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Abstract—While observation sets for an individual object in
orbit can be quite data-sparse, the sheer number of objects in
orbit makes the tracking problem as a whole data-rich. As such it
is infeasible for humans to process these measurements manually.
While orbit determination procedures are largely automated the
resulting solutions can be quite poor when the assumed dynamics
are flawed due to mismodeled perturbations or unmodeled active
maneuvers. This paper presents an automated version of the
Optimal Control Based Estimator (OCBE) as applied to problems
in the field of Space Situational Awareness. The OCBE algorithm
supplements a state and dynamic estimation process with infor-
mation from optimal control policies to create an estimator that is
robust to dynamic mismodeling. This estimator is made adaptive
through a maneuver detection based approach resulting in an
algorithm that automatically estimates the system’s state, detects
dynamic mismodeling, and reconstructs that mismodeling. Along
with a derivation and discussion of this algorithm, numerical
simulations are provided to demonstrate this algorithm’s ability
to accurately track a spacecraft with mismodeled dynamics while
simultaneously detecting and reconstructing those mismodelings.

I. INTRODUCTION

Tracking objects around Earth is fraught with complica-

tions. With nearly 17,000 objects currently being tracked by

U.S. Space Surveillance Network [1] it becomes a signif-

icant challenge to track a single object amongst the rest,

as well as predict potential collisions amongst all of the

objects. Additionally, over 75% of these objects are either

spent rocket bodies or pieces of debris, which do not have

well known physical properties (e.g. size, shape, reflectivity,

etc.). Combined with the fact that the measurements are

noncooperative (i.e. no direct communication with the object)

this creates problems with object identification, association of

uncorrelated tracks, and dynamic mismodeling since object

dependent perturbations would be unknown (e.g. atmospheric

drag, solar radiation pressure, etc.). While Space Situational

Awareness (SSA) is a data-rich problem as a whole, the

tracking of a single object is rather data-sparse - generating

correlated measurements often every few orbits or less. This

only compounds these problems further.

With all of these challenges, there is a clear need for

state estimation algorithms that: (1) are robust to dynamic

mismodeling, (2) are capable of detecting the presence of

dynamic mismodeling, (3) provide reconstructions of mismod-

eled dynamics to correct the model for future times, and (4)

are automated to perform all estimations without user input

beyond initial conditions. In previous papers [2], [3], the au-

thors developed the Optimal Control Based Estimator (OCBE)

algorithm - a state estimator imbued with dynamic uncertainty

properties that yield simultaneous control estimates that can be

used to detect and reconstruct mismodelings in the dynamics.

This algorithm has the first three desirable properties, but in its

initial form it was not automated. In this paper we develop a

method to automate the OCBE, such that the assumed dynamic

uncertainty (a tunable parameter in the OCBE) is automatically

selected with each new observation. This method will be based

upon the the dynamic mismodeling identification properties of

the estimator, otherwise known as maneuver detection.

The topics of Maneuver Detection and Reconstruction have

been well-studied, but the resulting algorithms have generally

been aimed at highly dynamical systems (such as missile

tracking and guidance) and environments that are data-rich.

Methods such as Bar-Shalom and Birmiwal’s Variable Di-

mension Filter [4], Chan, Hu, and Plant’s Input Estimation

Method [5], and Goff, Black, and Beck’s variable dimension

approach [6] directly append accelerations to the state vector

for estimation when a maneuver is detected through residuals,

but such methods require observation throughout a continuous

maneuver. Patera’s space event detection method [7] focuses

more on quick events in an astrodynamics context, so it

tends to neglect smaller maneuvers and natural dynamics

mismodeling as well as being limited in application. Hill’s

detection method [8], though effective, is based solely on

optical tracklets, which limits its application to certain tracking

problems. Lee and Hwang’s multiple model estimation based

method [9] requires the user to predefine what maneuvers

to test for and it requires a tuning parameter, so it is not

automated in the manner we desire for this study.

