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Abstract—In over-the-horizon radars (OTHRs), the target state
updates at a fast rate while the ionosphere state (e.g. the
ionospheric height) evolves intermittently and all OTHR based
tracking methods have the same prerequisite that the virtual
ionospheric height, as the key model parameter in estimating the
target state, should be obtained either by ionosondes or external
sources. However, ionosondes can not be deployed arbitrarily
and external sources may not be always available, resulting in
the situation that the ionosphere state is unknown. It motivates
us to consider the novel problem of multi-path target tracking
in clutters without the help of ionosondes and external sources.
The considered problem is formulated as the multi-rate state
estimation with random coefficient matrices. First, the multi-
rate state filter (MSF) with causality constraints is established
for the multi-rate linear model. For the non-linear measurement
model of OTHR, the derived MSF is extended to an iterative
multi-rate state filter (IMSF) via the iterative optimization of
joint state estimation and parameter identification (the linearized
measurement matrix). In a numerical simulation about tracking
two targets in four resolvable propagation modes our IMSF is
testified.

I. INTRODUCTION

The over-the-Horizon radar (OTHR) uses the refractive

nature of high-frequency (HF) ionospheric propagation to

perform wide-area surveillance of targets at long ranges be-

yond the horizon of conventional line-of-sight radars [1]-[3].

Different from traditional radars, OTHR faces the challenge

of multi-path propagation, since it is often impossible to

select a radar operating frequency that results in a single-

mode propagation to the region of interest, so that multi-path

propagation is unavoidable. By the fact that multiple radio-

wave propagation paths or ray modes can result in multiple

resolvable echoes from the same target [4], there exists the

situation that more than one detection from the same target

are obtained during a dwell or scan [5] [6]. In the presence

of multiple ionospheric layers, multiple propagation paths

between the transmitter/target and target/receiver give rise to

multiple detections from a single target in the slant coordinates

of the radar receiver. Much attention has been paid to the

multi-path data association and fusion of OTHR which can be

divided to the following two categories.

In the first category, state estimation based on Kalman filters

and data association are implemented in the same coordinate

( the slant or radar coordinate) in the process of which track

fusion based on coordinate registration are involved, i.e., the

mapping between slant coordinates and ground coordinates [7]

[8]. In the second category, state estimate and data association

are implemented in slant coordinates and ground coordi-

nates, respectively, and hence twice mapping between slant

coordinates and ground coordinates are needed. Its classical

methods include multi-path data association (MPDA) [9]-[11],

probabilistic multiple hypothesis tracking (PMHT) [12] [13]

and multi-path Viterbi data association [14] [15]. Recently,

there have been some developments on OTHR multitarget

tracking such as multiple detection MHT (MD-MHT) [16],

multiple detection JPDA (MD-JPDA)[17] and joint multipath

data association and state estimation (JMAE) [18]. In general,

these methods have the same requisite that the virtual iono-

spheric heights (the key parameter in coordinate registration)

are given, for example by vertical and oblique ionosondes [19]

[20]. As important components of OTHR systems, vertical and

oblique ionosondes are utilized to detect the required virtual

ionospheric height which might be unavailable due to the

deployment constraints, for example, in the sea area or the

hostile zone.

Recently, much attention has been paid to estimating the

virtual ionospheric height by external sources such as bea-

cons or transponders [8] [21] [22], terrain features [22],

and forward-based receivers (FBRs) [23] [24]. However, the

beacon-assisted method and the FBRs based method are only

in effect within the limited zone, and the terrain-assisted

method corrects the ground coordinates of each raymode

roughly due to the large size of the resolution cell.

It is highly demanded to develop the novel target-tracking

scheme for joint estimation of target state and ionosphere state

without the help of ionosondes or external sources.

This paper presents the joint estimation problem of the

fast-updating target state and intermittent-updating ionosphere

state. The target state updates at a fast rate, while the

ionospheric state evolves in a intermittent rate, i.e., changes

abruptly and then remains constant for a period. Meanwhile,

due to uncertainties of association relationship among mea-

surements, tracks and possible propagation paths, the mea-

surement model contains random coefficient matrices (RCM).

