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Abstract—Visual animal tracking is a challenging problem
generally requiring extended target models, group tracking and
handling of clutter and missed detections. Furthermore, the
dolphin tracking problem we consider includes basin constraints,
shadows, limited field of view and rapidly changing light con-
ditions. We describe the whole pipeline of a solution based on
a ceiling-mounted fisheye camera that includes foreground seg-
mentation and observation extraction in each image, followed by
a target tracking framework. A novel contribution is a potential
field model of the basin edges as a part of the motion model, that
provides a robust prediction of the dolphin trajectories in phases
with long segments of missed detections. The overall performance
on real data is quite promising.

I. INTRODUCTION

Tracking animal movement is a multi-faceted emerging

application area of target tracking. On the one hand, we

have recent legislations of visual surveillance of the catch

in legal fishing by inspecting the fishing net, and the up-

coming legislations of having real-time positions of cattle.

On the other hand, the research of animal movement is

in great need for automatic tracking, where today tedious

manual work is needed. Research directions include better

understanding of genetic control programs of migration, what

‘sensor information’ that is used for animal navigation, and the

evolution of migration. Cross-disciplinary research between

the target tracking community and biologists has the potential

to generate large amounts of animal data to the biologists, at

the same time as posing challenging problems for the target

tracking algorithms. One example of such a collaboration is

[1], where data from a 4 g light logger mounted on a common

swift was used to track the bird from the summer residence in

Sweden through its migration to Africa and back again. The

development involved an astronomic sensor model defining the

sun angle as a function of position.

In this work, we describe another challenging application,

to track dolphins swimming around in a basin using a fisheye

camera mounted in the ceiling. The biological purpose is to un-

derstand how the behavioural pattern is affected by underwater

sonar transponders. In this way, a better understanding can

be obtained for how the dolphins’ internal navigation system

works. Today, tracking is done manually from the video. There

are many similarities with classic target tracking problems with

individuals forming tight groups, the need for extended target

models, and clutter from the pre-processing. New challenges

include shadows at the bottom of the basin, sun light through

the ceiling windows that gives large local changes in light

conditions. The special scene also includes hard constraints,

occlusion from a platform and missed detections caused by

a limited field of view from the fisheye camera. Another

challenge is the difficulty to obtain sufficient data to calibrate

the camera.

For visual tracking, the computer vision community has

made a lot of progress to solve this problem in video. The

methods used rely on several different principles, often used

in combination. Sophisticated foreground extraction methods

(e.g., [2–5]) can be used to bring out moving objects from

stationary backgrounds. The usage of these methods requires

stationary cameras and is complicated by rapid changes in

light conditions and irrelevant motions in the scene. Machine

learning can be used to train a detector that finds previously

known objects in an image (e.g., [6–8]). To work properly,

these methods require considerable amounts of training data

that cover all possible object appearances and backgrounds.

Yet other types of methods detect possible objects and try to

locate the same patch in consecutive frames (e.g., [9]). These

methods tend to be sensitive to appearance changes, which

limit their applicability in practice.

In the target tracking community standard computer vision

algorithms are used as input to more sophisticated tracking

algorithms (e.g., [10, 11]). The approach we describe aims at

using state of the art algorithms for foreground segmentation

described in [2, 3] and estimation of an extended target model

in each distorted image frame. The position and shape of each

detected object is then undistorted and used as input to a target

tracking algorithm, where false detections are compensated for

and occlusions and missed detections are handled gracefully

using a suitable motion model. A novel contribution is to

describe the physical constraints of the basin in terms of

potential fields as part of the motion model, inspired by the

potential fields used for collision avoidance in the robotics

community (e.g., [12]).

II. PROPOSED TRACKING SOLUTION AND PAPER OUTLINE

Fig. 1 depicts the data processing pipeline suggested to solve

the dolphin tracking problem described above. The solution is

divided into two principal parts: measurement pre-processing

and target tracking.
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Fig. 1. The pipeline of processing a frame from the sensor.

