successful tracking; (b)
The target is occluded by other people; (c) The target is occluded by a tree
over a long period; (d) The target moves out of the field of view temporarily.

of detecting single person as well as pairs of persons under

varying degrees of occlusion. For full occlusion, previous

efforts focused on predicting targets’ positions when they are

occluded and this was realized by Kalman filter [16], [9], [13]

or assuming the target keeps a constant velocity [15], [5].

When there is heavy occlusion, large appearance change,

nearby clutter or pedestrians temporarily moving out of the

field of view, as shown in Fig.1, it is challenging for a merely

vision-based tracking algorithm to persistently track people

without failure. This problem becomes worse when people

change their moving patterns (e.g., speed, direction) when

occluded, which voids the linear filtering based prediction

approaches.

2) Active Sensor Tracking: It is intuitive to track people

with GPS considering its wide application in vehicle nav-

igation. However, the accuracy of a common GPS module

is not high enough (15 meters on average as reported in

[1]). Furthermore, obstructions such as city canyons or tall

trees outdoors and walls/ceilings indoors weaken the signals

transmitted between GPS receivers and positioning satellites,

making the GPS-based tracking unreliable in these GPS-

denied environments. WiFi is another choice to locate people

but the coverage area of most WiFi hotspots is less than 50
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meters, limiting its application in people tracking outdoors.

Inertial Measurement Unit (IMU), consisting of gyroscope,

magnetometer and accelerometer, is a good choice to track

people by Dead Reckoning (DR) which adds the current

displacement vector to the previous estimated location. DR is

built upon three components: step detection, speed estimation

and forward moving direction determination. Previously, steps

are detected by setting a threshold on the value of acceleration

[11], [6], but the threshold depends on a person’s movement

patterns such as running and fast/slow walking. Speed equals

to the product of a predefined calibrated coefficient and the

amplitude of acceleration [11], [6], [7], [4], but the calibration

coefficient is hard-coded and person-dependant. The orienta-

tion of acceleration is used to determine the forward moving

direction [11], [6], [8], but finding the accurate transformation

from sensor movement directions on human body (e.g., in

a pocket) to the walking/running direction of a person in

the world coordinate is difficult. Furthermore, the DR-based

approach is prone to drift if small errors on each step are

accumulated over a long period.

3) Vision and IMU Fusion: Previous work has explored

the possibility to fuse vision and IMU for people tracking

or navigation [20][18][19][17]. These work usually fixed a

camera on the target’s body and utilized vision information

for motion estimation. By involving the motion information

from vision and Dead Reckoning result from IMU into the

Kalman filter framework, a more accurate tracking results can

be obtained. These work is single-direction fusion, that is only

vision can aid IMU for people tracking. Our work sets up

the stationary surveillance camera out of the target’s body and

investigated how IMU and vision tracking can assist each other

and form a persistent people tracking system.

C. Motivation

Visual tracking can obtain the movement trajecto-

ries/patterns of people, thus it can calibrate IMU-based active

tracking to avoid sensor drift. It is challenging for visual

tracking to handle heavy occlusion, but active people tracking

methods have no problems of occlusion because they do not

rely on visual signals, thus the occlusion problem of visual

tracking can be compensated by active sensor tracking.

D. Proposal

Since visual tracking and IMU-based active tracking are

complementary, i.e., not only can IMU assist visual tracking

when the target is occluded, but also the challenges of IMU

tracking (calibration and drift) are alleviated when visual

signals are available, we propose a novel people tracking

system combining passive visual tracking and active sensor

tracking. The visual signal is from stationary surveillance

cameras and IMU devices from cooperative people are used

for active tracking.

E. System Overview

Our cooperative tracking system consists of three parts:

(1) Passive Visual Tracking (Section 2): Given a stationary

surveillance camera, a scene-specific pedestrian detector is

trained to improve the detection performance. An adaptive

scale selection algorithm is proposed to further improve the

pedestrian detection performance and reduce computational

cost. Mode-seeking algorithm is applied to the detection

confidence map for people tracking.

(2) Active IMU Tracking (Section 3): A Discrete Fourier

Transform (DFT)-based step detection method is proposed,

which does not need preset person-dependant thresholds. The

calibration coefficient in speed estimation is obtained by visual

tracking instead of manual setting. More accurate forward

moving direction is obtained by a principle frequency com-

ponent filter.

