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Abstract—In this paper, we present a randomized version of
the finite set statistics (FISST) Bayesian recursions for multi-
object tracking problems with application to the space situational
awareness (SSA) problem. We introduce a hypothesis level
derivation of the FISST equations that shows that the multi-
object tracking problem may be considered as a finite state space
Bayesian filtering problem, albeit with a growing state space.
It further allows us to propose a randomized scheme, termed
randomized FISST (R-FISST), where we choose the highly likely
children hypotheses using Markov Chain Monte Carlo (MCMC)
methods which allows us to keep the problem computationally
tractable. We test the R-FISST technique on a fifty object birth
and death SSA tracking and detection problem.

I. INTRODUCTION

In this paper, we present a randomized approach to ap-

proximate the full Bayesian recursions involved in solving the

Finite Set Statistics (FISST) based approach to the problem

of multi-object tracking and detection, in particular, to the

problem of SSA. We show that the FISST recursions can

essentially be considered as a discrete state space Bayesian

filtering problem on “Hypothesis Space” with the only input

from the continuous problem coming in terms of the likelihood

values of the different hypotheses. The number of objects

is implicit in this technique and can be a random variable.

The ”Hypothesis Space” perspective allows us to develop a

randomized version of the FISST recursions where we sample

the highly likely children hypotheses using a Markov Chain

Monte Carlo (MCMC) technique thereby allowing us to keep

the total number of possible hypotheses under control, and

thus, allows for a computationally tractable implementation of

the FISST equations, which otherwise grows at an exponential

rate, and thus, can quickly lead to the problem becoming

intractable. The method is applied to a fifty object SSA

tracking and detection problem that has an unfixed number

of objects throughout the simulation.

In the last 20 years, the theory of FISST-based multi-

object detection and tracking has been developed based on

the mathematical theory of finite set statistics [1], [2]. The

greatest challenge in implementing FISST in real-time, which

is critical to any viable SSA solution, is computational bur-

den. The first-moment approximation of FISST is known as

the Probability Hypothesis Density (PHD) approach [2], [3].

The PHD has been proposed as a computationally tractable

approach to applying FISST. The PHD filter essentially finds

the density of the probability of an object being at a given

location, and thus, can provide information about the number

of objects (integral of the PHD over the region of interest)

and likely location of the objects (the peaks of the PHD).

The PHD can further employ a Gaussian Mixture (GM) or

a particle filter approximation to reduce the computational

burden (by removing the need to discretize the state space).

This comes at the expense of approximating the general FISST

pdf with its first-moments [3]–[6]. The PHD filter does not

attempt to solve the full FISST recursions, in particular, by

considering the PHD, the filter gets rid of the data association

problem inherent in these problems. In other previous work,

a GM approximation was applied, not to the first-moment

of the FISST pdfs, but to the original full propagation and

update equations derived from FISST [7], [8]. This eliminates

any information loss associated with using the first-moment

PHD approximation, while at the same time increasing the

computational tractability of the multi-object FISST pdfs. This

approach is similar in spirit to the concept of the “para-

Gaussian” pdf that was described in [9].

In this paper, in contrast, we introduce a hypothesis level

derivation of the FISST equations that makes it clear as to

how the full FISST recursions can be implemented without

any approximation other than the approximations inherent in

the underlying tracking filter, such as an extended Kalman

filter. In order to ensure the computational tractability of the

resulting equations, we introduce an MCMC based hypothesis

selection scheme resulting in the Randomized FISST (R-

FISST) approach that is able to scale the FISST recursions

to large scale problems.

There are also non-FISST based approaches to multi-

hypothesis tracking (MHT) such as the Hypothesis Oriented

MHT (HOMHT) [10]–[13], and the track oriented MHT

(TOMHT) techniques [14]. The MHT techniques can be

divided into single-scan and multi-scan methods depending on

whether the method uses data from previous times to distin-

guish the tracks [11], [13], [15]. The single-scan (recursive)

methods such as joint probabilistic data association (JPDA)

[13], [15] typically make the assumption that the tracks are

independent which is not necessarily true. The multi-scan

methods such as TOMHT [13], [14] are not recursive. The pri-

mary challenge in these methods is the management of the var-

ious different hypotheses related to the tracks which TOMHT
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does using an efficient tree structure, and the MCMCDA, and

other related tracking techniques [16]–[18], do through the

use of MCMC methods in sampling the data associations.

We also use MCMC to sample children hypotheses given the

parent hypothesis, however, our approach is a truly recursive

technique which does not assume track independence as the

above mentioned single scan methods. We essentially do an

efficient management of the growing number of hypotheses at

every generation through the judicious use of MCMC.