Holzinger, Scheeres, and Alfriend [10] addressed the prob-
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lems of object correlation, maneuver detection, and maneuver

characterization for data-sparse environments by implementing

a Control Distance Metric based on a quadratic optimal control

policy. Singh, Horwood, and Poore [11] adapted the Control

Distance Metric approach by using a minimum-fuel cost

function. Lubey and Scheeres [14] adapted these approaches to

estimate mismodeled natural dynamics using optimal control

policies. This paper uses this optimal control framework along

with the Optimal Control Based Estimator and adapts them

into an adaptive filter formulation capable of automatic state

estimation, control estimation, maneuver detection, maneuver

reconstruction, and natural dynamics estimation.

In this paper we develop the adaptive OCBE, and demon-

strate its use through numerical simulations. In Section II we

summarize the Optimal Control Based Estimator - specifically,

the linear version of the estimator. In Section III we summarize

the maneuver detection properties of this estimator, as they lie

at the heart of the adaptive algorithm. In Section IV we develop

the central algorithm of this paper - the Adaptive Optimal

Control Based Estimator. In Section V we demonstrate the

algorithm with realistic tracking scenarios that include unmod-

eled maneuvers. Finally, we summarize the paper and provide

concluding remarks in Section VI.

II. THE OPTIMAL CONTROL BASED ESTIMATOR

The focus of this paper is the adaptive OCBE, but in order

set up this algorithm we will provide a brief summary of the

Ballistic Linear OCBE (BL-OCBE) in this section. More in

depth discussions are provided in Refs. [2] and [3].

The OCBE is derived from a Bolza type cost function with

an initial boundary cost (Kk−1 - the a priori term), a final

boundary cost (Kk - the measurement term), and Lagrangian

that is integrated over the time of flight (L - the dynamics

term) as shown in Eq. 1.

J (xk−1,xk,u(t)) =Kk−1(xk−1,tk−1)+Kk(xk,tk) (1)

+∫ tk

tk−1

L(x(τ),u(τ),τ)dτ

In this notation x refers to the state of the system, u refers

to control inputs into the system, and the subscripts indicate

at what epoch the values are evaluated (k−1 = initial epoch

[tk−1] and k = final epoch [tk]). To fully define the system, we

make the following definitions: x ∈ Rn; u ∈ Rm; and K0, Kf ,

and L are scalar functions. The goal is to determine a state

and control trajectory that minimizes this cost function.

The costs in this cost function are shown below.

Kk−1(xk−1,tk−1) = (2)

1

2
(x̄k−1∣k−1−xk−1)T P̄−1

k−1∣k−1 (x̄k−1∣k−1−xk−1)

Kk(xk,tk) = 1

2
(Yk −h(tk,xk))T R−1

k (Yk −h(tk,xk)) (3)

L(x(t),u(t),t) = 1

2
u(t)T Q̃(t)−1u(t) (4)

Q̃(t) = (tk − tk−1)Q(t)

They are chosen to reflect the information content of problem,

such that the estimated state trajectory fully accounts for a

priori state knowledge (Eq. 2), measurements (Eq. 3), and

confidence in the dynamic model (Eq. 4).

In terms of notation we define the inputs into this process

as such: x̄k−1∣k−1 is the best estimate of the state at tk−1

based on observations through tk−1 (this convention for the

subscript will be used throughout this paper), Yk is a vector

containing system measurements at tk, and h(t,x(t)) is the

observation-state relationship that maps a given time and

state into an equivalent measurement of the system. The a

priori state estimate and measurement are defined as Gaussian

random variables where the weighting matrices in these cost

functions are the covariance matrices of the associated distri-

bution (P̄k−1∣k−1 and Rk, respectively). The expected values for

both random variables are truth (indicated with an asterisk).

Furthermore, we define the weighting matrix Q(t) as the

covariance of a stochastic-zero mean control input (w(t)) that

is uncorrelated in time.

E [w(t)w(τ)T ] =Q(t)δ(t −τ) (5)

Given that the user does not have knowledge of the presence or

form of dynamic mismodeling a priori, the assumed dynamic

uncertainty (Q̃(t)) is a parameter that must be adjusted to

obtain the best tracking. This is achieved when the assumed

dynamic uncertainty is set to be on the same level as the

dynamical modeling (if it is present). The Adaptive OCBE

focuses on automatically selecting this parameter.

