
 

  

Abstract—With the rapid development of sensor technology, 

multiple sensors are often available in many engineering 

applications, such as space object tracking. How to effectively use 

multiple sensor information is the key to achieving accurate space 

object state information. In this paper, the information weighted 

consensus (IWC) strategy is deployed to solve the cooperative 

sensor tracking problem. In addition, the information theoretic 

method and the repeated consensus, are used to detect a 

malfunctioned sensor and overcome the problem of noisy links in 

the cooperative tracking scenario. The proposed algorithms are 

demonstrated by a typical space object tracking problem using 

multiple sensors. The results indicate that: 1) The proposed 

algorithms can obtain stable estimation results when there is 

malfunctioned node in the network, 2) can mitigate the effect of 

noisy links, and 3) achieves close performance to the result with 

perfect communication links and known malfunctioned node. The 

results will facilitate the application of using the information 

weighted consensus algorithm for real multiple sensor space 

object tracking scenarios. 

 
Index Terms—Consensus, Kalman filter, Space object tracking, 

Cubature rule, Malfunctioned node, Noisy links, Space situational 

awareness. 

I. INTRODUCTION 

ULTIPLE sensors are dedicated to achieving space 

situational awareness (SSA). In this paper, we propose a 

space object tracking algorithm using multiple sensors with the 

consideration of malfunctioned nodes and noisy links. For the 

multiple sensor tracking, there are two typical ways to use the 

information from multiple sensors, the centralized approach 

and distributed approach. In this paper, we mainly focus on the 

distributed cooperative tracking scenario due to the fact that 

distributed information fusion is more robust than the 

centralized information fusion. 

Distributed cooperative tracking has been intensively 

researched and there are many different strategies, such as 
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gossip [1], consensus [2, 3], and diffusion [4]. Specifically, the 

information weighted consensus strategy [5] is used due to its 

simplicity to implement and high accuracy. One critical issue 

for the distributed cooperative tracking algorithm is that some 

sensors may be malfunctioning and/or the communications 

links are often noisy. Hence, a malfunctioned node detection 

algorithm is required for the accurate SSA. In this paper, we 

propose using the information theoretic method to detect the 

malfunctioned node and repeated consensus to mitigate the 

effect of the communication noises. 

In this paper, we assume that it is known that the data from 

the different sensors pertain to the same target. If that is not the 

case, track to track fusion algorithms [6-10], such as 

cross-covariance [6], covariance intersection [8], and 

covariance union [9], should be used. In addition, when 

multiple measurements of multiple targets are available, the 

data association [10] should be performed. In this paper, we 

only focus on the single target tracking problem with multiple 

synchronized measurements. Due to the popularity of the 

derivative free filters [11-17], in this paper, we assumed that the 

system is a Gaussian nonlinear system. The result, however, 

can be immediately extended to the non-Gaussian nonlinear 

system by using the Gaussian mixture Kalman filtering 

framework. 

The remainder of the paper is organized as follows. The 

space object tracking problem using multiple sensors is 

introduced in Section II. Section III introduces the centralized 

multiple sensor estimation. Section IV introduces cubature rule 

embedded distributed multiple sensor estimation for 

malfunctioned node detection as well as communication noise 

mitigation. A multiple sensor space object tracking scenario is 

used and results are shown in Section V. Section VI gives the 

concluding remarks. 

II. PROBLEM STATEMENT 

A. Dynamic equation 

The dynamic equation of the near-earth space object is 

given by [18] 
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where [ ], ,
T

x y z=r is the position of the object in the inertial 

coordinate frame (I-J-K), µ  is the standard gravitational 

constant, 2 2 2
r x y z= + + , 

2Ja  is the J2 perturbations, and 

v  is the white Gaussian process noise.  

2

2 2 2 2

2 2 2 2

3
5 1 , 5 1 , 5 3

2

T

E
J

R z z z
J x y z

r r r r

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= − ⋅ − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦a (2) 

where ER  is the radius of the earth and 2J  is a constant. 

B. Space Based Optical (SBO) Sensors 

The SBO uses the Photogrammetry technique to determine 

the position of the object [19]. By using the pointing 

information of an SBO sensor, the beginning and ending points 

of the streaks detected on the focal plane can be transformed 

into two angular measurements [19, 20]. In this paper, we use 

the azimuth and elevation as the measurements of the SBO; 

e.g., 
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where [ ], ,
T

i i ix y z  is the position of the ith SBO and 

[ ]1 2,n n=n  is the measurement noise. 

