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Abstract—In this paper, we build on recent work to further in-
vestigate the use of mutual information to tackle the observation-
to-observation association (OTOA) problem where we are given
a set of observations at different time instances and wish to
determine which of these observations were generated by the
same RSO. The approach relies on using an appropriate initial
orbit determination (IOD) method in addition to the notion of
mutual information within an unscented transform framework.
We assert that, because the underlying initial orbit determination
algorithm is deterministic, we can introduce an approximate
correction factor to the IOD methodology. The correction is
a function represented by a constant bias for this work but
can be expanded to other parametrizations. The application of
this correction results in an order of magnitude improvement
in performance for our mutual information data association
technique over the previous results. The correction can be used
in conjunction with other information theoretic discriminators
for data association; however it was found in previous work
that mutual information is the most precise discriminator. The
information theoretic solution described in this paper can be
adjusted to address the other (OTTA and TTTA) association
problems, which will be the focus of future research. We will
demonstrate the main result in simulation for LEO, MEO, GTO,
and GEO orbit regimes to show general applicability.

I. INTRODUCTION

Consider a set of indistinguishable objects moving continu-

ously under the influence of a common set of deterministic

dynamics and stochastic environmental influences. One or

more of these objects appear randomly in the field of view

(FOV) of one or more sensors (i.e. they are detectable above

the background sensor noise). While these objects persist in

the sensor FOV and remain detectable, the sensor provides a

set of noisy measurements of the object states and their time

stamp, which typically includes a subset of false detections and

clutter. The essence of the multi-object tracking problem is to

find tracks from these noisy sensor measurements and to rule

out clutter from resident space objects (RSOs). The literature

is replete with techniques on state estimation if the sequence of

measurements associated with each object is known. However,

the association between measurement observations and objects

is not always known, leading to the well known problem of

uncorrelated tracks (UCTs) when attempting to update the
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space catalog of observed RSOs. The crux of modern space

surveillance from an algorithmic point of view is to solve the

data association problem and determine which measurements

were generated by which objects.

In general, there are three types of data association prob-

lems. The first is the observation-to-track association (OTTA)

problem described above, where the analyst seeks to associate

each observation with a unique track (or none) given an

observation with some known measurement statistics and a set

of existing candidate (uncertain) resident space object (RSO)

tracks. The second association problem is where we have

multiple tracks at different time instances from one or more

sensors and wish to determine whether any of the tracks belong

to the same RSO. This is the track-to-track association (TTTA)

problem. The final association problem is where we are given

a set of observations at different time instances and wish to

determine which of these observations were generated by the

same RSO. This is the observation-to-observation association

(OTOA) problem.

In this paper, we continue our work considering the problem

of OTOA. This problem can be thought of as determining the

statistical dependence of observations, from which there are

numerous metrics to choose. Ideally, the measure of statistical

dependence should be valid without any assumptions of an

underlying probability density function and should be exten-

sible to high dimensionality of input measurements. A recent

approach combines an adaptive Gaussian sum filter with the

Kullback-Leibler (KL) divergence measure for effective data

association [1]. However, the KL divergence does not satisfy

all the properties of a true distance metric, making analysis

of results all the more challenging, in addition to the fact that

computing the KL divergence is computationally demanding.

In general, we want the chosen statistical dependence metric

between two observations to identify a nonlinear higher-than-

second order dependence between measurements, in order to

claim a pair-wise association between observations. In our

previous work, we demonstrated that mutual information is

the most promising metric of statistical dependence for OTOA,

which confirms other findings in the literature [2], [3].

In this paper, we revisit a simple OTOA problem with two

closely spaced RSOs. We first describe the overall procedure

and how it relates to initial orbit determination (IOD). Second,
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Fig. 1. The general probabilistic IOD approach developed by Hussein et
al. [4].

we describe the derivation and calculation of the IOD correc-

tion. Third, we demonstrate the application of the correction

in LEO, MEO, GTO, and GEO orbit regimes and its benefit

to the mutual information data association approach. Finally,

we summarize the main results of the paper.

II. IOD AND THE OTOA PROBLEM

The core idea in the proposed OTOA approach is to use an

appropriate IOD method to generate an uncertain track from

a set of measurements and their known statistics that we wish

to test for association (see Fig. 1). One can then compare, in

some information theoretic sense, the amount of information

shared between the generated orbit statistics and the measured

output statistics. The more consistent the estimated track is

with the measurements, the more likely the observations were

generated by the same physical phenomenon. This method

of comparison is based on the notion of mutual information

between the IOD-based orbit statistics and the measured

observation statistics (see Fig. 2). In previous work [2], it was

found that mutual information performed consistently better

than other information theoretic metrics. Therefore, we focus

our attention exclusively on mutual information in this paper.

