
Reasoning on Resident Space Object Hierarchies

Using Probabilistic Programming

Brian E. Ruttenberg

Charles River Analytics

625 Mt Auburn St.

Cambridge MA 02140

bruttenberg@cra.com

Matthew P. Wilkins

Applied Defense Solutions

10440 Little Patuxent Pkwy #600

Columbia, MD 21044

mwilkins@applieddefense.com

Avi Pfeffer

Charles River Analytics

625 Mt Auburn St.

Cambridge MA 02140

apfeffer@cra.com

Abstract—Hierarchical representations are common in many
artificial intelligence tasks, such as classification of satellites in
orbit. Representing and reasoning on hierarchies is difficult,
however, as they can be large, deep and constantly evolving.
Although probabilistic programming provides the flexibility to
model many situations, current probabilistic programming lan-
guages (PPL) do not adequately support hierarchical reasoning.
We present a novel PPL approach to representing and reasoning
about hierarchies that utilizes references, enabling unambiguous
access and referral to hierarchical objects and their properties.
We demonstrate the benefits of our approach on a real–world
resident space object hierarchy.

I. INTRODUCTION

Tracking, detecting and identifying resident space objects

(RSOs) is an important task for the US government and other

space agencies. Any of the estimated 500,000 objects greater

than 1 cm orbiting the earth can severely impair or destroy

vital satellites upon collision [1]. Yet positively identifying the

type, orbit and function of an RSO (e.g., a communications

satellite in low earth orbit) is a difficult task given the limited

and uncertain observations available and the extensive number

of orbital objects.

One approach to manage the identification of RSOs is

to utilize a space object taxonomy to classify RSOs [2],

[3]. Similar to classical Linnean taxonomy in biology, this

hierarchical representation of RSOs can organize space objects

into different functional or physical categories that increase

in specificity at lower levels of the hierarchy. In uncertain

conditions (e.g., poor telescope observations), this represen-

tation has the advantage that identifying an object’s label

with low specificity is better than an incorrect identification;

labeling a remote sensing satellite as an “earth observation”

satellite instead of “remote sensing” is much more useful than

a “navigation” label. This hierarchical classification process

requires reasoning about the label of an unknown RSO given

some specific observable attributes.

Effective hierarchical representation and reasoning on

RSOs, and in other domains, raises a number of challenges:

(1) Hierarchies can be large and deep. (2) Hierarchies can

be evolving; it should be possible to add labels or attributes

to existing hierarchies. (3) In some domains, hierarchies do

not form a tree but exhibit convergence. (4) There may

be interactions between hierarchies; for example, a satellite

hierarchy might interact with a hierarchy of lift vehicles. (5)

There may be multiple instances of a hierarchy in the same

situation, such as several RSOs clustered in one location.

While ad hoc solutions can be provided for many of these

challenges, a general–purpose solution that can help create

new hierarchical reasoning systems would be beneficial.

Probabilistic programming has the potential to provide

such a general-purpose solution, as probabilistic programming

languages (PPL) have reduced the time and effort needed to

build and use large, complex and highly relational probabilistic

models [4]. PPLs provide native probabilistic constructs and

methods that encode the model complexity in the language,

facilitating a more natural model building procedure. Finally,

because the probabilistic constructs are interwoven into the

language, arbitrary data structures can be incorporated into

models, and the object–oriented nature of some PPLs provides

a natural means to express hierarchical models.

Unfortunately, current PPLs have limited support for hi-

erarchical generative processes and reasoning about posterior

distributions of entities from the hierarchy. A typical encoding

requires the definition of a large conditional probability dis-

tribution (CPD) for attributes over all labels in the hierarchy.

Such a CPD is impractical for large hierarchies, and lacks

the modularity needed to add new labels to the hierarchy.

This process also cannot easily support domains that contain

multiple hierarchies.

In this paper, we demonstrate that with the addition of

several novel constructs, the full power, flexibility and richness

of PPLs can be applied to hierarchical models. We extend the

Figaro PPL [5], where hierarchical domains can be naturally

encoded as a probabilistic object–oriented class hierarchy.