The rest of the paper is organized as follows. In Section

II, we introduce the hypothesis level derivation of the FISST

equations. In Section III, we introduce the MCMC based

randomized hypothesis selection technique that results in the

R-FISST algorithm. In Section IV, we show an application

of the R-FISST technique on a fifty object SSA example and

discuss the results.

II. A HYPOTHESIS BASED DERIVATION OF THE FISST

EQUATIONS

In this section, we shall frame the multi-object tracking

equations at the discrete hypothesis level ( which we believe

are equivalent to the FISST equations) which then shows

clearly as to how the full FISST recursions may be imple-

mented. The derivation below assumes that the number of

measurements is always less than the number of objects, which

is typically the case in the SSA problem. We never explicitly

account for the number of objects, since given a hypothesis, the

number of objects and their probability density functions (pdf)

are fixed, which allows us to derive the results without having

to consider the random finite set (RFS) theory underlying

FISST. Albeit the equations derived are not as general as the

FISST equations, in particular, the birth and death models

employed here are quite simple, we believe that the level

of generality is sufficient for the SSA problem that is our

application.

A. Framing FISST at the Hypothesis Level

We consider first the case when the number of objects

is fixed, which we shall then generalize to the case when

the number of objects is variable, i.e, there is birth and

death in the object population. Assume that the number of

objects is M , and each object state resides in ℜN . Consider

some time instant t − 1, and the data available for the

multi-object tracking problem till the current time F t−1. Let

Hi denote the ith hypothesis at time t − 1, and let {X}
denote the underlying continuous state. For instance, given

the N− object hypothesis, the underlying state space would

be {X} = {X1, X2, · · ·XM} where Xj denotes the state

of the jth object under hypothesis Hi and resides in ℜN .

Let p({X}, i/F t−1) denote the joint distribution of the state-

hypothesis pair after time t− 1. Using the rule of conditional

probability:

p({X}, i/F t−1) = p({X}/i,F t−1)
︸ ︷︷ ︸

MT-pdf underlyingHi

p(i/F t−1)
︸ ︷︷ ︸

wi=prob. ofHi

, (1)

where MT-pdf is the multi-object pdf underlying a hypothesis.

Given the hypothesis, the MT-pdf is a product of independent

individual pdfs underlying the objects, i.e.,

p({X}/i,F t−1) =
M∏

k=1

pk(xk), (2)

where pk(.) is the pdf of the kth object. Next, we consider the

prediction step between measurements. Each hypothesis Hi

splits into AM children hypotheses, and let us denote the jth

child hypothesis as Hij . The children hypotheses correspond

to the different data associations possible given a measurement

of size m, i.e., m returns, and

AM =

min(m,M)
∑

n=0

(
M

n

)(
m

n

)

n!. (3)

We want to note here that this is a pseudo-prediction step since

we assume that we know the size of the return m. However, it

allows us to fit the MT-tracking method nicely into a typical

filtering framework. Using the rules of total and conditional

probability, it follows that the predicted multi-object pdf in

terms of the children hypotheses is:

p−({X}, (i, j)/F t−1) =
∫

p({X}, (i, j)/{X ′}, i)p({X ′}, i/F t−1)d{X ′} =
∫

p({X}/(i, j), {X ′})p({X ′}/i,F t−1)d{X ′}

︸ ︷︷ ︸

p−({X}/(i,j),Ft−1)

p(j/i)
︸ ︷︷ ︸

pij

p(i/F t−1)
︸ ︷︷ ︸

wi

, (4)

where p−(., (i, j)/F t−1) is the joint distribution of the state

and hypothesis pairs before the measurement at time t. We

have used the fact that p((i, j)/{X ′}, i) = p(j/i) = pij , and

pij is the transition probability of going from the parent i to

the child j and wi is the probability of the parent hypothesis

Hi. Let pk(xk/x
′
k) denote the transition density function of

the kth object. Expanding the predicted MT-pdf, we obtain:

p−({X}/(i, j),F t−1) ≡
∫

p({X}/(i, j), {X ′})p({X ′}/(i),F t−1)d{X ′}, (5)

where

p({X}/(i, j), {X ′}) ≡
M∏

k=1

pk(xk/x
′
k)

∫

p({X}/(i, j), {X ′})p({X ′}/(i),F t−1)d{X ′}

≡

∫
∏

k

pk(xk/x
′
k)

∏

k′

pk′(x′
k)dx

′
1 · · · dx

′
M

=
∏

k

∫

pk(xk/x
′
k)pk(x

′
k)dx

′
k =

∏

k

p−k (xk), (6)
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where p−k (xk) is the prediction of the kth object pdf underly-

ing the hypothesis Hij .