(3) Integration of Visual and IMU Tracking (Section 4):

When the target is visible, its visual trajectory calibrates and

adjusts its IMU trajectory. When the target is occluded, IMU

tracking keeps working and offers clues for visual tracking to

re-identify the missed target.

II. PASSIVE VISUAL TRACKING

In this section, a scene-specific and scale-adaptive pedes-

trian detector is firstly introduced, then visual people tracking

based on detections is described.

A. Training a Scene-specific Pedestrian Detector

Histogram of Oriented Gradient (HOG) feature along with

Support Vector Machine (SVM) has been widely used to

perform pedestrian detection in images. A large dataset (both

positive samples and negative samples) are usually needed

to train a general pedestrian detector which is very time-

consuming and the detector may not work well on scenarios

different from the training dataset [2].

In a fixed scene, the viewpoints from which people can

be observed and the scales of people in images are limited.

Moreover, the negative samples are limited (they are just the

background in the scene!). The critical problem in people

detection is how to classify those background samples that

are very likely to be mistakenly classified as people samples.

If the detector can correctly classify those background samples

whose feature vectors are near the decision boundary, it is suf-

ficient to classify other background samples which are largely

different from people samples. In this paper, we propose a new

iterative training algorithm to deal with the problem.

As illustrated in Fig.2, the positive samples (images framed

in red) are the manually cropped pedestrian images from

videos taken on the specific scene, which include pedestrian

images with different walking gaits and scales that can be seen

from the specific viewpoint. The pool of positive samples is

not changed during the iterative training. The negative sample

pool initially consists of randomly cropped backgrounds from

images taken on the specific scene in different weather and

illumination conditions (images framed in blue). The negative

sample pool expands gradually during the iterative training.

The iterative training algorithm is performed in the follow-

ing steps: when a new pedestrian detector is available after

SVM training, it will be applied to classify background images
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Fig. 2. Training a scene-specific pedestrian detector.

randomly cropped from images taken on the specific scene

(images framed in green); the false positive samples (images

framed in purple) are put into the negative sample pool and

the SVM will be updated for the next iteration; training stops

when the number of false positive samples is zero. Every time

the SVM is updated, the detector is more robust to classify

those samples that are misclassified previously.

B. Adaptive Scale Selection

In common people detection algorithms, for every input

frame, different scales defined by the height and width of

rectangles need to be searched in the image exhaustively to

detect all pedestrians. In a fixed scene, although the same

person may display different scales at different locations in

the image (e.g., Fig.3(a)). However, if we transform the image

into the top-down view by a homography matrix Ha, the

width of the pedestrian rectangle is almost a constant (red

lines in Fig.3(b) are the warped rectangular bottoms from four

detections). Thus, if we fix the ratio of the height and width of

a detection rectangle and determine the standard scale Sstd by

the length of the bottom side of the warped rectangle, people’s

scales in every region of the specific scene can be estimated

in advance, i.e., we know which scale in the original image

we should use to detect pedestrians rather than performing the

exhaustive scale search.

Ha is estimated by four pairs of point correspondences (e.g.,

the four corners of the purple rectangle in Fig.3). Ha is a

constant for a fixed scene and it only needs to be updated

when the viewpoint changes.

C. Tracking by Detection

Based on the target’s location in the previous frame t−1, we

apply our scene-specific and scale-adaptive pedestrian detector

within a local region around the previous location to detect the

target in the current frame t. Fig.4 shows some pedestrian

images and their confidence maps corresponding to SVM

Fig. 3. Adaptive scale selection.

scores of the pedestrian detector. The white in a confidence

map denotes high score (confidence) of people detection. The

target’s location in frame t is determined by seeking the mode

(the position with maximal confidence in the confidence map).

Fig. 4. Visual tracking. (a) and (c) are the pedestrian images. (b) and (d) are
their confidence maps, respectively.

If the target is not occluded (Fig.4(a)), there is a single

global peak in the confidence map, thus the target can be

correctly tracked. However, when the target is occluded by

other pedestrians (e.g., Fig.4(c)), there are multiple peaks in

the corresponding confidence map. It is possible that the non-

target pedestrian is detected and tracked mistakenly. There-

fore, when occlusion, clutter and disappearance of the target

happen, we refer to IMU-based active tracking to correct the

visual tracker and reidentify the lost target.