However, there are several technical challenges that must be

overcome, such as unambiguously identifying random vari-

ables in different inherited classes, allowing different attribute

sets for classes, and consistent application of evidence. We

overcome these challenges by using Figaro’s reference system,

which allows us to apply evidence to a hierarchical model that

is conditioned upon the labels of an entity. We demonstrate

that we can build a large RSO hierarchy and effectively reason

using the hierarchy for identification of real satellites.

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 1315

II. BACKGROUND

Hierarchical structures can be found in many domains, such

as social networks [6]. In vision tasks, hierarchical models

such as latent Dirichlet allocation (LDA) [7] are frequently

used to model the hierarchical generation of features, regions,

or objects in an image [8], [9]. Once learned, the hierarchy

can be used to classify an object into labels with specific

semantic meaning, or general labels if such specificity is not

possible [10], [11]. This type of hierarchical reasoning and

classification can be found in other domains as well, such as

text [12] or audio [13] classification.

Probabilistic programming has recently developed as a

potential solution to the problems associated with the creation

of large and complex models. Models created with these

languages tend to be highly modular, reusable, and can be

reasoned with using a built–in suite of algorithms that work on

any model created in the language. These languages take many

different forms; some are functional languages (IBAL [14],

Church [15]), imperative (FACTORIE [16]), embedded in an

existing language (Infer.NET [17], Figaro) or implement their

own domain specific language (BLOG [18]).

There has, however, been little effort expended so far to

support hierarchical reasoning in PPLs. Hierarchical represen-

tations are implicitly supported in these languages via tradi-

tional conditional dependence. While PPLs provide flexible

means to create chains of conditional distributions, the size of

these hierarchies can make such a method even impractical for

PPLs, and does not address situations where entities that share

a common label may contain varied attributes. Work by Kuo et

al. ([19]) and prior work on hierarchical relational models [20]

has tried to address some of these issues for ontology–based

models. These works mostly proposed representations and

reasoning on the model when relationships in the ontology

are dependent on attributes that may not exist in some entities.

While these works presented some solutions to these problems,

they do not provide a PPL framework for reasoning about

hierarchies.

A. Figaro Programming Language

Figaro is an open source, object–oriented, functional pro-

gramming language implemented in Scala. In Figaro, models

are Scala objects that define a stochastic or non–stochastic

process. The basic unit in Figaro is the Element[V] class,

parameterized by V, the output type of the element. An

element is basically a unit that contains some value based

on a random process. For example, Geometric(0.9) is an

Element[Int] that produces an integer output according to

a geometric process whose parameter is 0.9. Elements can be

passed to other elements as arguments, and a program typically

consists of some number of element definitions.

One essential element in Figaro, the Chain element, cap-

tures sequencing of a probabilistic model by chaining the

generation of one element with the generation of a subsequent

element that depends on the first element. In Bayesian network

terms, a Chain’s first argument represents a distribution over

the parent of a node, while the second argument is essentially

a conditional probability distribution over the Chain’s output

type given the parent. Using Chain, many elements can be

nested together, allowing a user to quickly create complex

conditional probability distributions.

III. HIERARCHIES

We first formally define a probabilistic hierarchy, and then

subsequently provide examples of several problems with hier-

archical representation in PPLs.

A. Formal Definition

Let L = l1, . . . , ln be a set of n category labels. A hierarchy

H is a partial ordering of L that defines the hierarchical

structure of the labels, where ln is the top label in the

hierarchy, and li ≤ lj means that li is a sub–label of lj . We

denote a global set of m attributes A = {a1, . . . , am} for all

labels in the hierarchy. Each label li, however, contains only a

subset, Ai ⊆ A, of attributes, where ak|i is a random variable

that defines a distribution for the kth attribute from A given

label li. If a label li contains an attribute ak, all of its sub–

labels must contain ak. However, the support or distribution

of ak in different labels may be different.