Dynamic constraints (ẋ(t) = f (t,x,u)) are enforced in the

integral portion of the cost function via a Lagrange multiplier

(p(t)) known as the system adjoint. This constraint effectively

enforces a nominal model about which control estimates

are used to reconstruct dynamic mismodeling. The solution

that minimizes this cost function are the initial state, final

state, and a control trajectory that minimize deviation from

the given pieces of information (as previously defined) such

that the initial and final states are connected on a trajectory

defined by the enforced dynamics and the estimated control

trajectory. This solution is obtained by enforcing the necessary

conditions that accompany functional optimization including

the Pontryagin Minimum Principle, Transversality conditions,

and the state and adjoint dynamical equations that come from

reformulating the problem as a Hamiltonian dynamical system.

There is no explicit solution to this nonlinear problem so we

linearize the problem to obtain a solution. We specify this

nominal trajectory to be ballistic (control is zero for all time),

and denote values on it with tildes, which results in the BL-

OCBE.

Before summarizing the BL-OCBE, it is important to first

define linearized notation. Motion in the vicinity of the nom-

inal trajectory is described by the system’s State Transition

Matrix (STM - Eq. 6), which includes state and adjoint

trajectories.

Φ(tk,tk−1) = [ Φxx(tk,tk−1) Φxp(tk,tk−1)
Φpx(tk,tk−1) Φpp(tk,tk−1) ] (6)
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As a notational note, when we refer to a portion of the STM

without time arguments the assumption is that it is evaluated

between tk−1 and tk. In order to make the formulation similar

to a standard Kalman Filter, we propagate the a priori state

estimate as shown in Eq. 7.

δ x̄k∣k−1 =Φxxδ x̄k−1∣k−1 (7)

This is just a notational convenience to make comparisons to a

standard Kalman filter - we still are able to separate dynamic

and a priori uncertainty via their separation in the original

cost function. The accompanying covariance matrix, which

describes the uncertainty in this propagated random variable

is given in Eq. 8.

P̄k∣k−1 =ΦxxP̄k−1∣k−1Φ
T
xx−(ΦxpΦ

T
xx) (8)

This matrix can be shown to be identical to the uncertainty in

the propagated state estimate for a Kalman Filter with the ef-

fects of process noise included [3]. Measurement information

is linearized with respect to the nominal trajectory as described

in Eqs. 9 and 10.

δyk =Yk −h(tk, x̃(tk)) (9)

H̃k = ∂h

∂x
∣
(tk,x̃(tk))

(10)

Having defined all necessary notation, the BL-OCBE is

defined as shown in Eqs. 11 - 15

δ x̂k−1∣k = δ x̄k−1∣k−1+Lk−1 (δyk − H̃kδ x̄k∣k−1) (11)

δ x̂k∣k = δ x̄k∣k−1+Lk (δyk − H̃kδ x̄k∣k−1) (12)

δ p̂k−1∣k = −P̄−1
k−1∣k−1Lk−1 (δyk − H̃kδ x̄k∣k−1) (13)

Lk = P̄k∣k−1H̃T
k (Rk + H̃kP̄k∣k−1H̃T

k )−1
(14)

Lk−1 = P̄k−1∣k−1Φ
T
xxH̃T

k (Rk + H̃kP̄k∣k−1H̃T
k )−1

(15)

In this notation, hats indicate values that are optimized relative

to the given cost function. These include state estimates at

both epochs, and an adjoint estimate at the initial estimate

(the adjoint is used to calculate the optimal control policy as

described in the following section).

We complete the definition of the BL-OCBE by providing

estimates of the uncertainty in the state estimates as shown in

Eqs. 16 and 17.

P̂k−1∣k =P̄k−1∣k−1−Lk−1 (Rk + H̃kP̄k∣k−1H̃T
k )LT

k−1 (16)

P̂k∣k =(I−LkH̃k) P̄k∣k−1 (I−LkH̃k)T +LkRkLT
k (17)

Further analysis of the BL-OCBE will show that the mea-

surement epoch state estimate is identical to a Kalman Filter

with process noise and the state estimate at the a priori

epoch is equivalent to a smoothed Kalman Filter estimate.

As such, we can conclude that the linear OCBE is a linear-

unbiased-minimum variance estimator at both epochs. The

estimated adjoint is used to determine the optimal control

policy that links these two states. After calculating it, analysis

of this control policy can yield information on the mismodeled

dynamics within the system.