Remark 1: Eq. 4 has a particularly nice hybrid structure:

note that the first factor is the multi-object continuous pdf

underlying the child hypothesis Hij , while the second factor

pijwi is the predicted weight of the hypothesis Hij . For the

no birth and death case, all pij are equal to 1
AM

, where recall

that AM is the total number of data associations possible (Eq.

3). Note that the MT-pdf underlying Hij is simply the product

of the predicted individual object pdf, and in the case of no

birth and death, it is the same for all children hypothesis Hij .

Given the prediction step above, let us consider the update

step given the measurements {Zt} = {z1,t, · · · zm,t}, where

there are m measurement returns. We would like to update

the weights of each of the multi-object hypotheses to obtain

p({X}, (i, j)/{Zt},F
t−1) by incorporating the measurement

{Zt}. Using Bayes rule:

p({X}, (i, j)/{Zt},F
t−1) =

ηp({Zt}/{X}, (i, j))p−({X}, (i, j)/F t−1),

where

η = (7)
∑

i′,j′

∫

p({Zt}/{X
′}, (i′, j′))p−({X ′}, (i′, j′)/F t−1)d{X ′},

where the MT-likelihood function p({Zt}/{X}, (i, j))
and the Bayes normalizing factor
∫
p({Zt}/{X

′}, (i′, j′))p−({X ′}, (i′, j′)/F t−1)d{X ′}
are defined in Eqs. 11 and 13 below. Using the prediction

equation 4, it follows that:

p({X}, (i, j)/{Zt},F
t−1)

︸ ︷︷ ︸

p({X},(i,j)/Ft)

=

ηp({Zt}/X, (i, j))p−({X}/(i, j),F t−1)pijwi. (8)

We may then factor the above equation as follows:

p({X}, (i, j)/F t) =

p({Zt}/{X}, (i, j))p−({X}/(i, j),F t−1)

lij

lij

wij

︷ ︸︸ ︷
pijwi

∑

i′,j′ li′,j′ pi′j′wi′
︸ ︷︷ ︸

wi′j′

,

(9)

where

lij =

∫

p({Zt}/{X
′}, (i, j))p−({X ′}/(i, j),F t−1)d{X ′}.

(10)

Note that lij is likelihood of the data {Zt} given the multi-

object pdf underlying hypothesis Hij , and the particular data

association that is encoded in the hypothesis.

Remark 2: It behooves us to understand the updated pdf

underlying the child hypothesis Hij , the first factor on the right

hand side of Eq. 9. Let pD denote the probability of detection

of a object given that it is in the field of view (FOV) of the

monitoring sensor(s). Let pF (z) denote the probability that the

observation z arises from a clutter source. Let Hi denote an

M−object hypothesis with object states {X} = {X1, · · ·XM}
governed by the pdfs p1(x1), · · · pM (xM ). Let the child hy-

pothesis Hij correspond to the following data association

hypothesis: z1 → Xj1 , · · · zm → Xjm . Then, we define the

MT-likelihood function:

p({Zt}/{X}, (i, j)) ≡

p({z1 · · · zm}/{X1 = x1, · · ·XM = xM}, (i, j))

= [
m∏

k=1

pDp(zk/Xjk = xjk)](1− pD)M−m, (11)

where p(zk/Xjk = xjk) is simply the single object observa-

tion likelihood function for the sensor. Thus,

p({Zt}/{X}, (i, j))p−({X}/(i, j),F t−1) =

[
m∏

k=1

pDp(zk/Xjk = xjk)p
−
jk
(xjk)][

∏

l 6=jk

(1− pD)p−l (xl)],

(12)

where l 6= jk denotes all objects Xl that are not associated

with a measurement under hypothesis Hij . Further, defining

the MT-Bayes factor as:

lij =

∫

p({Zt}/{X
′}, (i, j))p−({X ′}/(i, j),F t−1)d{X ′}

≡

∫

[

m∏

k=1

pDp(zk/Xjk = x′
jk
)p−jk(x

′
jk
)]×

[
∏

l 6=jk

(1− pD)p−l (x
′
l)]dx

′
1..dx

′
M

= [
m∏

k=1

(pD

∫

p(zk/Xjj = x′
jk
)p−jk(x

′
jk
)dx′

jk
)]×

[
∏

l 6=jk

(1− pD)