Measurements from the ith observer will be unavailable 

when the line-of-sight path between the observer and the space 

object is blocked by the Earth. The condition of the Earth 

blockage is examined between the distance function D and the 

radius of the Earth RE. If there exist [0 1]θ ∈ ,  such that 

( )
E

D i Rθ < , where 

2 2 2
( ) [(1 ) ] [(1 ) ] [(1 ) ] .i i iD i x x y y z zθ θ θ θ θ θ θ= − + + − + + − +  (4) 

then the measurement from the ith sensor to the target will be 

unavailable. The minimum of ( )D iθ  is achieved at θ θ∗= , 

where θ ∗
 is given by 
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Thus, we first examine whether [0 1]θ ∗ ∈ ,  and then check the 

Earth blockage condition ( ) ED i R
θ∗ < . 

Besides Earth blockage, imaging quality of the SBO highly 

depends on the geometric relation of the space object, the SBO, 

and the sun as shown in Figure 1. 

 

 
Figure 1. Bistatic solar angle illustration 

 

We define the bistatic solar angle α  as the angle of the 

line from the space object to the sun and the line from the object 

to the SBO. The lighting condition is strong when the angle is 

small and it is weak when the angle α  is large. When α is 

large, the space object is hard to be observed due to saturation. 

When the epoch of the simulation is given, the position of the 

sun in Earth-centered inertial (ECI) coordinate system is 

denoted by [ ], ,
T

s s s s
x y z=x . Similarly, the position of the 

SBO and the space object in ECI coordinates, denoted by 

[ ], ,
T

m m m m
x y z=x  and [ ], ,

T

o o o o
x y z=x  respectively, can also 

be obtained. By the law of cosines, the bistatic solar angle α   is 

given by                     
2 2 2

1
cos

2
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= ⎜ ⎟⎝ ⎠  (6) 

where 

 
2os o sD = −x x , 

2om o mD = −x x , and     
2ms m sD = −x x .  

As the light quality depends on the value of the bistatic 

solar angle, the measurement noise in Eq. (3) is quantized for 

different bistatic solar angles. We list the relation between 

bistatic solar angle, light quality, and the noise covariance, R, 

in Table I. 

 
TABLE I, RELATION BETWEEN BISTATIC SOLAR ANGLE AND LIGHT 

Bistatic Solar 

Angle (degree) 

Light Quality Noise Covariance 

0-20 Excellent 0.8 R 

20-40 Very Good 0.9 R 

40-60 Good 1 R 

60-75 Medium 1.1 R 

75-90 Fair 1.2 R 

 

Note that, the R used in Table I is a reference covariance which 

is set to [ ]( )2
4arcsec, 4arc secdiag . The covariance values in 

Table 1 will be used in the simulation scenarios. When the 

bistatic solar angle is greater than 90 degrees, it is assumed that 

no useful measurement can be obtained. The assumption is 

based on the fact that SBOs can get measurements when the 

bistatic solar angle is less than 100 degrees [19]. 

 

C. Ground Based Radar 

A Ground radar is considered in this paper and the 

measurement is given by.  
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where the azimuth (az), the elevation (el), and the range 

[ ], ,
T

u e nρ ρ ρ=ȡ  can be measured by radar site on the ground 

with respect to the local observer coordinate system, ( ˆ ˆˆ ;− −u e n  

“up, east, and north”). Note that the covariance of measurement 
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noise is given by 
2

diag 0.015 ,0.015 ,0.025km
⎛ ⎞⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠

c c . 

The geometry of the observation model is shown in Figure 

2. The range can be related to the position vector in the inertial 

frame (I-J-K) by the coordinate transformation given by 
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where 6378.1363km=R  is the Earth radius; λ  and θ  are 

the latitude and local sidereal time of the observer respectively; 

and azn , eln , nρ  are the white Gaussian measurement noise.  