III. ACTIVE IMU-BASED TRACKING

IMU includes accelerometer, magnetometer and gyroscope,

which measures tri-axis acceleration, the strength of magnetic

field and tri-axis angular velocities, respectively. As shown

in Fig.5, our IMU tracking is based on Dead-Reckoning (DR)

which adds the displacement vector, vn
un

‖un‖
, to the previously

estimated location pn. vn and un are the speed and forward

moving direction in step n, respectively. Our IMU tracking

approach consists of three components: step detection, speed

estimation and forward moving direction determination.
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Fig. 5. Flow chart of our IMU-based pedestrian tracking.

A. Step Detection

Speed and heading direction require to be estimated on

a complete step period for DR, so the accurate beginning

and end of each step is needed. In [11], step is detected in

the time domain by finding local maximum and minimum

of acceleration data and a threshold is set to rule out false

positives. However, the threshold depends on the speed and is

person-specific. When speed greatly changes, missed detection

of steps increases rapidly. Different thresholds need to be

chosen for different targets.

In this paper, a step detection algorithm based on adaptive

sliding window and Discrete Fourier Transform (DFT) is

introduced, which is inspired by the following observations:

(1) The movement pattern of a walking person is periodic.

Therefore, DFT can be applied to find the number of periods

(i.e., the number of steps) in a certain sliding window. (2)

Magnetic field is sensitive to heading direction change, so

it is not suitable for step detection. Instead, angular velocity

and acceleration are ideal because they do not depend on the

forward direction. (3) Only one axis signal is not reliable for

step detection. All 6 axes of gyroscope and accelerometer are

considered in our step detection by DFT.

Fig. 6. Step detection. (a) DFT results of 4-second signal with 400 samples.
(b) The variance metric vs. signal length to detect the accurate step period.

Fig.6(a) shows the results after applying DFT to six signals

of accelerometer and gyroscope over a time sliding window L

of 400 samples. In our IMU device, sensor data are collected

at the rate of 100 samples per second, so 400 samples of data

implies data collected in 4 seconds. The horizontal axis in

Fig.6(a) is the frequency which is related to the number of

periods within the time sliding window. The vertical axis in

Fig.6(a) is the corresponding magnitude. The frequency com-

ponent related to the step number should have high magnitude

while frequency components corresponding to noise should

have low magnitude. We compute the principle frequency of

all six signals, f∗, by

f∗ = argmax
f

6∑

i=1

|Fi(f ;L)| (1)

where |Fi(f ;L)| denotes the magnitude of frequency com-

ponent f of the ith signal within the time sliding window

L. Note that f∗ is an integer in DFT. In Fig.6(a), f∗ = 4,

but is there exactly 4 steps during this time sliding window

(400 samples)? The answer is possibly NO. If there are 3.8 or

4.3 steps in the sliding window L, the corresponding principle

frequency will be rounded to 4. We need to search the accurate

beginning and end sampling moments of complete steps in

the signals to estimate the speed for Dead-Reckoning (DR).

Otherwise, DR will deviate from the truth quickly due to the

accumulated error. Observing that the principle frequency has

a large difference compared to its neighboring frequencies, we

propose a new metric ML, the magnitude variance of the prin-

ciple frequency compared with its neighboring frequencies, to

search the accurate steps:

ML =
6∑

i=1

var([|Fi(f
∗-1;L)|, |Fi(f

∗;L)|, |Fi(f
∗+1;L)|])

(2)

We gradually increase the time sliding window L. For each

L, we compute f∗ by Eq.1 and then compute ML by Eq.2.

Fig.6(b) shows the plot of ML versus L. We can see the

first peak is around 420 with L = [1, 420], which means

that there are 4 steps in 420 samples (4.2 seconds), i.e., each

step period is about 105 samples. If we keep increasing L,

we will find another peak around 525 in L = [1, 525] which

means that there are 5 steps in 525 samples. The peaks in

Fig.6(b) indicate that at these points, the magnitude of the

principle frequency has the largest difference compared to its

neighboring frequencies. Thus, we can detect the exact number

of steps by adapting this time sliding window technique.