∫

p−l (x
′
l)dx

′
l]

= (1− pD)M−m
m∏

k=1

pDp(zk/Xjk), (13)

where p(zk/Xjk) ≡
∫
p(zk/Xjk = x′

jk
)p−jk(x

′
jk
)dx′

jk
. Hence,

p({Zt}/{X}, (i, j))p−({X}/(i, j),F t−1)
∫
p({Zt}/{X ′}, (i, j))p−({X ′}/(i, j),F t−1)d{X ′}

=

∏m
k=1 pDp(zk/Xjk = xjk)p

−
jk
(xjk)

∏m
k=1 pD

∫
p(zk/Xjk = x′

jk
)p−jk(x

′
jk
)dx′

jk

×

(1− pD)M−m
∏

l 6=jk
p−l (xl)

(1− pD)M−m

=
m∏

k=1

pjk(xjk/zk)×
∏

l 6=jk

p−l (xl), (14)

where pjk(xjk/zk) denotes the updated object pdf of Xjk

using the observation zk and the predicted prior pdf p−jk(xjk),

and p−l (xl) is the predicted prior pdf of Xl whenever l 6= jk,

i.e., the pdf of object Xl is not updated with any measurement.
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In the above, we have assumed that all the measurements are

assigned to objects, however, some of the measurements can

also be assigned to clutter, in which case, the object pdfs

are updated exactly as above, i.e., all objects’ predicted prior

pdfs associated with data are updated while the unassociated

objects’ predicted priors are not updated, except now the

likelihoods lijof the children hypothesis Hij are given by:

lij = (1− pD)M−m′

m∏

i=1

p(zi/Xji), (15)

where

p(zi/Xji) =

{

pD
∫
p(zi/x)pji(x)dx if Xji ∈ T

pF (zi) if Xji ∈ C
(16)

where T is the set of all objects and C is clutter, m′ is the

number of objects associated to measurements, and the above

equation implies that the measurement zi was associated to

clutter if Xji ∈ C. Note that in the above equation the FOV is

assumed to cover the entire set of objects, if it does not do so,

the factor (1− pD)M−m is replaced by (1− pD)Mt−m where

Mt is the number of objects in the FOV of the sensor.

Remark 3: The recursive equation 9 above has a particularly

nice factored hybrid form. The first factor is just a continuous

multi-object pdf that is obtained by updating the predicted

multi-object pdf obtained by associating the measurements in

{Zt} to objects according to the data association underlying

Hij . The second factor corresponds to the update of the

discrete hypothesis weights.

Remark 4: Given that there is an efficient way to predict/

update the multi-object pdfs underlying the different hypothe-

ses, Eq. 9 actually shows that the FISST recursions may

essentially be treated as a purely discrete problem living in

the “Hypothesis level” space. The ”hypothesis level” weights

are updated based on the likelihoods lij which is determined

by the continuous pdf underlying Hij . Also, the continuous

pdf prediction and updates are independent of the hypothesis

level prediction and updates, i.e, the hypothesis probabilities

do no affect the multi-object pdfs underlying the hypotheses.

Thus, given that the likelihoods of different hypothesis lij arise

from the underlying multi-object pdf and the encoded data

association in the hypotheses Hij , the FISST updates can be

written purely at the hypothesis level as follows:

wij :=
lijwij

∑

i′,j′ li′j′wi′j′
, (17)

where wij = pijwi. Thus, we can see that the FISST update

has a particularly simple Bayesian recursive form when viewed

at the discrete hypothesis level, given that the multi-object

pdfs underlying the hypotheses Hij are tracked using some

suitable method. We can summarize the above development

of the Bayesian recursion for multi-object tracking as follows:

Proposition 1: Given an M−object hypothesis Hi, and its

children hypotheses Hij , that correspond to the data associ-

ations {zi → Xji}, the joint MT-density, hypothesis weight

update equation is:

p({X}, (i, j)/F t) = p({X}/(i, j),F t)
wij lij

∑

i′,j′ wi′j′ li′j′
,

where wij = pijwi, lij is given by Eq. 15, and the MT-pdf

underlying Hij :

p({X}/(i, j),F t) =

m∏

k=1

pjk(xjk/zk)
∏

l 6=jk

p−l (xl),

where pjk(Xjk/zjk) denotes the predicted prior of object Xjk ,

p−jk(xk), updated by the observation zjk , and p−l (xl) is the

predicted prior for all objects Xl that are not associated.