First, the multi-rate linear system is lifted to an equivalent

single-rate model with causality constraint, and the MSF is

derived in the linear minimum mean square error (LMMSE)

sense. Then the IMSF is developed via the iterative optimiza-

tion of joint state estimation and parameter identification (the

linearized measurement matrix) for the non-linear measure-
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ment model case.

This article is organized as follows. The joint estimation

problem of fast-updating multi-target states and intermittent-

updating ionosphere state is formulated in Section 2. The

original target tracking problem is reformulated as a multi-

rate estimation problem with RCM, and the MSF and IMSE

are designed in Section 3. A simulation testification is given

in Section 4 and some conclusions are drawn in Section 5.

Throughout the paper, the superscripts “−1” and “T ”

represent the matrix inverse and transpose, respectively; the

symbols “I ” and “0 ” represent identity and zero matrices

with proper dimensions, respectively; diag{·} denotes a block

diagonal matrix; E{·} is the mathematical expectation; E∗

is the LMMSE estimation operator; trace{·} is the matrix

trace; (·) denotes the same contents as that in the previous

parenthesis.

II. PROBLEM FORMULATION
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Fig. 1. Geometry of planar OTHR measurement model

Fig. 1 depicts the geometry of the target and radar sensor

system of bistatic OTHR. The ray paths from the transmit-

ter/target to the target/receiver are assumed to be reflected from

the ionosphere at virtual height ht/hr. The electronic concen-

tration of the ionosphere changes tardily and then stays invari-

able within some periods results in the intermittent evolvement

of the equivalent heights of the reflecting ionosphere. In

OTHR based target tracking, the target state updates at a fast

rate while the ionosphere state (e.g. the ionospheric height)

evolves intermittently. In other words, there exists a multi-rate

system model of fast-updating target states and intermittent-

updating ionosphere states [9]. Traditionally, the ionospheric

height is obtained by vertical and oblique ionosondes or

external sources of information from beacons, transponders,

terrain features, FBRs, etc. However, because of the limited

deployment of ionosondes, and external sources of information

may be corrupted by environmental or enemy disturbances, the

virtual ionospheric height is not always known accurately. It

motivates us to develop the joint estimation scheme of target

state and ionosphere state.

A. Multi-target and ionospheric dynamic model

Consider the following multi-rate system.

• the fast-updating dynamic subsystem P1 of tracking t
targets:

x1m,k+1 = A1mx1m,k +B1mu1m,k + Γ1mω1m,k,

m = 1, · · · , t, (1)

or its compact equivalent form

X1,k+1 = A1X1,k +B1u1,k + Γ1ω1,k, (2)

with

X1,k = col{x11,k, · · · , x1t,k},

A1 = diag{A11, · · · , A1t},

B1 = diag{B11, · · · , B1t},

Γ1 = diag{Γ11, · · · ,Γ1t},

u1,k = col{u11,k, · · · , u1t,k},

ω1,k = col{ω11,k, · · · , ω1t,k},

• the intermittent-evolving subsystem, i.e., the slow-

updating system P2 plus a holder H:

P2 : x2,kN+N = A2x2,kN +B2u2,kN + Γ2ω2,kN ,

(3)

H : x2,kN+i = x2,kN , i = 1, 2, . . . , N − 1, (4)

where x1m,k ∈ ℜn1 is the fast-updating target state

evolving at a basic period h;

x1m,k = col{ρ1m,k, ρ̇1m,k, b1m,k, ḃ1m,k} represent

the ground range, range rate, azimuth and azimuth rate,

respectively; x2,k ∈ ℜn2 is the state of ionospheric height

updating at the period kNh and remains constant in the

next (N−1)h period, and x2,k = col{hi, i = 1, · · · , γ},

where γ is the number of ionosphere layers. u1m,k ∈ ℜr

and u2,k ∈ ℜn are known inputs; ω1m,k and ω2,k are

zero-mean white noises with known covariances Q1m,k

and Q2,k, respectively; matrices A1m, B1m, Γ1m, A2, B2

and Γ2 are known with proper dimensions. Here ω1m,k

and ω2,k are mutually and independent of each other.