We also define a generative process for each label lj . We

denote a random variable gj for each lj , where

P (gj = li) =

{

pi if li ≤ lj

0 otherwise

As li ≤ li, this means that the generative process for a label

can also have non–zero probability of generating itself as a

label instead of any of its sub–labels. In other words, this

process allows instances of internal labels of a hierarchy, as

opposed to just the leaf labels. Since ln is the top level label

in the hierarchy, we can denote gn as the random variable that

samples any label from the hierarchy.

An instance I = (y, x1, . . . , xk) represents a sample from

the label generative process and subsequently from the at-

tribute generative process, where y ∼ gn, xi ∼ ai|y . This

definition of a hierarchy is highly flexible and allows for a

diverse representations. For example, we do not enforce that

the distribution of an attribute ak|j must be the expectation

of ak|j over lj’s sub–labels (i.e., it is not necessarily true that

P (ak|j = x) =
∫

li:li≤lj
P (ak|i = x)P (li|lj)).

B. Hierarchies in PPLs

Consider the example hierarchy shown in Fig. 1 that shows

a possible hierarchical organization of RSOs. The top label

is RSO, which is divided into Geosynchronous Earth Orbit

(GEO) and Low Earth Orbit (LEO). GEO is divided into

two additional labels for communications and observation

satellites. The generative process of the hierarchy is also

shown. Note that it is implied that the generative process of a

GEO generates a generic GEO label with 0.6 probability (since

the sub–labels of GEO do not account for all the probability

mass).

1316

RSO

GEOLEO

ObservationCommunications

P(LEO | RSO) = 0.6 P(GEO | RSO) = 0.4

P(Obs | GEO) = 0.1

P(Comm | GEO) = 0.3

Fig. 1. An example RSO classification hierarchy. The probabilities shown
are conditioned upon the parent label.

It is easy to create a naive version of this hierarchy in a

PPL. First, we encode the generative process of the labels as

Figaro functions:
def rso() = Dist(0.6 -> leo(), 0.4 -> geo())

def geo() = Dist(0.6 -> Constant(’geo),

0.3 -> communications(), 0.1 -> observation())

def communications() = Constant(’communications)

def observation() = Constant(’observation)

def leo() = Constant(’leo)

where Dist is a categorical distribution over elements. Note

that the generative process for a GEO in the second line of

the above example explicitly generates a ’geo label with 0.6

probability, and a sub–label of GEO otherwise. Scala uses type

inference, so explicit declaration of variable types can usually

be omitted.

Next, we create a process for the attributes of an RSO, in

this case the attitude of the object:
def attitude(v: Element[Symbol]) = CPD(v,

’leo -> Constant(’spinStable),

’communications -> Constant(’nadir),

’observation -> Constant(’stable),

’geo -> Select(0.25 -> ’uncontrolled,

0.75 -> ’stable)

)

Select is Figaro’s notation for a categorical distribution over

discrete types. Reasoning about an instance from the hierarchy

based on observed evidence is quite simple. We create an

instance from this hierarchy by generating a label and an

attribute distribution:
val myRSO: Element[Symbol] = rso()

val myAttitude: Element[Symbol] = attitude(myRSO)

where myRSO is an element representing generative process

of the RSO label. At this point, we can apply evidence to the

myAttitude element and perform inference using one of

Figaro’s built–in inference algorithms.

However, this representation is ill suited to represent more

complex hierarchies. There is one large CPD with a case

for each label. This results in a large and unwieldy CPD,

especially with multiple non–independent attributes, where the

dependencies between attributes in different labels must all

be encoded in the same CPD. Furthermore, with each new

label, the CPD must be rewritten, so a user cannot extend the

hierarchy without modifying its core. In addition, the CPD of

an attribute must define a distribution for every label, even if

the label does not contain the attribute.

Clearly, an object-oriented representation with inheritance

would be a more modular solution. We could define a set

of classes, each of which contains its attributes. An attribute

could be defined for the first time in a class, or it could inherit

or override the distribution of its parent. For example,
abstract class RSO {

val attitude: Element[Symbol]

}

class LEO extends RSO {

val attitude = Constant(’spinStable)

}

creates a class for LEO by extending the RSO class, and we

can change the label generative process accordingly (i.e., to

generate classes instead of symbols). This encoding also poses

challenges, however. The problem is that now, instead of a

single random variable (RV) representing the attitude of an

RSO, all instances of RSO contain attitude RVs, so there

are four RVs in this model (one for each possible value of

myRSO).