We may renumber our hypothesis Hij into a parent of the

next generation of hypothesis through a suitable map F ((i, j))
that maps every pair (i, j) into a unique positive integer i′, and

start the recursive procedure again. However, the trouble is that

the number of hypotheses grows combinatorially at every time

step since at every step the number of hypotheses grow by the

factor AM (Eq. 3), and thus, the above recursions can quickly

get intractable.

B. Incorporating Birth and Death in Hypothesis level FISST

The development thus far in this section has assumed

(implicitly) that there are a fixed and known number of objects.

However, this is not necessarily true since new objects can

arrive while old objects can die. Thus, we have to incorporate

the possibility of the birth and death of objects. In the follow-

ing, we show that this can be done in quite a straightforward

fashion using Eqs. 4, 9 and 17.

Let α denote the birth probability of a new object being

spawned and β denote the probability that an object dies in

between two measurements. We will assume that α2, β2 ≈ 0.

This assumption implies that exactly one birth or one death is

possible in between measurement updates. Consider the time

instant t, and consider an M -object hypothesis at time t, Hi.

Depending on the time t, let us assume that there can be M b
t

birth hypotheses and Md
t death hypothesis corresponding to

one of M b
t objects being spawned or one of Md

t objects dying.

In particular, for the SSA problem, we can divide the FOV of

the sensor into M b
t parts and the births correspond to a new

object being spawned in one of these FOV parts. The death

hypotheses correspond to one of the Md
t objects expected to

be in the FOV dying. Hence, a child hypothesis Hij of the

parent Hi can be an M +1 object hypothesis with probability

α in exactly M b
t different ways. The child Hij could have

M − 1 objects with probability β each in Md
t different ways

corresponding to the Md
t different objects dying. Thus, the

child Hij could have M objects with probability (1−M b
t α−

Md
t β) in exactly one way (the no birth/ death case). Please

see Fig. 1 for an illustration of the process.

Further, the child hypothesis Hij can then split into further

children Hijk where the total number of children is AM ,

AM+1 or AM−1 depending on the number of objects under-

lying the hypothesis Hij , and corresponding to the various

different data associations possible given the measurement
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{Zt}. Note that the above process degenerates into the no

birth and death case when α = β = 0. Thus, we can see

that the primary consequence of the birth and death process

is the increase in the total number of children hypotheses.

However, the equations for the multi-object filtering (with a

little effort, due to the fact that the child hypotheses may have

different number of objects than the parent hypothesis thereby

complicating the integration underlying the prediction step)

can be shown to remain unchanged. Recall Eq. 9, which is

reproduced below for clarity:

p({X}, (i, j)/F t)

=
p({Zt}/{X}, (i, j))p−({X}/(i, j),F t−1)

∫
p({Zt}/{X ′}, (i, j))p−({X ′}/(i, j),F t−1)d{X ′}

︸ ︷︷ ︸

updated pdf underlyingHij

×

lij

wij

︷ ︸︸ ︷
pijwi

∑

i′,j′ li′,j′ pi′j′wi′
︸ ︷︷ ︸

wi′j′

. (18)

The only difference from the no birth and death case is, given

Hi is an M− object hypotheses, the children hypotheses Hij

can have M , M − 1 or M + 1 objects underlying them, and

the corresponding pij value is 1 − M b
t α − Md

t β, β or α
respectively. It behooves us to look closer at the prediction

equations in the birth and death case as that is the source of

difference from the no birth and death case.

First, consider the case of a death hypothesis. Consider an

M-object hypothesis, Hi, with underlying MT-pdf
∏

k pk(xk).
Suppose without loss of generality that the M th object dies.

Then, the transition density for the multi-object system is

defined as:

p({X}/{X ′}, (i, j)) = [
M−1∏

k=1

pk(xk/x
′
k)]δ(φ/xM ), (19)

where δ(φ/xM ) denotes the fact that the M th object becomes

the null object φ with probability one. Thus, the predicted

MT-transition density underlying Hij is:

p−({X}/(i, j),F t) =

=

∫

(
M−1∏

k=1

p(xk/x
′
k)p(x

′
k/i,F

t))δ(φ/x′
M )dx′

1..dx
′
M

=
M−1∏

k=1

p−(xk/i,F
t), (20)

i.e., the predicted MT-pdf is simply the predicted pdfs of all

the objects that do not die.