III. MANEUVER DETECTION AND RECONSTRUCTION

The uniqueness of the OCBE lies in the dynamics it esti-

mates simultaneously with the state. These estimates may be

analyzed to identify and reconstruct dynamic mismodeling so

that the dynamic model is more accurate for future estimation

and propagation. Maneuver detection is the general term

we use for dynamic mismodeling identification regardless of

whether that mismodeling is is from natural dynamics or active

control. Maneuver detection, like estimation, is a statistical

process that uses knowledge in the dynamics to determine how

statistically significant the estimated control policies are.

The control policies are generated via the adjoint estimates

per the linearized Pontryagin Minimum Principle as shown in

Eq. 18

u(t) = δu(t) = −Q̃(t)∂ f

∂u

T

Φpp(t,tk−1)δ p̂k−1 (18)

These control policies are reconstructions of unknown dynam-

ics, but they are influenced by noise from a priori uncertainty,

measurement uncertainty, and dynamic uncertainty so it is nec-

essary to determine whether they are just noise or something

deterministic. Only after determining a control policy to be

statistically significant can we accept the hypothesis that it is

representative of dynamic mismodeling within the system.

To determine whether a control policy estimate is statis-

tically significant we utilize the control distance metric of

Holzinger, Scheeres, and Alfriend [10]. The control distance

metric in this paper is slightly modified from the original to

be a weighted metric (Eq. 19) in order to make the metric

equivalent to the integrated Lagrangian portion of the OCBE

cost function.

DC(Q̃(t)) = ∫ tk

tk−1

1

2
u(τ)T Q̃(τ)−1u(τ)dτ (19)

Our goal is to determine the mean and variance of the

distance metric as a function of the uncertainties within the

problem (a priori state, measurement, and dynamics). We then

use these statistics to set a a statical threshold such that any

metric calculated that exceeds the threshold is deemed statis-

tically significant - meaning we accept the hypothesis that the

control policy is representative of some deterministic uncom-

pensated dynamic mismodeling. It is important to distinguish

this hypothesis with the qualifier uncompensated because if

the assumed dynamic uncertainty is set properly (or too large)

no maneuver will be detected. However, if we set the threshold

using a predefined dynamical noise floor (i.e. the smallest

level of dynamical uncertainty that is detectable) maneuvers

may still be detected relative to this alternate threshold as

we properly adjust the assumed dynamical uncertainty. More

details on this are provided in the following section.
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To properly determine the mean and variance of the control

distance metric in terms of the uncertainties in our information

content we sub the control policy estimate into the distance

metric equation, and then take the appropriate expectations.

Subbing the expression for the estimated adjoint (Eq. 13) into

the control estimate (Eq. 18), and then subbing this result into

the distance metric (Eq. 19) we obtain the expressions shown

in Eqs. 20 and 21.

DC(Q̃(t)) = (δyk − H̃kδ x̄k∣k−1)T Mk (δyk − H̃kδ x̄k∣k−1) (20)

Mk(Q̃(t)) = −1

2
LT

k P̄−1
k∣k−1ΦxpΦ

T
xxP̄−1

k∣k−1Lk (21)

These include simplifications that arise from the equivalency

of process noise and the BL-OCBE propagated state un-

certainty (Eq. 8). It is worth nothing that the effects of

the assumed dynamic uncertainty propagate through the Φxp

matrix, which also influences P̄k∣k−1 and Lk (see Eqs. 8 and

14, respectively).

The innovations are zero mean with a known covariance

according the definitions we have made. Knowing this, we

obtain the following mean and variance statistics on the

distance metric (Eqs. 22 and 23) via stochastic equations for

quadratic forms [10].

µDC
(Q̃(t)) = Trace[Mk (Rk + H̃kP̄k∣k−1H̃T

k )] (22)

σ2
DC
(Q̃(t)) = 2(Trace[(Mk (Rk + H̃kP̄k∣k−1H̃T

k ))2]) (23)

Making the assumption that the distance metric may be

modeled as a Gaussian random variable with this mean and

variance, we can set a threshold (ΘC(Q̃(t))) at a particular

z-score (e.g. z = 1.96 for a 95% confidence level). If we make

the hypothesis that no unmodeled accelerations are present

in the system, then exceeding this threshold invalidates this

hypothesis, signaling a detected maneuver (uncompensated

mismodeled dynamics). Because these metrics are positive

definite there will be errors that arise from the Gaussian

assumption, but we have found these errors to be negligible

in practice. The method could be modified to use another

profile to model the uncertainty in the distance metric, but

the algorithm would have to be numerical as opposed to the

analytical result that comes from a Gaussian assumption.