 

 
Figure 2. Illustration of the observing geometry 

III. CENTRALIZED MULTIPLE SENSOR ESTIMATION 

Considering a class of nonlinear discrete-time dynamical 

systems 

                             ( )1 1k k k− −= +x x vf   (9) 

                            ( ), ,k j j k k jx= +z h n   (10) 

where ,;n m
k k j∈ ∈x R z R . 1k −Ȟ  and ,k jn  are independent 

white Gaussian process noise and measurement noise with 

covariance 1k−Q  and ,k jR , respectively. ,k jz  is the 

measurement by the j
th

 sensor, 1, , snj N= A  and 
sn

N  is the 

number of sensors. 

For the centralized fusion methods, the information filter is 

commonly used due to its simplicity for multiple sensor 

applications [21-23]. In the information filter, the information 

state and the information matrix at time 1k −  are defined by 
1

1| 1 1| 1 1| 1
ˆ ˆ

k k k k k k

−
− − − − − −=y P x  and 1

1| 1 1| 1k k k k

−
− − − −=Y P , respectively. The 

system state 1| 1
ˆ

k k− −x  and covariance 
1| 1k k− −P  can be obtained by 

1| 1 1| 1 1| 1
ˆ ˆ

k k k k k k− − − − − −=x P y  and 
1

1| 1 1| 1k k k k

−
− − − −=P Y , respectively. In 

the following, the extended information filter is introduced. 

The centralized extended information filter (CEIF) is derived 

from the EKF and contains the prediction and update steps: 

A. Prediction 

The information state | 1
ˆ

k k−y  and the information matrix 

| 1k k −Y  can be predicted by 

                               
1

| 1 | 1 | 1
ˆ ˆ

k k k k k k

−
− − −=y P x   (11) 

                               
1

| 1 | 1k k k k

−
− −=Y P   (12) 

The predicted state and the associated covariance matrix at time 

k can be obtained by        ( )| 1 1| 1
ˆ ˆ

k k k k− − −=x xf   (13) 

                        | 1 | 1 1| 1 | 1 1= T

k k k k k k k k k− − − − − −+P F P F Q   (14) 

where | 1k k−F  is the Jacobian matrix of f  with respect to | 1
ˆ

k k −x . 

B. Update 

For multiple sensor estimation, the information state and the 

information matrix can be updated by [21] 
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where the information state contribution ,k ji  and the 

information matrix contribution ,k jI  of the j
th

 sensor are given 

by            ( )( )1

, , , , | 1 , | 1
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where jh  and ,k jH  are the j
th

 measurement function and the 

associated Jacobian matrix at time k, respectively; ,k jR is the 

covariance of the measurement noise corresponding to the j
th

 

measurement equation. 

 

Remark 2.1: From the above CEIF filtering algorithm, it can be 

seen that the local information contributions of ,k ji  and ,k jI  

are only computed at sensor j and the total information 

contribution. Therefore, the information filter is 

computationally more efficient and more suitable for 

decentralized sensor estimation than the conventional Kalman 

filter. 

 

The centralized cubature information filter (CCIF) can be 

obtained by integrating the cubature rule with the framework of 

CEIF. More details can be found in [21, 22].  

IV. DISTRIBUTED MULTIPLE SENSOR ESTIMATION 

For the distributed fusion algorithm, the network topology 

should first be provided and it can be represented by an 

undirected connected graph ( ),G V E= , where V  is the set of 

vertices or nodes of the graph and E  is the set of edges or lines 

of the graph. Before the introduction of the distributed 

cooperative tracking algorithm, the average consensus 

algorithm is briefly introduced as follows since it is the 

fundamental component of the consensus-based estimation 

algorithms. 
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A. Average Consensus Algorithm  

The average consensus algorithm is frequently used to 

obtain the mean value of all nodes in the network. Given the 

value of each node, the set of values of the network can be 

represented by { }
1

snN

j j
a

=
. By using the average consensus 

algorithm, the mean value 
1

1 snN

j

jsn

a
N =
∑  can be obtained by 

multiple iterations. The value of each node is initialized by 

( )0j ja a=  and iterative change values with its neighbors and 

updates to its own value. We assume that the each node has the 

value ( )1ja i −  before exchanging the values at iteration step i, 

then the jth node exchange the values with its neighbors 

' jj N∈ , which means the jth node sends its value to its 

neighbors and also receives neighbors’ values ( )' 1ja i − . Note 

jN  denotes the set of nodes which connect with node j. The 

update stage of the jth node value from (i-1)-th iteration to i-th 

iteration is given by 

              ( ) ( ) ( ) ( )( )'

'

1 1 1
j

j j j j

j N

a i a i a i a iε
∈

= − + − − −∑   (19) 

where ε  is the rate parameter which is a value between 0 and 

max1 Δ , and maxΔ  is the maximum degree of the network. Note 

that the convergence will be faster if a large ε  is chosen. 