Next, consider the case of a birth hypothesis Hij where the

birthed pdf has a distribution plb(xM+1). The transition pdf is

now

p({X}/{X ′}, (i, j)) = [
M∏

k=1

pk(xk/x
′
k)]pM+1(xM+1/φ),

(21)

where pM+1(xM+1/φ) = plb(xM+1) denotes that the null

object φ spawns an M + 1th object with underlying pdf

plb(xM ). It can be shown similar to above that the predicted

distribution in this case is:

p−({X}/(i, j),F t) = [
M∏

k=1

p−k (xk/i,F
t)]plb(xM+1), (22)

i.e., the predicted distribution of all the objects with the

addition of the birth pdf plb(xM+1).
Further, each of these hypothesis split into children Hijk

based on the possible data associations: if Hij is a birth

hypothesis the the number of children is AM+1, if its a death

hypothesis the number of children is AM−1 and if it is no birth

or death, the number of children is AM . In particular, using

the development outlined above ( where we have replaced the

child notation Hijk by Hij for simplicity), we can see that

the transition probability pij of a child hypothesis Hij is:

pij =







α
AM+1

, if j ∈ BM+1

1−Mb
t α−Md

t β
AM

, if j ∈ BM
β

AM−1
, if j ∈ BM−1

(23)

where BM refers to the set of all M object hypothesis, and

recall that AM =
∑min(m,M)

k

(
m
k

)(
M
k

)
k!.

!"#$%&'#()*+,#)'-.-(/!"01"#$%&'#()*+,#)'-.-( /!201"#$%&'#()*+,#)'-.-(

αββ α
1−M

t

dβ −M
t

bα

1

A
M+1

1

A
M

1

A
M−1

3.%#)4(5'$#)(

5$#$((

6--,7.$8,9-(

Fig. 1. A schematic of the splitting of the hypothesis due to birth/ death of
objects and data associations. Underlying each blob is a continuous MT-pdf.

The above development can be summarized as the following

result:

Proposition 2: Given an M-object hypothesis Hi and its

children Hij , the update equation for joint MT-pdf-hypothesis

density function is given by Eq. 18, where the only differences

from the no birth or death case is that pij in the equations is

different according as the hypothesis Hij birth, death or a

no birth or death hypothesis and is given by Eq. 23, and the

predicted priors required in Eq. 18 is calculated from Eq. 20
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if Hij is a death hypothesis, Eq. 22 if it is a birth hypothesis

and Eq 6 if it is a no birth or death hypothesis.

III. A RANDOMIZED FISST (R-FISST) TECHNIQUE

In the previous section, we have introduced the hypothesis

level FISST equations and shown that they are particularly

easy to comprehend and implement. However, the number of

children hypothesis increase exponentially at every iteration

and thus, can get computationally intractable very quickly.

However, it can also be seen that most children hypotheses

are very unlikely and thus, there is a need for intelligently

sampling the children hypotheses such that only the highly

likely hypotheses remain. In the following, we propose an

MCMC based sampling scheme that allows us to choose the

highly likely hypotheses.

A. MCMC based Intelligent Sampling of Children Hypothesis

Recall Eq. 17. It is practically plausible that most children

j of hypothesis Hi are highly unlikely, i.e., lij ≈ 0 and thus,

wij ≈ 0. Hence, there is a need to sample the children Hij of

hypothesis Hi such that only the highly likely hypotheses are

sampled, i.e., lij >> 0.

Remark 5: Searching through the space of all possibly

hypotheses quickly becomes intractable as the number of

objects and measurements increase, and as time increases.

Remark 6: We cannot sample the hypothesis naively either,

for instance, according to a uniform distribution since the

highly likely hypothesis are very rare under the uniform

distribution, and thus, our probability of sampling a likely

hypothesis is vanishingly small under a uniform sampling

distribution.

Thus, we have to resort to an intelligent sampling technique,

in particular, an MCMC based approach.

Given a hypothesis Hi, we want to sample its children ac-

cording to the probabilities p̄ij = wij lij . This can be done by

generating an MCMC simulation where the sampling Markov

chain, after enough time has passed (the burn in period), will

sample the children hypotheses according to the probabilities

p̄ij . A pseudo-code for setting up such an MCMC simulation

is shown in Algorithm 1. In the limit, as k → ∞, the sequence

Algorithm 1 MCMC Hypothesis Sampling

Generate child hypothesis j0, set k = 0.

Generate jk+1 = π(jk) where π(.) is a symmetric proposal

distribution

If p̄ijk+1
> p̄ijk then jk := jk+1; k := k + 1;

else jk := jk+1 with probability proportional to
p̄ijk+1

p̄ijk

; k =

k + 1.

{jk} generated by the MCMC procedure above would sample

the children hypotheses according to the probabilities p̄ij .