As indicated by the functional dependance, the level of

assumed dynamic uncertainty (Q̃(t)) largely controls whether

a maneuver is detected. This is because, as mentioned, ma-

neuvers are termed uncompensated mismodeled dynamics.

When the assumed dynamic uncertainty is appropriately tuned,

then the system properly compensates for the mismodeled

dynamics given that this process injects the proper amount

dynamic uncertainty into the system. The reconstruction of

the maneuver (Eq. 18) then may be used to analyze the

mismodeled dynamics.

Beyond just detecting a one-time event, it is also possible to

detect continuous mismodeling (e.g. atmospheric drag or solar

radiation pressure mismodeling). Generally, this manifests as

a series of many detected maneuvers in a row, or just frequent

detections (if the force is small enough not to build up error

over smaller observation gaps). One-time actuated maneuvers

tend to be one-time events in maneuver detection space

(though it may take a few observations before calming down

if they are closely spaced), and these event tend to be larger

since orbital maneuvers tend to be larger than mismodeled

perturbations. This designation is important to make when

approaching reconstruction of the unknown dynamics. Lubey

and Scheeres [14] demonstrated a method that may be used

to estimate natural dynamics out of optimal control estimate

maneuver reconstructions.

The OCBE is set up such that accounting for dynamics

uncertainty and providing reconstructions of mismodeled dy-

namics are natural properties of it. Maneuver detection is a

simple extension of these properties, and as can be seen all

of the quantities needed to perform maneuver detection are

already pieces of the estimations process (i.e. no other integra-

tions or complex computational processes are required). In the

next section, we develop a method to leverage these properties

of the OCBE toward creating a method that automates the

algorithm such that it will no longer require the user to select

an assumed dynamical uncertainty at each measurement epoch.

IV. THE ADAPTIVE OPTIMAL CONTROL BASED

ESTIMATOR

The OCBE is an accurate state and dynamics estimator, but

this accuracy relies on appropriate selection of the assumed

dynamic uncertainty. It should reflect the true mismodeling in

the system. If too large of a value is used, then too much

uncertainty is injected into the system resulting in degraded

performance, and artificially high uncertainty in state and

dynamics estimates. If too low of a value is used, then

uncompensated mismodeled dynamics are still present in the

system. These have deterministic trends that can often lead to

filter divergence. Given that the user generally has no a priori

knowledge of maneuvers, and that mismodeled dynamics can

drastically change over time and between observations it is

infeasible for a human to be in the loop for complex systems

with many targets and observations such as is the case with

SSA. Using the maneuver detection properties of the OCBE

we are able to design a unique automation method in order to

turn the OCBE into and adaptive estimator, which is capable

of addressing the complexity concerns of SSA surveys.

While there is often no priori knowledge of maneuvers,

it was shown that the OCBE can detect their presence as

well as determine when they are fully compensated for. This

automation procedure is based upon this maneuver detection

property. The algorithm self adjusts the assumed dynamic un-

certainty to ensure that all mismodeled dynamics are properly

compensated for by finding the point where the distance metric

equals the mean of the distribution (as this is the best estimate

of the anticipated divergence). This process requires no user

input beyond initial parameters, which are established before

any measurements are processed.
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To simplify the development of this automation procedure

we limit the assumed dynamic uncertainty to have a single

degree of freedom (σQ) as shown in Eq. 24.

Q̃(t) = σ2
Q(tk − tk−1)I (24)

As it is assumed that the user has no knowledge of any

maneuvers before processing measurements, this assumption

is justified because it applies equal amount of error in each

direction, and it assigns no time dependence to the noise. The

method may be modified to add more degrees of freedom (e.g.

more components of the assumed dynamic uncertainty matrix),

but for this discussion we will limit it to the 1-dimensional

case. In terms of notation, we will refer to this scalar parameter

(σQ) as the assumed dynamic uncertainty as well.