In the measurement pre-processing block, the raw images

provided by the fisheye camera in the ceiling are processed and

observations are fed to the target tracking block. The purpose

is to obtain as high quality dolphin observations as possible,

while introducing as few false observations as possible. This

is done in three steps: foreground segmentation, data reduction

and mapping described in Sec. IV. The segmentation is

obtained by estimating a background model and extracting

non-matching pixels. The result, which can be quite noisy, is

then further refined in the data reduction step where connected

regions are clustered and extracted. These observations are

then compensated for by the camera parameters in the mapping

step. Sec. III describes how the camera parameters are derived.

The result, that need not be perfect, is then passed on to the

target tracking block.

The target tracking block is designed around a stan-

dard target tracking loop comprising: track prediction, track-

observation association, measurement update, track merging,

and track initiation. Important components in the target track-

ing solution are the novel motion model that constrains the

tracked dolphins to the basin, as derived in Sec. V, and the

PDA inspired method used to incorporate the observed regions

in the measurement update step. Combined, these result in a

tracking solution that is able to produce useful tracks based

on the input from the measurement pre-processing block.

Finally, the solution is evaluated on experimental data in

Sec. VII and relevant aspects of the suggested tracking solution

are highlighted. Conclusions and further work are discussed

in Sec. VIII.

III. CALIBRATION

The fisheye camera is used as a solution to local regulations

concerning audience integrity, but exhibits severe radial dis-

tortion and must be calibrated before being used. Usually, the

camera calibration (intrinsic and extrinsic parameters and the

lens distortion) can be obtained using standard software [13]

based on images containing a checkerboard in different angles

and positions. In this case the camera is mounted in a fixed

position in the ceiling, hence the calibration must be estimated

from available images and a map of the monitored region by

identifying corresponding points as described below.

Let xd, xu and xm denote the coordinates of a point

in the distorted image, undistorted image and on the map

respectively. Furthermore, denote with x̃ =
(

xT 1
)T

the

homogenous vector corresponding to x. Then the intrinsic and

extrinsic parameters can be combined into a homography

H =





H11 H12 H13

H21 H22 H23

H31 H32 H33



 =
(

h̄1 h̄2 h̄3

)T
(1a)

such that

xm =
1

h̄T
3 x̃

u

(

h̄T
1

h̄T
2

)

x̃u (1b)

gives a one-to-one mapping between undistorted and mapped

coordinates.

Commonly a polynomial distortion model is used, but [14]

suggests the following model for fisheye lenses

rd = R(ru) =
1

ω
arctan

(

2ru tan
ω
2

)

(2a)

ru = R−1(rd) =
tan (rdω)

2 tan ω
2

, (2b)

where rd = |xd − xc| is the radial distance from the center

of distortion xc in the distorted image, ru = |xu − xc|
is the radial distance in the undistorted image, and ω is a

parameter determining the amount of distortion. The mapping

is computed as

xd = xc +
R(ru)

ru
(xu − xc) (3a)

xu = xc +
R−1(rd)

rd
(xd − xc). (3b)

The method described in [15] is used to estimate the

homography in (1b) by finding the linear least-squares so-

lution as an initial guess and refining it with the Levenberg-

Marquardt algorithm. The parameters ω and xc are estimated

using the Levenberg-Marquardt algorithm. These solutions

are computed in an alternated manner until convergence is

achieved to find the complete mapping, as suggested by [15].

Having estimated the model, (1b) and (3b) can be used to

derive a measurement function h(x) relating a point on the

map with a point in the image. However, since the mapping

is static and bijective, each measurement is transformed to the

map as a final step of the measurement pre-processing block

to reduce the dependence between the target tracking filter and

the measurement model.

IV. MEASUREMENT PRE-PROCESSING

A. Foreground Segmentation

To bring out the objects the video is segmented into back-

ground and foreground. For this purpose, a Gaussian mixture

background model [2, 3] is estimated with some modifications.