Suppose that we generate C highest likely distinct children

hypothesis Hij using the MCMC procedure, then the FISST

recursion Eq. 17 reduces to:

wij :=
lijwij

∑

i′,j′ li′j′wi′j′
, (24)

where i′ and j′ now vary from 1 to C for every hypothesis

Hi, instead of the combinatorial number AM .

Given these M∗C hypotheses, i.e. C children of M parents,

we can keep a fixed number H∞ at every generation by either

sampling the H∞ highest weighted hypotheses among the

children, or randomly sampling H∞ hypotheses from all the

children hypotheses according to the probabilities wij .

Remark 7: The search for the highly likely hypotheses

among a very (combinatorially) large number of options is

a combinatorial search problem for which MCMC methods

are particularly well suited. Thus, it is only natural that we

use MCMC to search through the children hypotheses.

Remark 8: The choice of the proposal distribution π(.)
is key to the practical success of the randomized sampling

scheme. Thus, an intelligent proposal choice is required for

reducing the search space of the MCMC algorithm. We show

such an intelligent choice for the proposal in the next section.

Remark 9: The discrete hypothesis level update Eq. 17 is

key to formulating the MCMC based sampling scheme, and,

hence, the computational efficiency of the R-FISST algorithm.

B. Smart Sampling Markov Chain Monte Carlo

In the previous section, MCMC was proposed to intelli-

gently sample the children hypotheses based on their likeli-

hood. However, as the number of possible hypotheses grows

so does the time it takes for the MCMC to converge to

the stationary distribution. Also having to enumerate large

numbers of possible hypotheses is computationally strenuous.

Therefore, we propose a new method that allows for faster

time to convergence and alleviates the burden of having to

enumerate large numbers of hypotheses. This method is called

Smart Sampling Markov Chain Monte Carlo, SSMCMC.

SSMCMC utilizes a two level Markov Chain Monte Carlo

algorithm. The first level establishes a Markov Chain whose

states are the possible data associations for a single object.

The chain is then run using a uniform proposal distribution.

The criteria for the MC to move to a new state stems from the

Metropolis-Hastings condition: U [0, 1] < min(1,
p(zik+1

/x)

p(zik/x)
),

where p(zik/x) is the likelihood of the data association at step

k. The stationary distribution of this Markov Chain represents

the highly likely object to measurement data associations. This

process is repeated for all objects within the gating parameters,

i.e., objects that are expected to be in the FOV. The children

hypotheses are then formed using only these highly likely

data associations. These children hypotheses have very high

weights and are a lot fewer in number than the total amount

of possible children hypotheses. These children hypotheses are

then used as the states of the chain for a second MCMC. They

are again explored using a uniform proposal distribution. The

criteria on which a new state is assumed for this MCMC is the

Metropolis-Hastings condition: U [0, 1] < min(1,
l(i,j)k+1

l(i,j)k
),

where l(i,j)k is the likelihood of the child hypothesis at step

k. The stationary distribution of this MC is then guaranteed to

sample the most highly likely data associations.
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IV. APPLICATIONS

This section illustrates the application of the results from the

previous sections. We illustrate the R-FISST based approach

to the multi-object tracking and detection problem inherent

in SSA applications. In particular, we will discuss the results

from a fifty-space object birth and death scenario. Our goal

is to show that the aforementioned methodology allows for

accurate estimation while determining the correct number of

objects in an environment where the number of objects is not

fixed. This will allow for the methodology to be used in both

catalog update and catalog maintenance.

A. R-FISST Application to a Fifty Object Birth and Death

Scenario

In order to test the methods discussed in this paper a fifty-

space object tracking and detection problem was simulated

using a planar orbit model. These fifty objects were in orbits

ranging from LEO to MEO and had varying orbital properties

as well as zero-mean Gaussian process noise appropriate for

SSA models. The objects were simulated for at least one

orbital period. That being said each object was allowed to

pass completely through the field of view at least one time.

The objective was to accurately track all objects given only

an imperfect initial hypothesis containing some of their means

and covariances. Also, to simulate a birth and death environ-

ment, the correct number of objects is initially unknown to

the algorithm. In this particular example, the initial hypothesis

only contains information on forty five of the fifty objects.