This general idea behind this method relies on the assump-

tion there exists a point where the distance metric and mean

of the spread are equal. This is not a reliable assumption for

an operational algorithm, thus it is necessary to either prove

existence for an arbitrary case, or find an example where the

solution does not exist in order to prove that existence is not

guaranteed. In the latter case it would then be important to

develop an alternate solution to default to. Through testing

we have found that solutions do tend to exist when there

are mismodeled dynamics in the system that are significant

enough to detect or when measurement and a prior state

errors are outliers. An example of this is shown in Fig. 1

where a unmodeled maneuver is present in the observation

gap. There is a clear intersection between the metric and the

mean curves as functions of the assumed dynamic uncertainty,

thus indicating a solution exists.
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Fig. 1. Distance metric, mean, and threshold as function of the assumed
dynamic uncertainty for a case where the adaptive solution exists (at the
intersection of the distance metric and mean functions).

There are occasions when a solution does not exist, such as

the example shown in Fig. 2. These tend to occur when the

dynamics are either modeled perfectly or the mismodelings

are not significant enough to cause large deviations across the

observation gap and the measurement and a priori state errors

are not outliers.

Because there are occasions where a solution exists, we

must define a default solution for such occasions. A dynamic

noise floor (σQ,NF ) solves this problem. The dynamic noise

floor is a parameter set by the user (before any measurements

are processed) that sets a floor on how small of mismodelings

the algorithm can detect. Any mismodelings below this floor
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Fig. 2. Distance metric, mean, and threshold as functions of the assumed
dynamic uncertainty for a case where the adaptive solution does not exist (no
intersection between distance metric and mean functions)..

are assumed to be just noise within the system. When a

solution does not exist we default to this noise floor to

account for any mismodelings that are present that are less

than the floor while injecting a minimal amount of additional

uncertainty into the system. As a general rule of thumb, if the

distance metric is less than the mean at the noise floor, then

the solution does not exist.

If the metric is greater than the mean at the noise floor, then

a solution will exist. To obtain that solution we use a numerical

Newton-Secant Root finder. This provides a more simple

implementation with respect to other root finders since it does

not require derivatives of functions of interest. Additionally,

the problem tends to be quite linear in log-log space near

a solution, so the Newton-Secant method converges quite

quickly. The first step is to establish bounds of the solution.

Starting at the noise floor bounds are placed an order of

magnitude from one another and moved up with each iteration

until the mean-metric difference is negative at one bound and

positive at another. Calculating the distance metric and mean

at all of these values of the assumed dynamic uncertainty is

quite simple when using Eq. 25.

g(σQ) =ΦxpΦ
T
xx (25)

=−∫ tk

tk−1

Φxx(tk,τ)∂ f

∂u
Q̃(τ)∂ f

∂u

T

Φ
T
xx(tk,τ)dτ

=( σQ

σQ,NF

)
2

g(σQ,NF)

The only term in the metric and mean equations that is a

function of the assumed dynamic uncertainty is the STM

product in the propagated a priori uncertainty (ΦxpΦ
T
xx). Other

matrices in the maneuver detection process (e.g. Lk and P̄k∣k−1)

are also functions of this matrix, so these must be adjusted with

each new assumed dynamic uncertainty.

With the bounds set, we can initiate the root finder. The

algorithm is shown in Eqs. 26 and 27.

v = log(σQ) (26)

z(v) = log[DC(v)]− log[µDC
(v)] = log[ DC(v)

µDC
(v)]
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vi+1 = v
(−)
i − z(v(−)i )

⎛⎜⎜⎝
v
(+)−v

(−)
i

i

z(v(+)i )− z(v(−)i )
⎞⎟⎟⎠

(27)

if z(vi+1) > 0 ∶ v(−)
i+1 = vi+1 and v

(+)
i+1 = v

(+)
i

else ∶ v(+)
i+1 = vi+1 and v

(−)
i+1 = v

(−)
i

In this notation the (−) and (+) subscripts indicate the lower

and upper bounds, respectively. The algorithm should be

iterated until the metric and mean difference converges within

a predefined tolerance (∣µDC
(σQi+1

)−DC(σQi+1
)∣/µDC

(σQi+1
)<

∆tol). Once the process has converged we set the adaptive

solution (σ̂Q) as shown in Eq. 28.