B. OTHR measurement model for multi-path propagation

The radar measurements consist of the slant range Rg =
r1 + r2 (half of the path length), Doppler Rr (the rate of the

change of the slant range), and azimuth Az = π/2− θ. Each

scan of the OTHR consists of a set of mk measurements:

zk,j = col{Rgk,j , Rrk,j , Azk,j}, j = 1, 2, · · · ,mk. (5)

The measurement of OTHR may originate from the interested

target via one possible propagation path or just clutter. If

zk,j comes from the interested target with the l2-th forward

propagation and the l1-th backward propagation, then the mea-

surement model with respect to target states and ionospheric

heights are

zk,j =

{

Hm,s
k,j (x1m,k, x2,k) + vk,j , θk,j = ms,

Θk,j , θk,j = 0,
(6)

where vk,j ∈ Rnz is zero-mean and white with the known

covariance Rk,j ; θk,j = ms represents the measurement zk,j
is received from target m via mode s; s = Ll1,l2 , l1 =
1, · · · , L1, l2 = 1, · · · , L2 represents the (l1, l2)-th propa-

gation mode, L1 and L2 are the numbers of the possible

virtual ionospheric reflecting layer for backward and forward
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paths, respectively. θk,j = 0 represents the measurement

zk,j is independent clutter Θk,j . The nonlinear target-oriented

measurement Hm,s
k,j is given by

Hm,s
k,j =






rl11,k + rl22,k
(ρ1m,k/r

l1
1,k + η1m,k/r

l2
2,k)ρ̇1m,k/4

sin−1{ρ1m,ksin(b1m,k)/(2r
l1
1,k)}




 , (7)

with

rl11,k =

√

(ρ1m,k/2)2 + (hr,l1
k )2,

rl22,k =

√

ρ21m,k

4
−

dρ1m,ksin(b1m,k)
2

4

d2

4
+ (ht,l2

k )2,

η1m,k = ρ1m,k − dsin(b1m,k),

where ht,l2
k and hr,l1

k are the unknown virtual heights re-

spectively, representing the heights of the reflection points in

forward path (from the transmitter to the target) and backward

path (from the target to the receiver) related to zk,j .

As mentioned in [9] each propagation mode s, s ∈ (l1, l2)
produces an echo with certain probability of detection. For

simplicity, these probability are considered identical and de-

noted by PD(PD ≤ 1).

The clutter (false measurement) model is specified by a 3-

dimensional probability density function (PDF) pc(yk). Clutter

detections are assumed to be independent from scan to scan.

The most commonly-used clutter spatial distribution is uni-

form clutter as follows.

pc(Θk) =

{

V −1(k), Θk ∈ G(k),

0, otherwise,
(8)

and the clutter number obeys the Possion distribution, i.e., the

probability function gc(n) for the number of clutter measure-

ments n within the validation region is given:

gck(δ) = Probability{gck = δ} =
(λV (k))δe−λV (k)

δ!
, (9)

where δ = 0, 1, 2, · · · ; λ is taken as Nk/Vs, and Nk is the

total number of clutters in the scan; Vs is the volume of the

corresponding space and G(k) is the interested zone.

Traditionally, the ionospheric heights are provided by

ionosondes or external sources of information, and hence the

target tracking problem of OTHR can be solved through the

combination of data association and nonlinear filters . Here

we derive the joint estimation of target states and ionospheric

states without the help of ionosondes and external sources of

information.

III. FILTER DESIGN

In this section, we will derive a multi-rate joint state filter.

In the first place, we design the multi-rate LMMSE filter for

a linear state and measurement model, and then extend the

result to the nonlinear case through iterative optimization.

A. MSF design for linear measurement model

Consider the measurement in (6) with the following linear

expression.

zk,j = Hm,s
k,j (x1m,k, x2,k) + vk,j

= Cm,s
1,k,jx1m,k + Cm,s

2,k,jx2,k + vk,j ,

j = 1, 2, · · · ,mk, (10)

Suppose that there are s propagation modes at time instant

k, and the measurement zk,j is received from target m,m ∈
(1, 2, · · · , t) via mode s ∈ (l1, l2), l1 = 1, · · · , L1, l2 =
1, · · · , L2, with probability pm,s

k,j which can be calculated by

the same method used in the event association part of MPDA

[9] or JPDA [25]. Then, for any a measurement zk,j , the

corresponding measurement coefficient matrix
[
C1,k,j C2,k,j

]

=







[

C
1,L1,1

1,k,j 0 · · · C
1,L1,1

2,k,j

]

, prob p
1,L1,1

k,j ,

...
...