B. Information Weighted Consensus Filter 

The prediction step of the information weighted consensus 

filter (IWCF) is identical to that of CEIF since the prediction 

step at each sensor is the same. The update step of the IWCF, by 

Eqs. (11)-(16), can be written as 
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and                   
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1
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j snN

−

=

⎛ ⎞
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Y I . (21) 

For the IWCF, it is assumed that a priori information for 

each node is the same. Under this assumption, we have 

| 1, | 1
ˆ ˆ

k k j k k− −=x x . Then, Eq. (20) can be rewritten as 
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Define the terms 
snN

= +
Y

V I  , 
snN

= +
Y

v x i  ; and let 

( )0
j

j j

snN
= +

Y
V I , ( )0

j

j j j

snN
= +

Y
v x i , by using the average 

consensus algorithm. When the iteration number goes infinity, 

we have 
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Hence, the update equations are given by 
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and 

                              ( )| limk k j
i

N i
→∞

=Y V  (27) 

 
Remark 3.1, For real applications, the iteration step number i 

cannot be infinity, as the maximum iteration number has to be 

given for finite time. 

 

C. Malfunctioned node detection 

By equations (22) and (23), the information required to be 

exchanged between different nodes are 
snN

= +
Y

V I  and 

snN
= +

Y
v x i . Now we assume the sensor 1j  receives 

information from the sensor 2j . By using the self-information, 

the state estimation at sensor 1j  can be given by 

( ) ( ) ( ) ( )
1 1 1 1 1

1 1

| , | , | , | 1 , | 1 ,
ˆ ˆ ˆ

k k j k k j k k j k k k j k k k j

− −

− −= = + +x Y y Y I y i  (28) 

                               
1 1| , | 1 ,k k j k k k j−= +Y Y I   (29) 

where 
1,k ji  and 

1,k jI  can be obtained respectively by  

                           
1 1

| 1

, , | 1

k k

k j k j k k

snN

−

−= −
Y

i v x   (30) 

and                      
1 1

| 1

, ,

k k

k j k j

snN

−
= −

Y
I V   (31) 

Note that 
| 1k k −x  and 

| 1k k −Y  are a priori information.  

In summary, the self-estimation of the state is described by 

the probability density function (PDF) 

( )
1 1

1

1 | , | ,ˆ ,k k j k k jp N
−⎛ ⎞= ⎜ ⎟⎝ ⎠x Y . When the sensor  receives the 

information from sensor 2j , the estimation using  information 

from 2j  can be described by the PDF 

( )
2 2

1

1 | , | ,ˆ ˆ ,k k j k k jp N
−⎛ ⎞= ⎜ ⎟⎝ ⎠x Y , where, 

( ) ( ) ( ) ( )
2 2 2 2 2

1 1

| , | , | , | 1 , | 1 ,
ˆ ˆ ˆ

k k j k k j k k j k k k j k k k j

− −

− −= = + +x Y y Y I y i  (32) 
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2 2| , | 1 ,k k j k k k j−= +Y Y I  (33) 

The distance between 1p  and 1p̂  can be used to detect the 

malfunctioned node. Specifically, if the distance between 1p  

and  is larger than the threshold, node 2j  is declared as a 

malfunctioned node. Otherwise, the node 2j  is declared as a 

normal node. There are many methods to evaluate the distance 

between two pdfs, such as Kullback-Leibler (KL) divergence 

and Bhattacharyya divergence. However, the divergence is 

generally not symmetric. Hence, they generally do not satisfy 

the triangle inequality which is required by a metric. In this 

paper, the metric used to evaluate the distance between two 

PDFs is given [24] 

( ) ( )( ) ( ) ( )
11
21 22

1 1 1
ˆ, log

nT
jj

D p p λ
−−

=
= + ∑x x u ī u  (34) 

where 

 
1 2| , | ,ˆ ˆk k j k k j= −u x x  and     ( ) ( )

1 2

1 1

| , | ,

1

2
k k j k k j

− −⎛ ⎞= +⎜ ⎟⎝ ⎠ī Y Y .  