σ̂Q = 10vi+1 (28)

To protect from the influence of outliers in the measurement

and a priori state errors we set another parameter to cap the

assumed dynamic uncertainty (σQ,max). This helps to prevent

divergence due to chasing noise in the system. If a metric

is greater than the mean at the noise floor yet less than the

threshold we apply this cap - this ensures that maneuvers

are always addressed (though a cap may also be placed on

maneuvers if desired). If the solution exceeds this cap we

generally default to the noise floor, though one may also defer

to the cap (especially if the cap is placed on maneuver events

as well).

Figure 3 provides a visualization of this automation al-

gorithm as incorporated into the OCBE, thus creating the

Adaptive OCBE. All contingencies are accounted for such

that the algorithm will always output a solution. Before the

algorithm is started it simply requires the user to define the

noise floor and maximum assumed dynamic uncertainty. After

this the algorithm runs fully automated.

V. NUMERICAL SIMULATIONS

In this section, we provide a demonstration of the abilities of

the Adaptive OCBE by applying it to system with mismodeled

dynamics. Specifically, we apply it to a system in which a

spacecraft in Geosynchronous Earth Orbit (GEO) is tracked

via ground stations as it executes stationkeeping maneuvers

(unknown to the estimator) to correct for latitude and longi-

tude deviations from the nominal orbit due to non-Keplerian

perturbations (e.g. non-spherical Earth gravity, solar radiation

pressure, third-body gravity, etc.).

The stationkeeping maneuvers come in two varieties: (1)

East-West (EW) maneuvers that correct longitude errors and

(2) North-South (NS) maneuvers that correct latitude errors.

These operate independently since longitude drift tends accu-

mulate much faster than latitude drift. Maneuvers are devel-

oped from a timed-fixed (12 hour) optimal control law that

minimizes a quadratic control cost (as is used for the distance

metric). While this creates a strong similarity between the

controls and what we use to estimate them, we have found in

separate analysis that using different maneuver models yields

similar results (such as using impulsive models).
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Fig. 3. Flowchart defining the Adaptive Optimal Control Based Estimator
algorithm.

The nominal GEO orbit at 60 degrees longitude is visible

to fixed ground station at all times, but we design the mea-

surements such that they are only captured once a night for

a two hour period (one measurement every 100 seconds in

this period) to reflect reality. This also provides a mixture of

data rich and data sparse periods to identify how this algorithm

works in each phase. Range and optical (azimuth and elevation

angles) data are taken at each epoch. Range observations

include 1 m Gaussian error, and angles observations include 1

arcsecond Gaussian error for each simulation. The adaptive

parameters are set to 10−12 m/s2 for the dynamic noise

floor (σQ,NF ), 10−6 m/s2 for the maximum assumed dynamic

uncertainty (σQ,max), and 10−10 for the convergence tolerance

(∆tol).
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Fig. 4. Ratio of control distance metrics and metric threshold at each
measurement epoch using a constant assumed dynamic uncertainty (σQ = 10−8

m/s2).
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Observations are taken over the course of 1-month, during

which 6 maneuvers occur (5 EW and 1 NS). Using a constant

level of assumed dynamic uncertainty (10−8 m/s2), we can see

how the metrics diverge in the presence of maneuvers (Fig. 4).

The six events are clear in the results (indicated by exceeding

the threshold), but it not clear when they begin and where

the next begins. Proper adjustment of the assumed dynamic

uncertainty can remove this ambiguity. This is accomplished

by application of the Adaptive OCBE.
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Fig. 5. Ratio of control distance metrics and metric threshold at each
measurement epoch using the Adaptive OCBE.

Application of the Adaptive OCBE yields the metric ratios

as shown in Fig. 5. This plot includes the ratios relative to

a threshold at the tuned assumed dynamic uncertainty, thus

no metric ratio should exceed 1. This is exactly what we see.

The spread about the mean is appropriate and their are no

outliers, thus indicating we are keeping track of the spacecraft.

The tuned assumed dynamic uncertainty is shown in Fig. 6.