The basic idea is to estimate mixtures of Gaussians to represent

the pixel intensities using expectation maximization (EM) [16],

but considering the number of pixels, several approxima-

tions of this algorithm are applied to make the computations
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tractable. The intensities of a new image are gated and associ-

ated to the Gaussian mixture components of the model. If an

association is found, the model is updated, otherwise a new

Gaussian is initialized with low weight. Gaussian components

with large weights are considered background whereas those

with small weights are considered foreground.

The segmentation is based on a one channel image, which is

obtained as a function of the red, green and blue channels. The

function is chosen to achieve a reduction in the variance of

the background pixels. Furthermore, the mean scene intensity

is subtracted to make the model less sensitive to the light

conditions.

The following applies to each pixel, currently measuring the

intensity I , with a Gaussian mixture background model con-

sisting of components j = 1, . . . ,KB , . . . ,K with mean µj

and variance σ2
j and where the first KB components are

considered background. The parameter γ2 determines the max-

imum squared Mahalanobis distance dj considered a match

through the criteria

dj(I) =
(I − µj)

2

σ2
j

≤ γ2. (4)

If no j ≤ KB exists such that dj(I) ≤ γ2, the pixel is

considered to be part of the foreground.

Selecting γ2 is a trade-off between tolerating variations in

the background and detecting foreground. According to [2],

it can be advantageous to let γ2 vary over time and different

regions in the scene. The following heuristics are used for

selecting γ2

γ2
t = γ2

0 + γ2
g max
s∈[t−τ,t]

√

|Īs − Īs−1|, (5)

where τ , γ2
0 and γ2

g are design parameters and Īt is the mean

intensity in the image at time t. The second term in (5)

increases the tolerance for all pixels when the light conditions

in the scene change drastically for some time determined

by τ , allowing the current background components to adapt

to the new conditions rather than to estimate new background

components, which otherwise would result in many false

detections.

An additional extension to the method is to compute

d = min
j≤KB

dj(I) (6)

for each foreground pixel, providing the Mahalanobis distance

to the nearest background component. This value provides

information about the confidence in the detection, which could

allow for more sophisticated methods in the post-processing

to globally segment the foreground or improve the tracking as

in [17], but is here only used as described in Sec. IV-B. Ad-

ditional extensions can be made to improve the performance,

e.g., as suggested by [4].

The foreground segmentation is generally noisy and is

filtered using morphological operations [18], after which the

output is Mf observations consisting of the coordinates y̆i of

the foreground pixels and their values di obtained from (6).

The set is denoted

Z̆ = {y̆i, di}
Mf

i=1. (7)

B. Data Reduction

In general there are many measurements per target and their

abundancy is intractable for a target tracking filter to handle, so

the following method to reduce the amount of data is proposed.

A first step is to obtain the indices i of connected components

C̃j for j = 1, . . . ,Mc from the measurements y̆i using the

flood fill algorithm [18, ch. 9].

Then use the k-means clustering algorithm [19] on the

measurements {y̆i|i ∈ C̃j} for each connected component to

obtain the clusters Cm, for m = 1, . . . ,M , of measurements

in Z̆. To obtain clusters of approximate size mr the number

of clusters for each component is chosen as
⌈

|C̃j |/mr

⌉

.

To reduce the number of measurements, the means

ȳj =
1

|Cj |

∑

i∈Cj

y̆i and d̄j =
1

|Cj |

∑

i∈Cj

di (8a)

are computed, where |·| denotes the set cardinality, and to

keep some information regarding the extent of the connected

component the covariance of the measurements

Ȳj =
1

|Cj |

∑

i∈Cj

(y̆i − ȳj)(y̆i − ȳj)
T , (8b)

is computed and a reduced measurement set is obtained as

Z̄ = {ȳj , d̄j , Ȳj}
Mc

j=1. (8c)