B. Speed Estimation

Practically, walking/running speed varies from person to

person. Even for the same person, the moving speed may not

be a constant over time. Integration on acceleration to obtain

speed accumulates errors very fast, making it impractical for

speed estimation. Observing that the magnitude of movement

is approximately proportional to speed, we propose to use the

maximal difference of angular velocity to measure the move-

ment intensity. The measurement is only valid in complete

movement pattern periods, which is at least one step. That is

one of the reasons why we need accurate step detection and

speed is calculated in the unit of step. The speed for step n is

defined as

vn = α(max
s∈[s

(n)
b

, s
(n)
e ]

‖ as ‖ −min
s∈[s

(n)
b

, s
(n)
e ]

‖ as ‖) (3)
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Fig. 7. Determine the forward moving direction. (a) The acceleration in a short
period (4 steps) is projected to the horizontal plane in the world coordinate.
(b) The acceleration corresponding to the principle frequency in a short period
is projected. The semi-major axis of the ellipse represents the forward moving
direction.

where s
(n)
b and s

(n)
e denote the beginning and end sample

of the nth step and ‖ as ‖ is the magnitude of angular velocity

at sample s. α is the calibration factor depending on specific

persons. When visual signal is used, α is determined by a

similarity warping matrix which will be introduced in Section

4.

C. Forward Moving Direction Determination

The 3D acceleration vectors in the IMU coordinate during

each step can be projected to the horizontal plane in the world

coordinate to infer the forward moving direction [11], [6].

This method works for professional IMUs. But for low cost

IMUs such as the IMU module built in smatphones which is

more likely to be influenced by noise, it performs poorly. Fig.7

shows the results when acceleration collected by a smartphone

in 4 steps is projected to the world coordinate’s horizontal

plane. There is no obvious forward moving direction.

Considering the 3D acceleration vectors during a time

sliding window as time-series signals, we transform them into

the frequency domain. Since the principle frequency during

the sliding window is already detected in the step detection

process (Section 3.1), we treat all non-principle frequency

components as noise and zero them out. Then, the filtered

signal is transformed back to the time domain and is projected

to the world coordinate’s horizontal plane. As shown in

Fig.7(b), the moving direction is obvious. Ellipse-fitting (i.e.,

2D Principle Component Analysis) is applied to the projected

principle acceleration and the semi-major axis of the ellipse

represents the forward moving direction [ux uy].

IV. INTEGRATION OF VISUAL AND IMU TRACKING

As shown in Fig.8, our cooperative people tracking system

is divided into three parts: initialization, tracking and re-

identification.

A. Initialization

The target to be tracked is initially identified by human.

Fig.8(a) and Fig.8(b) show the visual trajectory (red) and IMU

trajectory (green) in the first sliding window L1, respectively.

The trajectory generated by IMU tracking is in the world

coordinate, so it is a 2D curve in the horizontal plane viewed

from top to down. Unlike IMU trajectory, visual trajectory

is in the image coordinate depending on the specific camera

viewpoint, thus they are not directly comparable. We warp the

visual trajectory from scene-specific viewpoint to the top-down

viewpoint by Ha (Section 2.2), as shown in Fig.8(c). Since the

transformation between the warped visual trajectory (Fig.8(c))

and IMU trajectory (Fig.8(b)) is just rotation, translation and

scaling (i.e., similarity transformation), we match the two

trajectory curves by computing the similarity transformation

matrix Hs,k in sliding window Lk using the least square

procedure:

arg min
Hs,k

∑

t

(Hs,kT
(v,k)
t −T

(s,k)
t )2 (4)

where T
(v,k)
t and T

(s,k)
t denote the uniformly sampled point t

on the warped visual trajectory and sensor trajectory in sliding

window Lk, respectively. The initialization step is performed

in the first sliding window, so k = 1. Fig.8(d) shows the

result of IMU trajectories matched to visual trajectories. For

better visualization, we can warp the top-down viewpoint to

the scene-specific viewpoint by the inverse of Ha. Therefore,

two matrices, Ha (homography transformation) and Hs,k

(similarity transformation), make visual and IMU trajectories

compatible. Ha does not change unless the scene-specific

viewpoint changes. Hs,k keeps being updated during each

sliding window of the cooperative tracking.