 

Note that   1j j nλ ≤ ≤  is the eigenvalue by solving the 

equation ( ) ( )
1 2

1 1

| , | ,k k j k k j

− −
= ΛY V Y V  where V is the column 

matrix of the generalized eigenvectors and Λ  is the diagonal 

matrix and each element of it is the eigenvalue. 

 
Remark 3.2, In order to guarantee the correctness of 

self-estimation of the state, the likelihood of the self-estimation 

state should be evaluated. If the self-estimation is not incorrect, 

the information sent by the node will not be used by other 

nodes. 

 
Remark 3.3 the square root of the Jensen-Shannon divergence 

can also be used as a metric to evaluate the distance between 

different PDFs. However, it has a considerably high 

computational load [24]. 

 
Note that when the malfunctioned node is found at time k, it 

will be excluded from the consensus procedure in the current 

time k.  

D. Detect the number of normal nodes 

One assumption of the ordinary IWCF is that the number 

of sensors can be exactly obtained. Due to the existence of the 

malfunctioned node, the number of sensors snN  used in the 

ordinary IWCF is actually larger than the true number of valid 

sensors. Hence, the correct number of normal nodes has to be 

determined. We use the following protocol to determine the 

number of normal nodes. Before the consensus procedure at 

each update step, let one node exchange value 1 and other 

nodes exchange value 0 with their neighbor. After sufficient 

iterations, all nodes have the same value, i.e., 1 snN , where 

snN  is the correct number of normal nodes and it can be used in 

the IWCF (rather than snN ). Note that round operation may be 

required to make the number of sensors to be an integer.  

E. IWCF via noisy link  

The communication links between different nodes can be 

corrupted by noise. In order to mitigate the effect of large noise, 

the repeated consensus is utilized [25]. Define ( )s
n ix  as the 

local value at sensor n and at the ith iteration of the sth Monte 

Carlo run. The consensus value will be calculated by 

                       ( ) ( )
1

1
p

p s
n n

s

i i
p

=

= ∑x x   (35) 

where p is the number of Monte Carlo runs. With the increasing 

of the repeated times p , the averaging procedure will take 

advantage of the law of large numbers to work effectively [25]. 

V. SIMULATION RESULTS 

To test the performance of the proposed IWCF in the 

presence of malfunctioned nodes and noisy links, we evaluate 

the performance of different filters in a cooperative space 

object tracking scenario. Five sensors, including one ground 

radar and four SBOs {SBO1, .., SBO4} are used in the scenario. 

The parameters of the sensors and the space object are listed in 

Table II. We assumed that SBO2 is a malfunctioned node and 

incorrect information will be sent from SBO2 randomly. In this 

paper, we assume the incorrect information follows a Gaussian 

distribution. Note that the two terms, v and V are exchanged by 

different nodes. For the incorrect information v and V, each 

element x  in v or the diagonal element of V is perturbed by a 

Gaussian noise from a Gaussian distribution ( )0,0.1N x .  

 
Table II. Parameters of sensors and space object 

Sensors Initial orbital parameters/Locations 

SBO1 [ ]328.30,-791.22,6949.01
T

pos km= −x  

[ ]4.4652,6.0572,0.4849 /
T

vel km s= −x  

SBO2 [ ]4143.79,5624.26,441.55
T

pos km= −x  

[ ]0.3559,0.8495,-7.4934 /
T

vel km s=x  

SBO3 [ ]328.29,791.24, 6949.05
T

pos km= −x  

[ ]4.4652, 6.0571, 0.4851 /
T

vel km s= − −x  

SBO4 [ ]4007.58, 5016.32, 2791.95
T

pos km= − −x  

[ ]1.1976, 2.8768,6.8769 /
T

vel km s= −x  

Radar Latitude: 8.724 N, Longitude: 167.717 E  

Initial 

Space 

Object 

[ ]1873.14,33018.75,1153.04
T

pos km= −x  

[ ]3.4651, 0.1963,-0.0069 /
T

vel km s= − −x  

 

The topology of the sensor network is described by 

1p̂

1290



 

                            

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

E

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

  (36) 

 

The adaptive step size Runge-Kutta method is used to 

propagate the orbit (Eq. (1)) and the measurement period is 60 

seconds. The channel noise covariance for each state is 

assumed to be 1e-10. As shown in Eq. (19), the average 

consensus algorithm used the information difference between 

different nodes to update the local information. The 

information difference, however, sometime is very small. 