...
...

[

C
t,LL2,L1

1,k,j 0 · · · C
t,LL2,L1

2,k,j

]

, prob p
t,LL2,L1

k,j .

(11)

where prob stands for probability. (10) is rewritten as

zk,j = C1,k,jX1,k + C2,k,jx2,k + ṽk,j , (12)

with

C1,k,j = E{C1,k,j}, C2,k,j = E{C2,k,j},

C̃1,k,j = C1,k,j − C1,k,j , C̃2,k,j = C2,k,j − C2,k,j ,

ṽk,j = C̃1,k,jX1,k + C̃2,k,jx2,k + vk,j .

For the convenience of obtaining the optimal parameter for

the multi-rate state filter (MSF), we transform the original

multi-rate time-varying system into an equivalent single-rate

system. Through lifting technique [26], the above multi-rate

state estimation with random coefficient matrices is reformu-

lated as the following single-rate lifted system

xk = A xk−1 +B uk−1 + Γ ωk−1, (13)

zk = Ck xk + vk, (14)

with

xk = col{X1,kN , · · · , X1,kN+N−1, x2,kN},

zk = col{zkN,1, · · · , zkN,mkN
,

· · · , zkN+N−1,1, · · · , zkN+N−1,mkN+N−1
},

vk = col{ṽkN,1, · · · , ṽkN,mkN
,

· · · , ṽkN+N−1,1, · · · , ṽkN+N−1,mkN+N−1
},

uk−1 = col{u1,kN−1, · · · , u1,kN+N−2, u2,kN−N},

wk−1 = col{w1,kN−1, · · · , w1,kN+N−2, w2,kN−N},

A =










0 . . . 0 A1 0
0 . . . 0 A2

1 0
... . . .

...
...

0 . . . 0 AN
1 0

0 . . . . . . 0 A2










,
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B =










B1

A1B1 B1

...
. . .

. . .

AN−1
1 B1 AN−2

1 B1 · · · B1

0 0 · · · 0 B2










,

Γ =










Γ1

A1Γ1 Γ1

...
. . .

. . .

AN−1
1 Γ1 AN−2

1 Γ1 · · · Γ1

0 0 · · · 0 Γ2










,

Ck =








C1,kN 0 0 C2,kN

0 C1,kN+1 C2,kN+1

...
. . .

. . .
...

0 0 C1,kN+N−1 C2,kN+N−1







,

C1,kN+i = col{C1,kN+i,m1 , · · · , C1,kN+i,mkN+i
},

i = 0, 1, · · · ,

C2,kN+i = col{C2,kN+i,m1 , · · · , C2,kN+i,mkN+i
},

where ωk−1 is zero-mean and white with covariance Q
k−1

=

diag{Q1,kN−1, · · · , Q1,kN+N−2, Q2,kN−N}; vk is dependent

of two periodical-varying states.

The recursive calculation of Rṽk,j
is derived as follows.

Denote Πk = E(X1,kX
T
1,k), εk = E(x2,kx

T
2,k), da,b =

E
[

(C̃1,k,j)a,b(C̃1,k,j)b,a

]

, ea,b = E
[

(C̃2,k,j)a,b(C̃2,k,j)b,a

]

,

and define F as a matrix with its (a, b)-th element being 1
and others being 0. By the fact that ṽk,j is independent of

states, the recursive calculation of Rṽk,j
is given by

Rṽk,j
= Rvk,j

+
∑

a,b

[(Πk+1)a,bda,bFa,b + (εk+1)a,bea,bFa,b] ,

(15)

with

Πk+1 = A1ΠkA
T
1 +B1u1,ku

T
1,kA

T
1 + Γ1Q1,kΓ

T
1 , (16)

εk+1 = A2εkA
T
2 +B2u2,ku

T
2,kA

T
2 + Γ2Q2,kΓ

T
2 . (17)

Denote x̂i,j|k = E∗[xi,j |Z
k}, and the state estimation, state

prediction, covariance estimation and covariance prediction for

the lifted system by (13)-(14) can be represented as

x̂e
k = col{x̂11,kN |kN , · · · , x̂11,kN+N−1|kN+N−1,

· · · , x̂1t,kN |kN , · · · , x̂1t,kN+N−1|kN+N−1, x̂2,kN |kN},

x̂p
k = col{x̂11,kN |kN−1, · · · , x̂11,kN+N−1|kN−1,

· · · , x̂1t,kN |kN−1x̂1t,kN+N−1|kN−1, x̂2,kN |kN−1},

P e
k = E{(xe

k − x̂e
k)(·)

T }, P p
k = E{(xp

k − x̂p
k)(·)

T }.