For illustration purposes, we will assume that the observa-

tions are angles-only pairs of azimuth and elevation. We will

use the classical Gauss method for the IOD step (see [5]).

In general, we assume we are given a set of n observations

{z1, . . . ,zn} taken at observation times t1, . . . , tn (times are

assumed to be distinct, without any loss of generality). Of

these, we will choose three observations (as required by the

Gauss method) to test whether or not they were generated by

the same RSO. The procedure is applied to all combinations

of three observations. How to computationally address the

combinatorics problem is beyond the scope of this paper, and

we will only address the problem of determining whether a

set of three observations were generated by the same RSO.

In the general n observation problem, those observations that
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statistics
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Fig. 2. Mutual information can be used as an index of how much dependence
exist between a set of measurements and the orbit they generate if they
were associated. The “more” unassociated the observations are the smaller
the mutual information will be, and vice versa.

were deemed to be associated would next form tracks, and

the remainder of this problem becomes a TTTA problem that

proceeds by “stringing” associated tracks together to form a

set of non-redundant new tracks. We do not address the TTTA

problem in this paper.

Focusing on the three measurements z = (z1, z2, z3) taken

at t1, t2, and t3, the Gauss IOD method produces a candidate

orbit described by the six-dimensional state x2 = g (z) at time

t2, where g (·) is the function that maps a set of three angles-

only measurements to orbital space coordinates. The state may

be specified in orbital elements, Cartesian coordinates, etc.

Furthermore, let fij be the function that propagates the state

xi defined at time ti to the state xj defined at time tj . Then

x1 = f21(x2) is the (backward) propagated state at time t1
and x3 = f23(x2) is the propagated state at time t3 given the

state x2 at time t2. Finally, let hi be the function that maps

the state at time ti to an observation zi = hi(xi).

III. IOD CORRECTION METHODOLOGY

Based on the results of our previous work, the performance

of the proposed data association schemes depends on the per-

formance of the underlying IOD method. Therefore, it stands

to reason that if we can improve the IOD methodology, then

we would improve our ability to use mutual information for

data association. In previous work, Wilkins [6], [7] explored

corrections to atmospheric density models and found that

it was possible to use TLEs as pseudo-observations of the

atmosphere to back out corrections to the density model. With

a similar thought in mind, we explore the idea that the IOD

methodology can be corrected using angles-only observations

as pseudo-observations of the IOD process.

In the case of dynamic calibration of the atmosphere, the

error in the density modeling process showed up as structured

noise in estimates of the ballistic factor. One could take
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Fig. 3. The probabilistic IOD correction approach

estimates of the ballistic factor and compare to some “truth”

ballistic factor to generate a correction as a function of a

variety of parameters. For our purposes, there is no directly

observable or estimable quantity by which we can measure

the outcome of the IOD process. Furthermore, we will never

know the “true” orbit for comparing our initial IOD solution.

What we can do is construct a process that will allow us to

create an approximation of the error in the IOD process. This

process is depicted in Fig. 3.

We assume that the unknown true orbit at t2 is given by

xt
2. To begin, use the angles measurements z = (z1, z2, z3)

to generate an IOD solution for the orbital state at time t2
as per usual. Let this solution be denoted by xe

2 at time t2.

Our intuition is that, while the IOD solution is erroneous, it

is a deterministic process that will produce a specific error

for a given input. We wish to calculate an IOD correction by

determining an estimate of xe
2 − xt

2. To that end, we need a

second IOD orbit solution from a set of observations generated

by a true orbital state in the neighborhood of xe
2, which we

denote by xc
2. We contend that the difference between the two

IOD solutions xc
2−xe

2 is representative of the error introduced

by the IOD process for xe
2−xt

2 itself. To construct xc
2, we use

the IOD solution xe
2 to generate a new set of pseudo angles

measurements ze = (ze
1, z

e
2, z

e
3) and our existing sensor

models.

There are more sophisticated approaches for computing

corrections along the lines of the dynamic calibration of

the atmosphere research. However, for our initial purpose

of determining a simple bias correction, the current method

is sufficient to illustrate the benefits of such an approach.

Further research is warranted into how this IOD correction

is generated.

IV. ANALYZING ORBIT UNCERTAINTY

In order to analyze the uncertainty in the orbital space

resulting from a given uncertainty in the measurement space,

we will use the unscented transform (UT) according to the
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Fig. 4. Example of sampling a six-dimensional Gaussian measurement
uncertainty.

procedure described by Hussein et al. [4]. For this UT analysis,

the measurement process is assumed to be Gaussian and

the generated orbit uncertainty will then be modeled as a

Guassian. There are a total of 13 = 2 × 6 + 1 sigma points

{Z(j)} since the measurement space has a dimension of 6.

The resulting Gaussian distribution in the orbital space is an

approximation of the actual uncertainty pdf p2O (x2) resulting

from the IOD solution.