To exactly map the ellipsoid represented by the covariance

in the reduced measurement set (8b) using the nonlinear

measurement functions (1b) and (3b) is not trivial. Since

approximations have already been introduced, the extent is

approximated using the unscented transform [20] of (8),

and the sigma-points are mapped using (1b) and (3b). The

mapped centroids yj and covariances Yj are recomputed and

a mapped, reduced measurement set is obtained,

Z = {yj , d̄j ,Yj}
M
j=1. (9)

V. CONSTRAINED MOTION MODEL

To accurately track targets suitable motion and measurement

models are important, and a nonlinear discrete state-space

model is chosen on the form

xk+1 = f(xk) +wk (10a)

yk = h(xk) + vk (10b)

where wk ∼ N (0,Q) is the process noise, vk ∼ N (0,R)
is the measurement noise, xk is the state and yk is the

measurement, all at time k and using sampling time T .

Since the measurements are undistorted and mapped as de-

scribed in Sec. III, the measurement model h(x) =
(

x y
)T

is used where x and y represent the target position.

A conventional motion model in target tracking applications

is the constant velocity model [21], where the target state

vector is

xk =
(

xk yk ẋk ẏk
)T

(11)
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Fig. 2. Polygon representation. Fig. 3. Potential field illustration.

and the linear motion model is given by

f(x) =

(

I2 T I2
02 I2

)

x. (12)

Another conventional motion model is the coordi-

nated turn model [21], where the target state vector

is xk =
(

xk yk ẋk ẏk ωk

)T
and the model is given by

f(x) =













x+ ẋ
ω
sin(ωT )− ẏ

ω

(

1− cos(ωT )
)

y + ẋ
ω

(

1− cos(ωT )
)

+ ẏ
ω
sin(ωT )

ẋ cos(ωT )− ẏ sin(ωT )
ẋ sin(ωT ) + ẏ cos(ωT )

ω













. (13)

A. Constraint Model

When a target is constrained to a region, adapting the motion

model to reflect this can improve the tracking performance. In

the following, this is achieved by making a few assumptions

about target behaviour close to the boundary of the region.

The inspiration comes from research on potential fields [12]

and collision avoidance for autonomous robots.

It is reasonable for a target moving towards a boundary to

avoid it by turning when it gets close. A target moving along

a nearby boundary is also assumed to follow it by turning

to align its velocity. In general a target is assumed to move

either in a clockwise or counter clockwise direction along the

boundary of the region, determining the turning direction. The

strength of the influence from each point n along the boundary

is assumed to be a function w(x,n) of the state of the target

and the position of the point.

Combining the effect of each point on the angular velocity

by integrating along the boundary N of the region gives

ω(x) = dr(x)

∫

N

(

βd + βa(ṗ⊥ · l(n))
)

w(x,n) dn, (14)

where dr(x) ∈ {−1, 1} gives the rotational direction of the

target, βd and βa are design parameters giving the strengths

of avoidance and alignment respectively, ṗ = ṗ(x) =
(

ẋ ẏ
)T

, l(n) is the tangent of the boundary and the notation
(

a b
)T

⊥
=
(

b −a
)T

is used.

B. Constraint Region Model

The boundary of the constraint region is modeled as a

simple two-dimensional polygon and to avoid unexpected

behaviour the polygon is assumed to be nearly convex. The

polygon is defined by N vertices vi for i = 1, . . . , N , given

in counter clockwise order. Points on each segment of the

polygon are obtained from

ni(s) = vi + sli, s ∈ [0, mi] (15)

where mi = ‖vi+1 −vi‖ and li = (vi+1 −vi)/mi, as shown

in Fig. 2, with obvious adjustments for mN and lN .

The strength of the influence w(x,n) in (14) for a point

ni(s) on the boundary is modeled to diminish as

wi(x, s) =
1

‖p− ni(s)‖2
=

1

‖ei − sli‖2
, (16)

where p = p(x) =
(

x y
)T

and ei = p− vi. Inserting (16)

into (14) and using the region model in (15) gives the angular

velocity

ω(x) = dr(x)
N
∑

i=1

(

βd + βa(ṗ⊥ · li)
)

wi(x), (17)

where, using ‖li‖ = 1,

wi(x) =

mi
∫

0

wi(x, s) ds =

mi
∫

0

1

‖ei − sli‖2
ds

=
1

lTi ei⊥
arctan

[

mil
T
i ei⊥

‖ei‖2 −mil
T
i ei

]

. (18)

Fig. 3 illustrates (17) with βa = 0 for a constraint region.