It then becomes problematic to try to refer to the at-

titude of myRSO. A naive approach would be to use

myRSO.attitude, but this is not correct. myRSO is an

Element[RSO], i.e., a RV. It does not have an attitude

attribute; only the values of myRSO do. In addition, consider

if the GEO class also defines a longitude attribute, but the LEO

class does not. A system using this hierarchy might observe

an RSO at a specific longitude, but this information cannot

be asserted on myRSO because the RSO class does not have a

longitude attribute (only the sub–class GEO does).

Figaro’s Chain construct provides a possible solution to

both these problems. We could write Chain(myRSO, (v:

RSO) => v.attitude) to refer to the attitude of myRSO.

However, this solution has the obvious problem that the entire

hierarchy has to be hardcoded, losing the modularity benefits

we have worked to achieve. In addition, this solution is highly

sub–optimal for inference, as the Chain couples together the

RVs for all the different classes. This has negative implications

for both factor and sampling–based inference algorithms.

IV. REFERENCES

To solve this problem, we use references. References are

an abstraction to access, modify and reason about Figaro

elements in a model. A reference can refer to different RVs

depending on the situation, enabling them to overcome the

previous challenges.

A. Element Collections and Names

To enable references, we enforce that every Figaro element

must have a name, which is just a string handle for the element.

String names do not need to be unique, and when none is

provided at element creation, the empty string is used. We also

add element collections (EC) to Figaro. ECs are simply a way

to organize Figaro elements into coherent groups. Every Figaro

element is part of an EC; if an element is not explicitly placed

into an EC at creation time, it is placed into the default

EC.

1317

To further explain this concept, we modify the RSO hierar-

chy with names and ECs as shown below:
abstract class RSO extends ElementCollection {

val attitude: Element[Symbol]

}

class LEO extends RSO {

val attitude =

Constant(’spinStable)(‘‘attitude’’, this)

}

val myRSO = Constant(new LEO)(‘‘myRSO’’, default)

The RSO class extends the EC trait. Any elements (attributes)

defined inside a RSO class are placed into an EC defined by

the newly created class. When we define a LEO class, we also

give its attributes a name. When a LEO is instantiated, it will

create an element named “attitude” inside a LEO, and this

means that the element belongs to the EC of the instantiated

LEO. Finally, we create a specific instance of a RSO and give

it a name.

B. Using References

A Figaro reference is a string that, when resolved, refers

to the name of an element within some EC. A reference

can be resolved into one of more elements using a recursive

procedure. For instance, each EC defines a function called get

that returns the referred element given the current values of

all other elements. So, we can write
val rsoAttitude: Element[Symbol] =

default.get(‘‘myRSO.attitude’’)

To resolve the reference and assign rsoAttitude, the

element representing the attitude of the RSO, we first retrieve

the element named “myRSO” from the default EC. There

is only one value of this element (a LEO class), which is an

instance of an EC, so we then recursively call get with the

next part of the reference. On the second call, we retrieve the

element named “attitude” in the LEO EC and return it.

In this example, myRSO is a constant, so any reference

to “myRSO” has only one resolution path. If we use the

generative process of RSOs as defined earlier, then myRSO

could take on a several values, where each possible value is

also an EC. Resolving the reference “myRSO.attitude” may

refer to multiple elements, each defining their own random

process. In this case, the reference itself defines a distribution

of values. That is, P (myRSO.attitude = x) is
∫

y∈myRSO

P (y.attitude = x|myRSO = y) · P (myRSO = y)

C. References in Hierarchies

References are a natural means to build, access and reason

on probabilistic hierarchies because they address many of the

issues touched upon in the previous section. First, using ECs

and naming, we do not need to define abstract label attributes

for all attributes where li ≤ lj . Meaning, in our example, the

RSO class does not need to contain abstract elements that refer

to all of the attributes of sub–class of RSO.