B. Tracking

The initialization step only needs to be performed once, then

our system goes to the normal tracking. Fig.8(f) and (g) show

the trajectories based on visual and IMU tracking, respectively,

in sliding windows L1 ∼ Lk. Then, Hs,k−1 and Ha are

applied to warp IMU and visual trajectories to the top-down

viewpoint. The average distance d between trajectories in

Fig.8(h) is calculated. If d < dthr, visual and IMU trajectories

are matched, then new Hs,k is computed using Eq.4 and we

go to the next sliding window. In our tracking system, we set

dthr = 80inches.

C. Re-identification

Two cases lead to the re-identification: (1) The target

disappears in visual tracking such as moving out of the visual

field or being occluded by other objects; (2) Visual and IMU

trajectories do not match each other, which may be caused by

tracking drift (i.e., track a non-target pedestrian).

As shown in Fig.8(i), IMU keeps tracking the target even

the target is occluded by a tree. The green curve is the IMU

trajectory. Meanwhile, visual pedestrian detector tries to detect

pedestrians in a search region estimated by IMU (yellow circle

in Fig.8(i)). If detected, the pedestrian will be tracked by visual

tracking for ∆t frames (Fig.8(k)-Fig.8(m)). In this system, ∆t

is set as 150 frames (5 seconds). If any visual tracking failure

happens within the ∆t frames, we go back to the IMU-tracking

(Fig.8(i)). If the tracking within the ∆t frames succeeds, the
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Fig. 8. The flow chart of the cooperative tracking system. SW: Sliding Window

average distance d between IMU and visual trajectories during

∆t is computed to judge if they match. If d < dthr, the

target pedestrian is re-identified and we go back to the normal

tracking again. Otherwise, we go back to the IMU-tracking

(Fig.8(i)) for re-identification.

The above cooperative people tracking system elucidates

why visual tracking and IMU tracking are “complementary”.

First, when visual tracking fails, IMU tracking keeps working

and offers the clue where the target could be, helping visual

tracking reidentify the target. Secondly, the visual trajectory

corrects the bias of speed and forward direction estimation in

IMU tracking by the similarity matrix Hs,k. The calibration

coefficient in Eq.3 is also compted by Hs,k once we know

the length of matched visual and IMU trajectories. As we

keep updating Hs,k, visual tracking rebuilds the relationship

with IMU tracking and rectifies the deviation of IMU-based

tracking trajectory.

V. EXPERIMENTS

To test the effectiveness of our cooperative tracking system,

we apply it for people tracking in daily environments. Con-

sumer electronics such as smartphones embedded with IMU

modules are selected as the IMU signal collector. The IMU

module in a smartphones is low cost and sensitive to noise. If

our system works well using smartphones, we believe it will

work using expensive and professional IMU devices. In addi-

tion, the popularity of smartphones offers more possibilities of

applications of our tracking system. We developed an App to

collect IMU signals when the target is moving or standing. The

IMU signals are transmitted back to a groundstation by GSM.

Meanwhile, a stationary surveillance camera collects visual

signal of the target person. The visual signal is taken at 30

frames per second and the sampling frequency of IMU signal

is 100 samples per second. The data transmitted between a

smartphone and the groundstation is about 13.5 MB per hour.

To synchronize the two signals, for every frame of the video,

the nearest IMU signal is found according to the timestamp

provided by the smartphone system.

A. Evaluation

We recorded four videos in different conditions to test

the performance of our cooperative people tracking system.

Fig.9 shows the visual and IMU trajectories from our tracking

system.

· Video 1 was taken in an occlusion environment with a small

slope. The target person was occluded by a tree twice for 9

and 16 seconds, respectively. Fig.9(a)(b) show that the target

is successfully tracked by our system in long term and heavy

occlusions.

· In video 2 (Fig.9(c)(d)), the target changed his speed from

walking to sudden run and then stopped when hidden by the

tree. Ten seconds later, the target began to walk in a direction

different from his previous direction. This case is difficult for

vision-based tracking algorithm because the target changes his
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Fig. 9. Trajectories of the target person. Red curves are visual trajectories
and green curves are IMU trajectories when visual tracking fails. (a)(b)
Screenshots from video 1. (c)(d) Screenshots from video 2. (e)(f) Screenshots
from video 3. (g)(h) Screenshots from video 4.

speed and forward direction when occluded.