The Jacobians of the weights are given by

∂wi

∂x
(x) =

(

wix(x) wiy(x) 0 0
)

(19)

where, using the notation a =
(

ax ay
)T

,

wix(x) =
1

lTi ei⊥

(

liywi(x) +
eiy

‖ei‖2

−
eiy − liymi

‖ei‖
2 − 2lTi eimi +m2

i

)

(20a)

and

wiy(x) =
1

lTi ei⊥

(

−lixwi(x)−
eix

‖ai‖2

+
eix − lixmi

‖ei‖2 − 2lTi eimi +m2
i

)

. (20b)

The direction of the rotation dr(x) can either be chosen

using prior information or be estimated by comparing the

target velocity ṗ to the boundary directions li, e.g. using

dr(x) = sign

( N
∑

i=1

(ṗ · li)wi(x)

)

. (21)

C. Constrained Motion Model

The motion model chosen is a coordinated turn model with

known angular velocity [21]. The continuous state vector is

x =
(

x y ẋ ẏ
)T

and the motion model is

ẋ(t) = fc
(

x(t), t
)

+w(t) (22a)
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where w (t) is the process noise and

fc
(

x(t), t
)

=









ẋ(t)
ẏ(t)

−ω
(

x(t)
)

ẏ(t)
ω
(

x(t)
)

ẋ(t)









. (22b)

With a temporary zero-order hold assumption on ω(x) = ω
and the state vector in (11), (22b) is discretized exactly as

f(x, ω) =









x+ ẋ
ω
sin(ωT )− ẏ

ω

(

1− cos(ωT )
)

y + ẋ
ω

(

1− cosωT )
)

+ ẏ
ω
sin(ωT )

ẋ cos(ωT )− ẏ sin(ωT )
ẋ sin(ωT ) + ẏ cos(ωT )









. (23)

Reintroducing ω = ω(x), the Jacobian with regards to x is

F
(

x, ω(x)
)

=
∂f

∂x

(

x, ω(x)
)

+
∂f

∂ω

(

x, ω(x)
)∂ω(x)

∂x
(24a)

using the chain rule, where

∂f

∂x
=









1 0 sinωT
ω

− 1−cosωT
ω

0 1 1−cosωT
ω

sinωT
ω

0 0 cosωT − sinωT
0 0 sinωT cosωT









, (24b)

∂f

∂ω
=









(ωT ẋ−ẏ) cos(ωT )−(ẋ+ωT ẏ) sin(ωT )+ẏ

ω2

(ẋ−ωT ẏ) cos(ωT )+(ẏ−ωT ẋ) sin(ωT )−ẋ

ω2

−T ẏ cos(ωT )− T ẋ sin(ωT )
T ẋ cos(ωT )− T ẏ sin(ωT )









(24c)

and using (20)

∂ω

∂x
=

N
∑

i=1









(βd + βaṗ
T
⊥li)wix(x)

(βd + βaṗ
T
⊥li)wiy(x)

−βaliywi(x)
βalixwi(x)









T

. (24d)

Care is needed in implementations when ω → 0 for (24b) and

(24c), where, e.g., (24c) reduces to

lim
ω→0

∂f

∂ω
=
(

−T 2ẏ
2

T 2ẋ
2 −T ẏ T ẋ

)T

. (25)

VI. TARGET TRACKING

To associate related measurements generated by the mea-

surements pre-processing over time and estimate target trajec-

tories, a target tracking filter is needed. The probabilistic data

association (PDA) filter [22, Ch. 6] with some modifications

is used for association.