Remark 1: The direct utilization of the standard Kalman

filter on the lifted system in (13)-(14) would result in the

interval smoother of the original multi-rate system instead

of the desirable filter by the fact that the measurements at

different times are lifted as one equivalent measurement. In

other words, the filter for the lifted system with causality

constraint should be studied

Theorem 1: For the multi-rate model in (1)-(4) with its

corresponding linear measurement in (12), its LMMSE filter

has the following recursion

x̂1m,kN+i|kN−1 = Ai
1mx̂1m,(k−1)N+i|(k−1)N+i−1

+

N−1∑

j=1

AN−j
1m B1mukN+j−2,

i = 0, · · · , N − 1, (18)

x̂1m,kN+i|kN+i = x̂1m,kN+i|kN−1 +
i+1∑

j=1

Ki,j

(z̄kN+i − C̄1,kN+ix̂1m,kN+i|kN−1

−C̄2,kN+ix̂2,kN |kN−1), (19)

x̂2,kN |kN = x̂2,kN |kN−1 +
N∑

j=1

KN+1,j

(z̄kN+N−1 −

C̄1,kN+N−1x̂1,kN+N−1|kN−1

−C̄2,kN+N−1x̂2,kN |kN−1), (20)

x̂2,kN+i|kN−1 = x̂2,kN |kN−1 +
i+1∑

j=1

KN+1,j

(z̄kN+i − C̄1,kN+ix̂1,kN+i|kN−1

−C̄2,kN+ix̂2,kN |kN−1), (21)

ẑkN+i|kN−1,mkN+i
= C1,kN+i,mkN+i

x̂1m,kN+i|kN−1 +

C2,kN+i,mkN+i
x̂2,kN+i|kN−1, (22)

P
p(i,j)
k =

N+1∑

l=1

N+1∑

q=1

A(i,l)P
e(i,j)
k−1 A(j,q)

+

N+1∑

l=1

N+1∑

q=1

Γ(i,l)Q(i,j)

k−1
Γ(j,q),

i, j = 1, · · · , N + 1, (23)

P
e(i,j)
k =

N+1∑

l=1

N+1∑

q=1

(I −
i∑

s=1

Ki,s
k C

(s,l)
k )P

p(l,q)
k

(I −
i∑

n=1

C
(j,n)
k Kn,q

k ) +
N+1∑

r=1

N+1∑

p=1

Ki,r
k R

(r,p)
k Kj,p

k ,

(24)

Kk =








K1,1
k

...
. . .

. . .

KN,1
k KN,2

k · · · KN,N
k

KN+1,1
k KN+1,2

k · · · KN+1,N
k







, (25)

with

z̄kN = col{zkN,1, · · · , zkN,mkN
},
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Ki
k =







[

K
(i,1)
k ,K

(i,2)
k , · · · ,K

(i,i)
k

]

, i = 1, 2, · · · , N − 1,
[

K
(i,1)
k ,K

(i,2)
k , · · · ,K

(i,N)
k

]

, i = N,N + 1,

= U
(
ki)(V

(
k i))

−1,

U
(i)
k =







[

P
p(i,1)
k P

p(i,2)
k · · · P

p(i,i)
k

]

C̄T
1,r

+1Ti ⊗ P
p(i,N+1)
k C̄T

2,r, i = 1, 2, · · · , N − 1,
[

P
p(i,1)
k P

p(i,2)
k · · · P

p(i,N)
k

]

C̄T
1,r

+1TN ⊗ P
p(i,N+1)
k C̄T

2,r, i = N,N + 1,

V
(i)
k =

{

C
(i)
k P p

k (C
(i)
k )T +R

(i)
v
k
, i = 1, · · · , N − 1,

Ck P p
k (Ck)