As noted by Hussein et al. [4], there is a subtle difference

between this description of the problem compared to other

approaches which have appeared previously in the literature.

The nonlinear mapping g (·) is a map from the entire three-

measurement space to the orbital space, and is not a map of

an individual measurement zi, i = 1, 2, 3, to the orbital space.

Therefore, samples of the measurement uncertainty should

be drawn from the distribution in the six-dimensional mea-

surement space defined with the global measurement variable

z and not from the individual distributions defined on the

individual measurement variables zi, i = 1, 2, 3. For the UT

method, in particular, this will result in the correct number of

sigma points (13) being generated to describe the uncertainty

distribution in six-dimensional orbital space.

For example, a Monte Carlo sample and UT sigma points

are shown in Fig. 4 for a Gaussian uncertainty with each

dimension independently distributed with 3σ = 10 arcsec.

Each colored set of dots represents a two dimensional pro-

jection of the MC sample onto each individual measurement

plane (i.e., there are 5000 × 3 = 15 000 dots shown, but

the MC sample only contains 5000 particles). The remaining

dimensions of the sigma points overlap each other since the

uncertainty is the same in each direction. The histograms show

the marginal distributions of the MC azimuth and elevation

uncertainty samples for one of the measurement times.
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V. MUTUAL INFORMATION CRITERION FOR OTOA

The mutual information I(x, z) between two random vari-

ables x and z is a measure of the degree of dependence

between these two variables. Formally, it is given by

I(x, z) =

∫∫

p(x, z) log

(

p(x, z)

p(x)p(z)

)

dxdz, (1)

where p(x, z) is the joint distribution of x and z, and

p(x), respectively p(z), is the marginalization of p(x, z) with

respect to z, respectively x. Two important properties are

to be noted here. Firstly, mutual information is a symmetric

function of x and z. Secondly, if x and z are independent

then p(x, z) = p(x)p(z) and the mutual information is zero

(immediately follows from (1)).

The mutual information index we propose to use is defined

as follows. First, we consider the mutual information Ii(xi, zi)
between the state xi and the measured output zi at time

ti. The overall mutual information index would then be

Itot = I1+I2+I3. Other indices based on mutual information

could also be considered. For example, one can consider the

mutual information between the joint orbital state variable

xjoint = (x1,x2,x3) and the joint measurement variable

zjoint = (z1, z2, z3). Such indices will be the subject of future

research.

It can be shown that the mutual information Ii(xi, zi) can

be expressed in terms of the KL divergence:

Ii(xi, zi) = DKL(p(xi, zi)||p(xi)p(zi)) (2)

where DKL is the KL divergence between two pdfs p(x) and

q(x), which is given by

DKL(p(x)||q(x)) =

∫

p(x) log
p(x)

q(x)
dx (3)

If both p and q are Gaussian, then one can compute DKL(p||q)
in closed form (see, for example, [1]):

DKL(p(x)||q(x)) =
1

2

[

log

(

‖Σq‖

‖Σp‖

)

+Tr
(

Σ
−1
q Σp

)

− d

+
(

µp − µq

)

·Σ−1
q ·

(

µp − µq

)

]

,

(4)

where µp and Σp (resp., µq and Σq) are the mean and

covariance of the pdf p (resp., q), and d is the dimension

of the underlying space.

Following the UT procedure described in [4], one can obtain

a Gaussian approximation of the pdf of the state x2. One can

then use the UKF to obtain the joint distribution p(xi, zi) after

propagating and updating with the corresponding measurement

zi, i = 1, 2, 3. It can be shown that this distribution is Gaussian

with the following mean:

µ
joint
i =

[

µ
xi

µ
zi

]

and covariance:

Σ
joint
i =

[

Σxi
Σxi,zi

Σ
T
xi,zi

Σzi

]

,

where µ
xi

is the UKF updated state mean at time ti, µzi
is the

measurement mean at time ti, Σxi
is the updated covariance

in the state at time ti, Σzi
is the measurement covariance at

time ti, and Σxi,zi
is the updated cross-covariance between

the state and the measurement at time ti. The reason we use

the updated statistics as opposed to the propagated statistics is

that we are, in the first place, assuming that the measurements

are associated (the hypothesis to be tested).

Since the joint pdf is Gaussian, the marginalization with

respect to xi and zi are both Gaussian and have means

µ
xi

and µ
zi

, respectively, and covariances Σxi
and Σzi

,

respectively. Now that we have Gaussian approximations of

p(xi, zi) and p(xi)p(zi), we can use (2) and (3) to compute

the mutual information Ii(xi, zi).