The extended Kalman filter (EKF) [23] is chosen for es-

timating the target states xk from measurements yk using

the models described in Sec. V. The EKF is separated into a

prediction update, using the motion model f(x), its Jacobian

F(x) and the noise covariance Q, and a measurement update,

using the measurement yk, the measurement model h(x), and

the noise covariance R. The noise covariances are considered

design parameters and are selected to achieve good perfor-

mance. The output is the state estimate x̂k and its covariance

Pk

A. Probabilistic Data Association Filter

A common filter used for point targets is the PDA filter,

which constructs a hypothesis for each gated measurement that

it is generated by the target, and then proceeds to merge all

hypotheses weighted by the probability that the measurement

was generated by the target. Although the assumption in

Sec. IV-B is that each target generates several measurements,

the filter assumes that there is at most one measurement

generated by the target, which gives the side-effect that the

state covariance grows, and the innovation covariance can be

seen as an approximate measure of the extent.

All measurements not associated with a track are considered

clutter, which is modeled with a Poisson-Uniform distribution

with intensity density β, resulting in the probability

Pr(θj |Z
k) ∝ βN−1N (yj ; ŷk|k−1,Sk|k−1)PD (26a)

of hypothesis θj that measurement j was generated by the

target, where ŷk|k−1 and Sk|k−1 are the predicted EKF

measurement and innovation covariance respectively and PD

is a design parameter defining the probability of detection. The

probability of hypothesis θ0 that all measurements are clutter

is

Pr(θ0|Z
k) ∝ βN (1− PDPG), (26b)

where PG is the gate probability. The weights for the hypothe-

ses are computed as

µj =
Pr(θj |Z

k)
∑N

i=0 Pr(θi|Z
k)

(27)

and the hypotheses are merged using

x̂k|k =

Mr
∑

j=0

µj x̂
j

k|k (28a)

Pk|k = µ0Pk|k−1 + (1− µ0)Pk|k+
Mr
∑

j=0

µj(x̂
j

k|k − x̂k|k)(x̂
j

k|k − x̂k|k)
T (28b)

where x̂0
k|k = x̂k|k−1 is the EKF predicted state estimate, x̂

j

k|k
is the EKF updated state estimate using measurement yj and

Pk|k−1 is the EKF predicted state covariance.

B. Modified Probabilistic Data Association Filter

The filter used in the proposed solution is inspired by the

PDA filter equations in Sec. VI-A. The PDA has been modified

so that the probability of a measurement anywhere in the gate

is the same, that is measurements are uniformly distributed in

the gate. Furthermore, each measurement represents a number

of actual measurements (foreground pixels), hence multiplicity

is approximated by the size of the observation

nj = |Yj | (29a)

or by the size and confidence, interpreted as the density of

measurements, as

nj = d̄j |Yj |. (29b)
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The probability for θj becomes

Pr(θj |Z
k) ∝

βN−1PD

Vk

=
βN−1PD

π
√

|Sk|k−1|γ
, (30a)

where |·| is the determinant and γ is a design parameter

determining the area Vk of the gate and for θ0

Pr(θ0|Z
k) ∝ βN (1− PD). (30b)

The weights are computed, where n0 = 1, using

µj =
nj Pr(θj |Z

k)
∑N

i=0 ni Pr(θi|Zk)
. (31)

C. Track Management

Track management is performed in three steps:

1) Measurements are associated to and used to update only

confirmed tracks.

2) Unassociated measurements are associated and used to

update tentative tracks.

3) All remaining measurements are used to initiate new

tracks.

Furthermore, M/N -logic is used to determine whether to

confirm or delete tracks. If a track has N1 gated measurements

in consecutive frames and subsequently M gated measure-

ments in the next N2 frames, the track is confirmed, other-

wise deleted. If a confirmed track has D missed consecutive

measurements while in the detection region, shown in Fig. 4

and 9, it is deleted.