This feature is a powerful tool for building hierarchies;

adding a new sub–class to the hierarchy need not modify

any other class definitions or propagate any information “up”

the class hierarchy. Yet accessing the attributes can still be

accomplished in a top–down manner using references. That

is, the reference to “myRSO.attitude” does not require that

the RSO class have any encoded knowledge of the sub–

classes where li ≤ RSO. This allows anyone to extend the

hierarchy without changing any other class definitions, greatly

enhancing the modularity and reusability of hierarchies for

multiple purposes.

Using references, it is also not required that every class

representing a label contains a definition for every attribute.

Each class need only to define the attributes that the label

actually contains, regardless of the other attributes in the

hierarchy. So, for example, we can add a longitude attribute

for only GEO objects as
class GEO extends RSO {

val attitude = ...

val longitude =

Uniform(-180, 180)(‘‘longitude’’, this)

}

Calling default.get(‘‘myRSO.longitude’’) using

the declaration of myRSO from above will create a distribution

of the longitude of RSOs using only the labels that have

defined a longitude attribute (i.e., only GEOs). Note that we

did not need to modify the LEO or RSO classes to use this

reference.

V. HANDLING EVIDENCE

A. Evidence and References

In Figaro, evidence can be applied to elements as constraints

or conditions (hard constraints). These are functions from the

value of an element to either a double value (constraints) or

a Boolean value (conditions). Conditions can also be applied

using observation notation, which just asserts that the value of

the element must be the observed value.

Figaro allows evidence to be applied to a reference, and ulti-

mately, to the elements resolved from the reference. Evidence

can be applied using the assertEvidence function in the

EC trait, where the user must define the type of evidence to

apply to the resolved elements. For example, the statement:
default.assertEvidence(

NamedEvidence(‘‘myRSO.attitude’’, Observation(’stable))

)

asserts the observation that any element that is resolved by the

reference “myRSO.attitude” should have a value of ’stable.

In this situation, however, it is unclear as to how the

evidence should be applied to the resolved elements. A naive

solution is to apply the evidence to the currently referred

element, i.e., the element returned by get, but is incorrect. As

the Figaro model represents a random process, the current state

of the model may change and the element the reference refers

to may change. For example, if the current value of myRSO

is an instance of LEO class, we cannot apply the evidence

only to the LEO class attributes, since the value of myRSO

may change to an instance of GEO, thus changing the current

resolution of the reference.

It seems then that the evidence should be applied to all

possible elements that could be resolved by the reference.

This too, is incorrect. While there are many possible values

1318

of myRSO, at any one time, the element’s value is a single

instance of RSO. Hence it is incorrect to always condition the

attributes of other values of myRSO on the evidence. To see

this, consider the observation above that the RSO’s attitude is

’stable. ’stable is not a possible value for the attitude

of a LEO (this is imposed by the hierarchy definition, not a

physical limitation of RSO’s in LEO, and one could define a

hierarchy where this is possible). So if we apply the evidence

to LEO.attitude, the evidence will have probability zero,

even if the current value of myRSO is an instance of GEO.

B. Contingent Evidence

To solve this problem, we extend Figaro with contingent

evidence. The idea behind contingent evidence is that evidence

should be applied to a resolvable element of a reference

only when the reference is currently resolved to the element.

In other words, contingent evidence applies evidence to an

element conditioned upon another set of elements taking on

specific values.

Consider the example evidence from above where we ob-

serve that the attitude of an instance of RSO is ’stable.

In this case, we want to assert that GEO.attitude ==
’stable only when myRSO.isInstanceOf[GEO] ==
true. In this manner, we only assert the evidence on references

contingent upon the values needed to resolve the reference.

When evidence is asserted using a reference, contingent

evidence is automatically created and applied by Figaro,

without the need for the user to manually specify how to create

the contingent evidence (e.g., as above). Creating contingent

evidence is a multistep process. First, we have to find all

possible resolutions of the reference. Figaro will recursively

expand the ECs in the reference and find all possible resolvable

elements. Next, for each possible element, Figaro will create a

list of contingent elements and the values they need to take to

make the reference resolve to the element. The list is stored,

along with the evidence, in the resolved element. Finally, for

all elements along a resolvable path, Figaro will assert that

they are only allowed to take on values that will result in a

resolvable element. If no value of an element in the resolution

path results in a valid resolution, then assert the element’s

value as null.