· Video 3 (Fig.9(e)(f)) is an example of associating IMU

trajectories with visual ones when multiple cooperative people

carrying IMUs were in the scene. One target was occluded by

the other. When they departed towards different directions,

visual tracking failed because of the clutter of similar ap-

pearance. However, IMU tracking tracked and re-identified the

target successfully.

· In video 4 (Fig.9(g)(h)), the target was occluded by moving

pedestrians at location A and moved out of visual field from

location B. At locations C and D, the target was occluded by

background objects frequently. Despite the complex scenarios,

our cooperative tracking system can persistently track the

target.

Table I summarizes the quantitative evaluation on our co-

operative tracking system. The two trajectories are synchro-

nized by comparing their timestamps. The trajectory error

is computed by the average difference between a tracked

trajectory and its ground truth. The ground truth is labelled

by a human annotator in each frame of the videos. The

average errors of vision and IMU tracking in our cooperative

people tracking are 37 inches and 44.3 inches, respectively.

Visual tracking fails when the target is heavily occluded in

the first time in each video, but our proposed tracking system

can persistently track the target by combining visual and

IMU tracking. The experiments validate that visual tracking

combined with IMU tracking can achieve both accuracy and

persistency. Here we did not provide the quantitative IMU-

only tracking results, which is because IMU-only tracking

needs manually set parameters such as the speed coefficient

α in Eq.3 and the orientation offset [11]. These handcrafted

parameters are person-specific and will largely affect the

tracking performance. In the next subsection, we compare the

shape of IMU tracking results which does not need manual

parameters.

TABLE I
PEOPLE TRACKING RESULTS. FV: NUMBER OF FRAMES SUCCESSFULLY

TRACKED ONLY BY VISION. FS: NUMBER OF FRAMES SUCCESSFULLY

TRACKED BY OUR COOPERATIVE PEOPLE TRACKING SYSTEM. VTAE:
VISUAL TRAJECTORY AVERAGE ERROR. ITAE: IMU TRAJECTORY

AVERAGE ERROR

Video #frames FV FS VTAE(in) ITAE(in)

1 2009 580 2009 50.3 66.0

2 1940 717 1940 35.15 45.2

3 1063 625 1063 22.4 15.8

4 1857 392 1857 33.1 36.1

avg 37.0 44.3

B. Comparison

We have seen IMU tracking can assist visual tracking in

Section 5.1. We use video 1 as an example to compare different

IMU tracking methods and shows the benefit of visual tracking

to help IMU tracking. Fig.10(a) is the ground truth of the

target trajectory in video 1, which is obtained by warping

the target’s trajectories in the scene-specific viewpoint to the

top-down viewpoint using Ha. All trajectories in Fig.10 are

in the horizontal plane of the world coordinate. Fig.10(b) is

based on the PCA2D (i.e., 2D Principle Component Analysis)

method introduced in [11] which detects step in the time

domain. There are many misdetections on step and direction by

this approach and the tracked trajectory drifts away from the

ground truth largely. Fig.10(c) is the result by our IMU track-

ing method without any assistance from the visual tracking,

which is better but still drifts away from ground truth a little.

Fig.10(d) shows the trajectory results of IMU tracking assisted

by the visual tracking. When visual tracking is combined,

visual trajectories constantly adjust the orientation and scale of

IMU trajectories with Hs,k. The IMU trajectory in Fig.10(d)

is very close to the ground truth.

VI. CONCLUSION

To persistently track cooperative people such as children and

patients in challenging scenarios, we present a novel tracking

system combining the visual and Inertial Measurement Unit

(IMU) signals, obtained from surveillance cameras and IMU

devices carried by the targets themselves, respectively. Not

only can IMU assist visual tracking when the target is oc-

cluded, but also the challenges of IMU tracking (calibration

and drift) are alleviated when visual signals are available.

Experimental results show that visual and IMU tracking are

complementary to each other and their integration achieves
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Fig. 10. IMU trajectories generated by three different approaches. (a)
Ground truth trajectory; (b) Trajectory by time-domain step detection [11];
(c) Trajectory by our DFT approach; (d) Trajectory by our DFT approach
assisted by the visual signal.

very good performance on persistent people tracking under

challenging daily environments.
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