VI. SIMULATION RESULTS

In this simulation, we compare the performance of the

OTOA solution, with and without corrections, in four orbit

regimes: LEO, MEO, GTO, and GEO. For testing, we consider

two objects, with identification numbers 0 and 1, in close

proximity to one other. They both have identical orbital

elements, listed in Table I, except for the value of the true

anomaly at the initial time. One object has the value listed in

the table while the other is modified by a small delta. A set of

angles-only observations of the two RSOs are collected at three

different times. If we arbitrarily index the two measurements

with 0 and 1, then the question is which sequence of tags

are the correct ones? There are eight possible combinations

of tags: 000 (i.e., observations with tags 0 at the three time

instances are associated to one of the two objects and so on),

001, 010, 100, 011, 101, 110 and 111. The observations were

tagged such that the two correct ones are 000 (all coming from

RSO number 0) and 111 (all coming from RSO number 1).

The mutual information criterion used in our previous work [2]

is used here again: how close can the two objects be in true

anomaly before the method being tested fails to return the

two correct associations as the two most likely ones? Note

that when a method “fails,” while the correct associations

may not be the one most highly ranked, they would rank very

close to the top. As the separation distance between the two

objects decreases further, the correct associations are farther

from being top ranked, and they are more or less arbitrarily

ranked as all solutions become indistinguishable.

The measurement model has three basic parameters: sensor

location, time between observations, and angular measurement

noise. The sensor latitude and longitude used for each case

are provided in Table I. The topocentric azimuth and elevation

observations were collected at the rate of one observation every

N minutes with the value of N listed in the table (also notice

the large measurement error standard deviation chosen for

these simulations). The measurement noise is assumed to be

Gaussian with an angular standard deviation for both azimuth

and elevation specified in Table I.

For each of the cases, the separation in true anomaly

between the two RSOs is steadily decreased until the method

fails to report the correct associations as the most likely
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TABLE I
PARAMETERS OF THE TRUE ORBIT AND MEASUREMENT MODEL

Parameter LEO MEO GTO GEO

Semimajor Axis, km 6 991. 26 600. 24 461. 42 157.

Eccentricity 0.0 0.2 0.7322 0.01

Inclination, deg 97.9 55. 19.3 0.0

Argument of Perigee, deg 0.0 -120. -90. 0.0

Right Ascension of the Ascending Node, deg -62.8 -106.7 -17.5 0.0

True Anomaly, deg -30. 110. 200. 260.8

Measurement Noise σ, deg 0.67 2. 10. 3.33

Time Between Observations, min 2.5 20. 20. 60.

Sensor Latitude, deg 20.7088 33.8172 -7.41173 60.7088

Sensor Longitude, deg -156.2578 -106.6599 72.45222 -156.2578

TABLE II
TRUE ANOMALY DIFFERENCE AT WHICH ASSOCIATION METHOD FAILS

Orbit Regime IOD Corrected True Anomaly Difference (deg)

LEO No 5.96108

LEO Yes 0.20465

MEO No 0.30997

MEO Yes 0.01546

GTO No 1.02704

GTO Yes 0.78725

GEO No 1.40198

GEO Yes 0.27058

ones. The association picked by each method is the one that

produces the maximum value of mutual information index.

As can be seen in Table II, the correction we introduced to

the mutual information OTOA solution results in an order

of magnitude improvement in association performance for

the cases considered. It is important to note that the per-

formance results will depend on changes in many variables,

including time between measurements and orbital geometry.

The performance improvement was greatest for the LEO case,

followed by the MEO and finally by the GEO and GTO cases,

though the MEO case was the one with the best performance,

possibly due to the chosen set of parameters. This is not

surprising given the degradation of the Gauss IOD method

as one approaches the GEO belt. It is important to note

that while the resolution capability of this OTOA method is

relatively large (∼ 54 arcsec for the MEO case) compared to

typical sensor resolutions, one has to remember that the OTOA

problem being solved is far more challenging that the classical

OTTA problem. With the method proposed in this paper, and

others to be considered in future work, we can sift through

a collection of observations, not correlated to any object or

uncorrelated track, and sort out which ones are most likely to

belong together given minimal knowledge of the observation

statistics.

VII. CONCLUSION

In our prior work, it was shown that the mutual information

method performed the best among the information theoretic

approaches that were tested for the observation-to-observation

association (OTOA) problem. In this paper, we tested a vari-

ation of the mutual information technique, with the addition

of a correction factor for the IOD method. Simulation results

indicated an order of magnitude improvement in the overall

OTOA problem performance using this correction over the

uncorrected method. Future work will examine whether we

need to capture IOD error as a function of other parameters.

In the long run, it is generally conjectured that Monte Carlo-

based methods will prove to be more efficient as they more

faithfully represent the underlying probability distributions.

This paper barely touches the tip of the iceberg, and its most

basic goal is to induce the space community to further consider

the use of information theoretic measures for solving the

various data association problems (OTOA, OTTA, and TTTA).
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