Hence, it is vulnerable to the noise. In addition, the 

signal-to-noise ratio (SNR) of the channel is reflected in the 

uncertainties selected for the model which include background 

noise, signal bias, and effects from the environment. Six 

different filters are tested and the root mean square error 

(RMSE) is used to evaluate the performance of different filters. 

For convenience, we list them in table III. Note that ‘Cub’ in 

Table III denotes the cubature rule, ‘IC’ denotes the 

information correction, and ‘NM’ denotes the noise mitigation, 

‘w’ and ‘wo’ denote ‘with’ and ‘without’, respectively. The 

comparison between Cub-CIF and Cub-IWCF has been 

reported in [23].  

 
Table III Test filters and their properties 

Filters Properties 

Cub-IWCF-

Benchmark 

� Given malfunctioned node (excluded), and 

� Perfect communication channel 

Cub-IWCF � Conventional IWCF 

Cub-IWCF-
woIC 

� Without using the correct number of normal 

nodes (Information Correction), but  

� Using the malfunctioned node detection 

algorithm. 

� Perfect communication channel 

Cub-IWCF-

wIC 

� Using correct number of normal nodes and  

� Using malfunctioned node detection algorithm. 

� Perfect communication channel 

Cub-IWCF- 

wIC-woNM 

� Using correct number of normal nodes and  

� Using malfunctioned node detection algorithm. 

� Noisy channel but without using the noise 

mitigation algorithm 

Cub-IWCF-

wIC-wNM 

� Using malfunctioned node detection algorithm. 

� Noisy channel and  

� Using the noise mitigation algorithm 

 

The first filter is named ‘Cub-IWCF-Benchmark’ in which 

the malfunctioned node is known and excluded from the 

network. In addition, the communication channel is assumed to 

be perfect (no noise). Cub- IWCF -Benchmark can be used as a 

baseline to evaluate the performance of other filters. 

Cub-IWCF is a conventional filter without considering the 

malfunctioned node. Specifically, it accepts the information 

from the malfunctioned node to update its estimation. In our 

simulations, Cub- IWCF often diverges. Hence, the results are 

not shown in Figures 3 and 4.  

As shown in Figures 3 and 4, Cub-IWCF-woIC and 

Cub-IWCF-wIC are used to demonstrate the effectiveness of 

the malfunctioned node detection algorithm. In 
Cub-IWCF-woIC, the number of nodes includes the 

malfunctioned node. Hence, the information exchanged 

between different nodes is not corrected accordingly. 

Cub-IWCF-wIC, however, revises the information exchanged 

between different nodes by the correct number of normal 

nodes. Note that in both filers, perfect communication channels 
are assumed. Our simulation results show that Cub-IWCF-wIC 

achieved more accurate results than the Cub-IWCF-woIC. In 

addition, the Cub-IWCF-wIC achieved very close performance 

to the Cub-IWCF-Benchmark.  

 
Figure 3. RMSE of position versus time 

 

Cub-IWCF-wIC-woNM and Cub-IWCF-wIC-wNM are 

used to demonstrate the effectiveness of the noise mitigation 

algorithm for noisy links. In Cub-IWCF-wIC-woNM, the 

malfunctioned node detection algorithm is used and the 

information is corrected according to the correct number of 

normal nodes. However, the communication channel has noise 

above a threshold. Due to the effect of the noise, the estimation 

eventually diverges. The repeated consensus is used in 

Cub-IWCF-wIC-wNM which can successfully mitigate the 

effect of the noise and achieve satisfying results. Note that 

Cub-IWCF-wIC-wNM is only slightly worse than 

Cub-IWCF-Benchmark between time interval from 15 to 25 

minutes.  
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Figure 4. RMSE of velocity versus time 

 

VI. CONCLUSION 

Building on the consensus-based filter, an information 

theoretic method is proposed to detect the malfunction node 

and a repeated consensus algorithm is used to mitigate the 

effect of communication channel noise between different 

sensors in the cooperative space object tracking scenario. The 

simulation results show that the proposed strategy is effective 

to detect the malfunctioned node and the communication noise 

has been effectively mitigated by repeated consensus strategy. 

The result benefits the applications of space situational 

awareness using multiple sensors. 
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