The last step is needed to ensure that elements only take

on values that are consistent with the evidence. For example,

if we observe that a RSO’s longitude is 100, and only GEO

classes have a longitude, then we must ensure that myRSO is

never a LEO. We cannot apply the evidence of the longitude

to a LEO (since they do not have one), but the semantics of

the evidence state that the RSO cannot be a LEO, since the

RSO we did observe has a longitude attribute.

During inference on the model, the value of an element

is checked against any evidence and the list of contingent

elements stored for that evidence. For a condition (Boolean

evidence), a value of the element x satisfies the condition if

¬(
∧

e,v∈Cont

e.value == v) ∨ x.value == condition.value

where Cont is a list of contingent elements and the values

needed to resolve the reference to element x. These semantics

enforce that whenever the values of the contingent elements

are not equal to the stored values (needed to resolve the

reference to this element), the condition on the element is

always true. Because of this feature, we can avoid the problem

as previously described: Evidence can only be dissatisfied

when an element’s value dissatisfies the evidence and the

element is the current resolution of a reference.

Using contingent evidence, we can now reason about the

label of a RSO given its observed attributes. For example,

let us assume that an optical telescope detects a RSO and

determines that the RSO’s brightness is within a certain range,

and we wish to determine the label of the unknown RSO.

Assuming the generative process and hierarchy previously

described, we can accomplish this now:

val myRSO = rso("r1")

default.assertEvidence(NamedEvidence("r1.brightness",

Condition((d: Double) => d > 0.7 && d < 0.9)))

val alg = MetropolisHastings(50000, myRSO)

alg.start()

We simply create a new instance of an RSO, assert the

condition that the RSO’s brightness is between 0.7 and 0.9

(on some normalized scale), and run the Metropolis–Hastings

inference algorithm. Once the algorithm is complete, we can

query the posterior distribution of the RSO instance.

VI. EXPERIMENTS

We implemented a large RSO hierarchy to test the utility

of references in probabilistic programming. The Figaro code

below has been modified for space, but the hierarchy and full

code can be provided upon request.

A. Hierarchy and Data Set

The RSO hierarchy is based on a recently proposed taxon-

omy for space objects [3]. At the top level of the taxonomy

is the RSO class, followed by classes that define the orbit

of the object (GEO, LEO, Medium Earth Orbit and Ellipse).

Subsequent to the orbit, RSOs are further broken down by the

general mission type of the object: Observation, Communi-

cations, Navigation or Debris. Observation RSOs are further

broken down into sub–missions (e.g, Meteorology). The top

level RSO class is defined as

abstract class RSO extends ElementCollection

with Missions {

val attitude: Element[Symbol] = getAttitude(this)

val mass =

FromRange(minMass, maxMass)("mass", this)

val distance =

FromRange(minDist, maxDist)("distance", this)

val brightness: Element[Int]

val brightnessRate: Element[Double]

}

The attitude, mass and distance of an RSO are defined in the

RSO class, but each sub–class of RSO is free to define their

own distributions of these attributes. The attitude attribute is

created from the getAttitude function, which is defined

per the mission of the object (in the Missions trait, not

1319

0

0.1

0.2

0.3

0.4

0.5

0.6

Class Up 1 Level Up 2 Levels Up 3 Levels

P
ro

b
a

b
il

it
y

Original

With Longitude

Satellites

Fig. 2. Testing results using the RSO taxonomy

shown). FromRange is Figaro notation for a discrete uniform

distribution.

Unfortunately, these attributes are not directly observable.

When observing an RSO via optical telescopes, one can only

observe the brightness of the object and the rate at which

the brightness is observed (e.g., rapid glints or no glints).

These attributes are conditioned upon the attitude, mass and

distance of the object. For instance, objects that are farther

from earth have less intense brightness, and objects that are

spin stable have more glints than objects that are nadir. Since

these attributes depend upon other attributes, they are not

defined in the top level class (i.e., each sub–class of RSO

must define them).