The five left over will be seen as objects that are randomly

introduced to the environment or simply ”births”. This is

often described as the launch of a new satellite into orbit

and is not to be confused with ”spawns” in which an object

currently in orbit divides into two or more pieces. Spawns can

be accounted for by our methodology but are not explicitly

programed in this example. The R-FISST methodology must

recognize the five births and provide accurate estimations of

all of the objects’ states and covariances. State vectors for this

particular problem contain the objects’ position along the x
and y axes as well as the magnitude of their velocity in the

x and y directions. A single noisy sensor was positioned at a

fixed look direction of 15 degrees above the positive x-axis

with a field of view of 30 degrees. The sensor was used to

measure objects’ position in the x - y plane with zero-mean

Gaussian measurement noise appropriate for the application.

Figure 2 shows snapshots of the hypotheses’ weights

throughout the simulation. The snapshots were taken at ten,

fifty, seventy-five, and one hundred percent of the total

simulation time. From this figure, one can see that, in the

beginning, the initial hypothesis caries all the weight. How-

ever, throughout the simulation the number of maintained

hypotheses (shown on the x-axis of the graphs in Figure 2)

varies as does the weights of those hypotheses. The number of

hypotheses maintained has a direct correlation to the number

of recent ambiguities in the field of view. Ambiguities occur

when one or more measurement returns can be associated to

multiple objects in the field of view.

(a) Hypotheses’ weights near the be-
gining of the simulation

(b) Hyptheses’ weights at 50 percent
completion

(c) Hyptheses’ weights at 75 percent
completion

(d) Hyptheses’ weights at 100 per-
cent completion

Fig. 2. Snapshots of the hypotheses’ weights throughout the simulation

Before discussing the state estimations, figure 3 shows an

example of how the estimation data is to be presented. The

figure shows the actual positions of the objects labeled ”Cur-

rent Position” and the estimated positions from two seperate

hypotheses. If the estimated position for a particular object

is within an error bound then the object’s position will be

represented by a green circle otherwise the object’s position

will be represented by a red star.

Fig. 3. An example of how estimation data is presented throughout the paper.
Correct estimates are represented by green circles while poor estimates are
represented by red stars. All axes are in tens of thousands of kilometers

In figure 4, the snapshots show the actual positions (blue)

against the estimated position from the top hypotheses (green).

The black lines bound the field of view. These snapshots

were taken at the same time intervals as in figure 2 and

thus the estimates throughout figure 4 are taken from the

hypotheses with the highest weights in figure 2. Notice in

figure 4 there are no instances of red stars. This is particularly

important because it shows that the hypotheses accurately

estimated object positions throughout the simulation. Hence,

the R-FISST approach accurately tracked and detected the fifty

objects.

Lastly, figure 5 shows a visual representation of how weight

shifts from the forty five object assumption to the fifty object

assumption. The x-axis represents the simulation time in

percent completed. The y-axis represents the expected number

of objects. The expected number of objects is found by

summing the weights of all hypotheses containing the same

number of objects. The magnitudes of these summations are

then compared to determine the expected number of objects.
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(a) Estimation from the top hypothe-
ses at 10 percent completion

(b) Estimation from the top hypothe-
ses at 50 percent completion

(c) Estimation from the top hypothe-
ses at 75 percent completion

(d) Estimation from the top hypothe-
ses at 100 percent completion

Fig. 4. Snapshots of the actual states (blue) and the estimated states from the
top hypotheses (green) throughout the simulation. Axes in tens of thousands
of kilometers

Fig. 5. The expected number of objects throughout the simulation. The graph
shows intermediate values during the transition periods. Over time it can be
seen that weight shifts from the forty five object hypotheses to the fifty Object
hypotheses

It is important to note that weight seems to be handed off in a

single file fashion until the fifty object assumption accumulates

all the weight toward the end of the simulation.

V. CONCLUSION

In this paper, we have presented an alternate hypothesis

based derivation of the FISST recursions for recursive multi-

object tracking. We have also introduced a randomized ver-

sion of the FISST recursion, called R-FISST, which provides

a computationally efficient randomized solution to the full

FISST recursions via an MCMC sampling of likely children

hypotheses. We have also shown the application of the R-

FISST technique on a fifty object SSA problem as well

as problems with birth and death. It is our belief that the

randomized technique is extremely parallellizable, and thus,

our next step will be to look at large scale GPU based

implementation of the method that can scale to realistic SSA

scenarios. We also intend to look at the integration of sensor

tasking with the R-FISST technique such that the ambiguities

inherent in the problem can be minimized. Also, comparisons

and research on implementing the randomized technique with

a HOMHT framework as well as a more detailed discussion of

the randomized technique shall be presented in the proceedings

of the 2015 AAS/AIAA Astrodynamics Specialist Conference

to be held at Vail, CO, August 9-13 of 2015 [19].
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