On top of this, similar tracks are merged based on the

Bhattacharyya distance [24], dB(i, j),

dB(i, j) =
1

4
(x̂i − x̂j)

T (Pi +Pj)
−1(x̂i − x̂j)

+
1

2
ln

(

|(Pi +Pj)/2|
√

|Pi||Pj |

)

. (32)

If a set of tracks M satisfies dB(i, j) ≤ γm for all i, j ∈ M,

where γm is a design parameter, the tracks are merged. Tracks

are merged into one using [25]

x̂n =
∑

i∈M

wix̂i, (33a)

Pn =
∑

i∈M

wi

(

Pi + (x̂i − x̂n)(x̂i − x̂n)
T
)

, (33b)

where the weight wi = |Pi|/
∑

i∈M|Pi| is chosen to prioritize

tracks with a large extent.

VII. EXAMPLES AND RESULTS

In this section, the proposed tracking solution is evalu-

ated using actual video footage from the dolphinarium at

Kolmården Wildlife Park. See Fig. 4 for an example. Prefer-

ably the solution should be able to extract a trajectory for each

individual dolphin, however, due to resolution and occlusion

this is very difficult and in many situations impossible. Ad-

ditionally, that level of detail is not required for the intended

behavioural study. The aim is therefore to instead track groups

Fig. 4. A frame from the video with the chosen detection region marked
in red. The reflections at the top have a high variance, while reflections at
the bottom are more stable. There is one group of dolphins that is slightly
difficult to segment due to the reflections, but they are easily visible to the
eye and there is one hard-to-see dolphin down at the bottom left.

C D

A B

Fig. 5. Shows the Mahalanobis distance output for segmented pixels in
the foreground segmentation for four situations. A properly segmented target
together with noise and a prominant shadow (A). Three separate targets where
the two on the left would be combined by thresholding (B). A faint target at
the bottom for which the track is maintained (C). Targets partly disappearing
in a reflective region (D).

of dolphins with the goal to maintain a track for a group and

maintain the track in occluded regions.

The performances of the solutions are evaluated qualita-

tively by comparing the performances for the various filters

and models in difficult situations. The main setup used is the

modified PDA filter described in Sec. VI-B using multiplicity

(29b) and the constrained motion model based on (23).

A. Foreground Segmentation

The tracking relies on the output from the measurement pre-

processing and some examples of segmented targets are shown

in Fig. 5. The quality of the output varies over the region and

over time depending on e.g. the stability of the background,

separation of targets, camera resolution and distortion and light

conditions. Although more information could probably be ex-

tracted using tailored computer vision techniques, thresholding

is good enough for the intended group target tracking and

to use general methods is beneficial when applying the same

solution to other similar problems.
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Detection region

Constraint region

Constant Velocity model

Coordinated Turn model

Constrained Motion model

Fig. 6. Compares the predictive capabilities and the innovation covariance
of different models in a non-detection region when a track stops receiving
measurements. The coordinated turn and constant velocity models do not
take the constraint region into account resulting in infeasible predictions. The
constrained motion model keeps predictions within the constraint region.

Size & Confidence

Size & Confidence covariance

Merge

Size

Size covariance

Fig. 7. Compares the estimated trajectory and the innovation covariance size
in the presence of a shadow using size and confidence as well as only size
as multiplicity of the measurements.

B. Model Comparison

Conventional models do not take the physical constraints

into account, this is why the constrained motion model was

proposed. To show the differences in behaviour between

the models, the prediction of each model with the resulting

innovation covariance when no measurements are received is

shown in Fig. 6. The conventional models produce infeasible

predictions and if the target is rediscovered, due to a large gate

or the prediction returning to the constraint region, the esti-

mated trajectory is infeasible. The constrained motion model

prediction, however, follows the boundary of the constraint re-

gion with an innovation covariance better adapted to the actual

uncertainty of the position. The uncertainty in the velocities is

propagated to the uncertainty in the position, causing rapidly

increasing innovation covariance for the conventional models,

while the constrained motion model starts by increasing the

uncertainty in position and then decreases it as the boundary

is approached, although eccentricity still increases.