While there are many spikes in this response only a few stand

out - these represent the real maneuvers whereas the other

spikes correspond to accumulating error due to linearization

as well as outliers in the measurements. Groupings of spikes

correspond to detecting an active maneuver that is observed

during an observation window. Of the six maneuvers, four are

observed during observation windows. The assumed dynamic

uncertainties do not respond during all of these measurement

epochs, because a low thrust maneuver does not accumulate

enough error in a 100 second observation gap to be detected

given the uncertainties in the observations.
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Fig. 6. Assumed dynamic uncertainty used at each measurement epoch using
the Adaptive OCBE.

The algorithm cannot discern small maneuvers over short

observation gaps, but it clearly discerns maneuvers as a whole.

They are most obvious when comparing the metrics against a

threshold calculated at the noise floor (Fig. 7). The spikes

in the plot either correspond to the beginning or end of a

maneuver (with small spikes for detections in between) or an

entire maneuver (if it executes entirely in an observation gap).

All six events stand out clearly.
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Fig. 7. Ratio of control distance metrics calculated at the adaptive assumed
dynamic uncertainty and the metric threshold calculated at noise floor for each
measurement epoch.

The true and estimated unweighted distance metrics are

plotted in Fig. 8. These results confirm the detections made in

the previous plots. We also find that the estimated metrics are

of similar order of magnitude to truth. Unfortunately, there

are also many false detection of a slightly lesser order of

magnitude. These are due to the linear nature of the filter

in this nonlinear system, which results in accumulating a

error that is corrected with false detections. Also, the outliers

in measurements and Gaussian assumption on the distance

metric contribute. For future studies, a nonlinear version of

the estimator will be approached as well as a non-Gaussian

metric in order to make these detections even more accurate.
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Fig. 8. Unweighted estimated and true control distance metrics for each
measurement epoch.

Further information may be gleaned from the maneuver

reconstructions (Fig. 9). The type of maneuver is evident based

on whether it is dominated by in plane accelerations (radial

and along-track) or out-of-plane accelerations (cross-track). Of

the six maneuvers it is clear that five are EW and the other is

NS, which agrees with truth.

Finally, the most important aspect of an effective estimator

is that it keeps track of the object. The position and velocity

deviations with a 3-sigma envelope are given in Fig. 10. We

find that the deviations are well-bounded, except in a couple
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Radial Along−Track Cross−Track

Fig. 9. Control estimates as function of time throughout the entire observation
arc.

of cases but tracking is regained immediately afterward. This

indicates algorithm successfully works even in the presence of

unknown maneuvers.
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Fig. 10. Smoothed state deviations (relative to truth) with uncertainty in ECI
frame. (Red) The 3-sigma uncertainty and (Blue) smoothed state estimate
deviation with respect to truth.

This example has shown this algorithm’s ability to success-

fully identify maneuvers, compensate for them, and character-

ize them. There are slight issues with identifying low thrust

events at a high data rate, but the algorithm easily identifies

maneuvers as a whole.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we developed the Adaptive Optimal Control

Based Estimator (OCBE) - an algorithm that automatically

tracks a system with mismodeled dynamics while simultane-

ously providing information about the dynamic mismodeling.

This information includes detection of mismodeling events and

reconstructions of those events. The automation of this algo-

rithm makes it feasible to use with highly complex systems

such as astrodynamics-based ones - the focus of this paper.

The automation of the Adaptive OCBE is based on maneu-

ver detection properties of the algorithm. Essentially, the as-

sumed dynamic uncertainty parameter (a parameter set by the

user when not automated) is chosen to completely compensate

for any mismodeled dynamics, thus ensuring the filter does

not diverge in the presence of a maneuver. This effectiveness

of this method was demonstrated via a numerical simulation

in which the Adaptive OCBE was able to successfully keep

track of and provide dynamics information on a spacecraft

undergoing stationkeeping maneuvers, which were unknown to

the estimator dynamics. The adaptive OCBE detected each of

these events, and was even able to characterize their purpose.

In terms of future work, we would like to improve this

algorithm by removing the limitations that accompany linear

and Gaussian assumptions. Specifically we will pursue a

nonlinear version of the estimator. While the Adaptive OCBE

resists divergence due to mismodeled dynamics, it would

be more accurate if it were not linearized. Additionally, we

would like to remove the Gaussian assumption on the distance

metrics. This would ensure more accurate detection, though it

will require a numerical method as opposed to the analytical

method developed in this paper.
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