The RSO hierarchy just provides a taxonomical classifi-

cation of RSOs. However, to highlight the benefits of using

probabilistic programming for hierarchical reasoning, we also

added class definitions for specific satellites in orbit. Using

the database of 1047 known satellites compiled by the Union

of Concerned Scientists [21], we added class definitions for

several satellites by extending existing hierarchy classes. For

instance, the GOES13 satellite is defined as
class GOES13 extends

GEO_Observation_Earth_Meteorology {

override val mass = Constant(32)("mass", this)

...

val longitude = Constant(-104.77)("longitude",this)

}

where the satellite definition overrides the parent class values

for mass (and other attributes not shown). Note that this class

also defines an attribute longitude that was not defined in

the RSO class, as fixed longitudes are only properties of GEO

satellites.

B. Testing

Currently, sensor resources are a significant limitation to

accurate classification of RSOs. Given the large number of

satellites in orbit, sensor resources must be used judiciously to

ensure that observed data is valuable. For example, collecting

low quality observations of a poorly lit but identified object

instead of potentially high quality observations of a brightly

lit but unknown object is a waste of resources. Hence, even

low–specificity classifications using the RSO taxonomy can be

extremely useful if the classification can prevent the misuse of

further sensor resources. At present, no other RSO detection

and classification scheme uses hierarchical reasoning as a

means to triage sensor resources.

As a consequence, we tested the ability of the RSO hierar-

chy to classify RSOs at different taxonomical classifications.

We selected 50 random satellites from the UCS database, gen-

erated observation data from each satellite, and applied it as a

constraint on the brightness and brightness rate of an unknown

RSO. After applying evidence, posterior probabilities of the

unknown class label were computed using the Metropolis–

Hastings algorithm.

Fig. 2 shows the results of the random testing. First, we

computed the expected posterior probability of the correct

satellite label, shown in the first column. Then we computed

the expected posterior probability of each parent label of the

correct satellite label, up to three levels. As expected, the

probability of each parent label increases at lower specificity

classifications of an unknown RSO. It is clear, however, that

this hierarchical reasoning can be combined with a decision

rule to classify RSOs and possibly acquire more sensor data.

For instance, if an RSO is an instance of an LEO with high

probability, then additional sensor measurements can be taken

to determine the sub–label of LEO more accurately; or if the

probability of sub–labels are nearly equally likely, we can

classify the RSO as the parent label instead of a more specific

label.

To highlight the modularity and flexibility of using PPLs,

we performed two additional tests, also shown in Fig. 2. First,

we tested a situation where additional observation capabilities

may be available, and if the longitude of an observed RSO

can be determined, it is also applied as evidence to the

model. Note that only GEO objects have a longitude, but

application of this evidence to the appropriate objects is

handled automatically. In this scenario, our posterior parent

probabilities increased, reflecting the ability of the hierarchical

model to reason with additional information when available,

while requiring no changes in representation or inference. We

also took observations from the 15 satellites encoded into the

hierarchy and computed the posterior distributions for those

observations. Not surprisingly, the distributions for this test

were the highest. As adding new satellites to the hierarchy is

extremely easy, this is an effective means to reason with an

expanding catalog of satellites.

VII. CONCLUSION

We presented a novel approach to representing and reason-

ing on probabilistic hierarchies in PPLs. Figaro references and

contingent evidence enable flexible and modular probabilistic

hierarchies. Hierarchies are easily expanded with new infor-

mation, yet still accessed and manipulated without complete

knowledge of the hierarchy. We also demonstrated the benefits

of our approach for RSO classification, which has the potential

to significantly impact the domain.

Due to the benefits of PPLs and references, creation of

many powerful models is possible. One can easily create

models with multiple RSOs that interact with each other, or

1320

create models with interacting hierarchies; the label of an

RSO could also depend upon a hierarchy of body types, for

example. In addition, the modularity and flexibility of this PPL

representation enables easy creation of dynamic models, where

we could use the hierarchy to track RSO observations over

time. These types of models are targets for future research in

probabilistic programming and RSO detection.