To improve the constrained motion model even further, the

predictions from it should cover motions in both directions

along a boundary until measurements have been acquired to

distinguish which direction the target went. However, in most

situations this seems not to be a major problem.

PDA high variance

PDA low variance

Modified PDA

Fig. 8. Compares the track innovation covariance for the standard PDA filter,
using high and low Gaussian measurement noise covariance, with the modified
PDA filter during a sharp turn.

C. Multiplicity Comparison

Targets cast shadows, as seen in Fig. 5, which often has

a smaller confidence than the targets. Using only size as

in (29a) to determine the measurement cluster multiplicity,

all foreground measurements will have similar weights in the

target tracking filter, while including the confidence as in (29b)

puts higher weights on true targets than shadows. To compare

the two options the results in the presence of the shadow in

Fig. 5A is shown in Fig. 7. Using only size the trajectory is

seen to be sensitive to the shadow, since the same weight is

put on all measurements, but when including the confidence

the shadow measurements are seen to have less impact, giving

a smoother trajectory estimate and an innovation covariance

that mainly covers the target.

The side effect is that a new track is initiated on the shadow,

which, however, is quickly merged into the original track with

little effect to its trajectory.

D. Filter Comparison

Using a standard PDA filter the measurements are assumed

to be Gaussian distributed around the target position, effec-

tively giving more weight to measurements near the centroid

resulting in poor estimation of the target extent. To handle

this, a variation of the PDA filter was proposed. It assumes

uniformly distributed measurements in the gate, (30a), and

utilizes the multiplicity of the measurements (31). To compare

the two options the filter performances were evaluated in a

sharp turn. The result is given in Fig. 8. The standard PDA

filters struggle to track the target through the turn for various

choices of process and measurement noise covariances, while

the modified PDA filter not only finds the centroid, but also

adapts its innovation covariance to match the extent of the

target, improving the performance.

E. Trajectory Extraction

Using the main setup, the trajectory for one group of

dolphins is shown in Fig. 9. The red line shows the mapped

detection region and it can be seen that the mapping is

inaccurate in some areas. Several tracks, initiated at the blue

circles, are merged into the track along the way and, although

not showing in the figure, several individuals leave the group

along the trajectory, initiating new tracks. The advantage of

the constrained motion model is displayed at the bottom left

where the target disappears for over 100 frames while the track

is maintained.
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Detection region

Constraint region

Track

Lost track

Initiated track

Fig. 9. A track of a group of targets, with individuals joining and splitting
from the group. The filter manages to keep the track while the target passes
straight through the non-detection region at the bottom right and when the
target disappears for a long time in the non-detection region at the bottom
left.

VIII. CONCLUSION

This paper has proposed a method to track dolphins using

a ceiling-mounted fisheye camera intended to help biologists

obtain trajectories for further studies of their behaviour. The

whole pipeline from foreground segmentation to target track-

ing is described, where the target tracking techniques are used

to handle pre-processing imperfections. To achieve this a novel

motion model that affects the heading to avoid collisions with

the basin edges at the same time as it favours trajectories along

the edges is suggested, as well as adaptations to the standard

PDA filter to handle extended targets.

The solution performs very well on recorded video data,

and will provide a tool for biologists to avoid a lot of

tedious manual work. The results show that the foreground

segmentation is able to extract the dolphins from the video

with sufficient accuracy, despite complicating factors, such as

reflections, shadows, distortions and changing light conditions.

The target tracking framework is shown to be able to handle

false detections, limited field of view and occlusions. It is

also shown that the proposed constrained motion model can

maintain tracks during long periods without detections when

conventional constant velocity and coordinated turn models

fail. The feedback from the involved biologists regarding the

results has also been very positive.

Each individual step of the pipeline can be improved. The

most interesting possibility is to introduce feedback from

the target tracking block to improve the measurement pre-

processing. This could be beneficial for the foreground seg-

mentation, especially if combined with explicit handling of

extended targets and groups of targets.
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