ACKNOWLEDGEMENTS

This work was supported by DARPA contract FA8750-14-

C-0011.

REFERENCES

[1] NASA. (2013, Sept) Space debris and human spacecraft.
[Online]. Available: http://www.nasa.gov/mission pages/station/news/
orbital debris.html

[2] C. Früh, M. Jah, E. Valdez, P. Kervin, and T. Kelecy, “Taxonomy and
classification scheme for artificial space objects,” in Advanced Maui

Optical and Space Surveillance Technologies Conference, 2013.

[3] M. P. Wilkins, A. Pfeffer, P. W. Schumacher, and M. K. Jah, “Towards an
artificial space object taxonomy,” in Advanced Maui Optical and Space

Surveillance Technologies Conference, 2013.

[4] N. D. Goodman, “The principles and practice of probabilistic program-
ming,” in Proceedings of the 40th annual ACM SIGPLAN-SIGACT

symposium on Principles of programming languages. ACM, 2013,
pp. 399–402.

[5] A. Pfeffer, “Creating and manipulating probabilistic programs with
Figaro,” in 2nd International Workshop on Statistical Relational AI,
2012.

[6] M. Gupte, P. Shankar, J. Li, S. Muthukrishnan, and L. Iftode, “Finding
hierarchy in directed online social networks,” in Proceedings of the 20th

international conference on world wide web. ACM, 2011, pp. 557–566.

[7] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[8] A. S. Bakhtiari and N. Bouguila, “A hierarchical statistical model for
object classification,” in IEEE International Workshop on Multimedia

Signal Processing. IEEE, 2010, pp. 493–498.

[9] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for learning
natural scene categories,” in IEEE Conference on Computer Vision and

Pattern Recognition, vol. 2. IEEE, 2005, pp. 524–531.

[10] A. Sadovnik and T. Chen, “Hierarchical object groups for scene classifi-
cation,” in IEEE International Conference on Image Processing (ICIP).
IEEE, 2012, pp. 1881–1884.

[11] M. Marszalek and C. Schmid, “Semantic hierarchies for visual object
recognition,” in IEEE Conference on Computer Vision and Pattern

Recognition. IEEE, 2007, pp. 1–7.

[12] A. Sun and E.-P. Lim, “Hierarchical text classification and evaluation,”
in IEEE International Conference on Data Mining. IEEE, 2001, pp.
521–528.

[13] J. J. Burred and A. Lerch, “A hierarchical approach to automatic musical
genre classification,” in Proceedings of the 6th International Conference

on Digital Audio Effects, 2003.

[14] A. Pfeffer, “IBAL: A probabilistic rational programming language,” in
International Joint Conference on Artificial Intelligence, 2001.

[15] N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and J. Tenen-
baum, “Church: a language for generative models with non-parametric
memoization and approximate inference,” in Uncertainty in Artificial

Intelligence, 2008.

[16] A. McCallum, K. Schultz, and S. Singh, “Factorie: Probabilistic pro-
gramming via imperatively defined factor graphs,” in Advances in Neural

Information Processing Systems, 2009, pp. 1249–1257.

[17] Microsoft Research, “Infer.net api documentation,”
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/,
2013.

[18] B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov,
“Blog: Probabilistic models with unknown objects,” in Introduction to

Statistical Relational Learning, L. Getoor and B. Taskar, Eds. The MIT
press, 2007, p. 373.

[19] C.-L. Kuo, D. Buchman, A. Katiyar, and D. Poole, “Probabilistic reason-
ing with undefined properties in ontologically-based belief networks,”
in Proceedings of the 23rd International Joint Conference on Artificial

Intelligence (To appear), 2013.
[20] J. Newton and R. Greiner, “Hierarchical probabilistic relational models

for collaborative filtering,” in Proc. Workshop on Statistical Relational

Learning, 21st International Conference on Machine Learning, 2004.
[21] T. Grimwood, “UCS satellite database,” Union of Concerned Scientists,

vol. 31, 2011.

1321