T +R
(i)
v
k
, i = N,N + 1,

Rv
k

= diag{ṽkN,1, · · · , ṽkN,βkN
, · · · , ṽkN+N−1,1,

· · · , ṽkN+N−1,βkN+N−1
},

where P
p(i,j)
k and P

e(i,j)
k are the (i, j)-th sub-block of P p

k

and P e
k, respectively; A(i,j), Γ(i,j), C

(i,j)
k and R

(i,j)
k are the

(i, j)-th sub-block of the corresponding matrices, respectively;

Ki
k, U i

k, V i
k and R

(i)
v
k

are the i-th row of Kk, Uk, Vk and Rv
k
,

respectively; K
(i,j)
k is the (i, j)-th sub-block of Kk.

Proof: See the Appendix.

Remark 2: As shown in (25), there exist N(N−1)/2 zero-

valued blocks in Kk. This is due to the causality constraint,

i.e., the future measurements can not be utilized in the current

estimate in the filter design.

Remark 3: It’s worth to mention that the proposed MSF in

(18)-(25) is quite different from the standard Kalman filter.

In our MSF, the state filtering x̂1m,kN+i|kN+i is calculated

from the i + 1 step state prediction x̂1m,kN+i|kN−1, instead

of x̂1m,kN+i|kN+i−1. In other words, though the state x1m

updates at the fast rate equaling to the sensor sampling rate,

its estimate updates much different compared with the Kalman

filter due to the effect of the intermittent-updating state x2,k.

B. IMSF design for non-linear measurement model

For the non-linear measurement in (6), the choice of the

linearized point determines the linearisation error, and further

determines the estimation accuracy. Hence, the idea of obtain-

ing more accurate state estimates motivates us to introduce the

framework of iterative optimization (the idea of iteration in the

filter design has been reported in many researches [27]-[30]).

Define the linearized point x
(l)
k (l = 0, 1, · · · , L, L ≥ 1) by

x
(l)
k =

{

col{x
(l)
1m,kN+i|kN−1, x

l
2,kN+i|kN−1}, l = 0,

col{x
(l)
1m,kN+i|kN+i

, xl
2,kN+i|kN+i

}, l ∈ {1, · · · , L},
(26)

where l = 0, 1, · · · , L denotes the current iteration number and

L is the maximum iteration number; x
(l)
k represents the state

estimation in the l-th iteration. The recursive implementation

of the IMSF is shown in Fig. 2. In Fig. 2, the linearisation

matrix
[

C
m,s(l)
1,kN+i,j C

m,s(l)
2,kN+i,j

]

=
∂Hm,s

k,j (x1m,k, x2,k)

∂xk

∣
∣
∣
∣
xk=col{x

(l)

1m,kN+i
,x

(l)

2,kN+i
}

.(27)
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Fig. 2. Recursive implementation of the IMSF

is the equivalent measurement matrix, and hence the non-linear

measurement model in (6) is transformed into the linear one

in (12).

As shown in Fig. 2, the iteration and the filtering is

interweaved, and the close loop feedback is introduced in

the filtering process to obtain the better linearization points,

resulting in the improvement of filtering accuracy.

Remark 4: The iteration strategy, which aims at eliminating

the coupled errors and optimize the linearized points, is real-

ized by letting the linearized point col{x
(l)
1m,kN+i, x

(l)
2,kN+i},

(l ∈ {0, 1, · · · , L, L ≥ 1}) equal to the latest

state estimation col{x̂
(l−1)
1m,kN+i|kN+i

, x̂
(l−1)
2,kN+i|kN+i

} in matrix

[C
m,s(l)
1,kN+i,j C

m,s(l)
2,kN+i,j ] and then the state is estimated re-

peatedly. Hence, the estimation precision can be improved

greatly because [C
m,s(l)
1,kN+i,j C

m,s(l)
2,kN+i,j ] is calculated iteratively.

The iteration is stopped until the following iteration terminate

condition (relative estimation error) is satisfied

‖ x̂
(l+1)
k − x̂

(l)
k ‖2

‖ x̂
(l)
k ‖2

≤ ε or l > L(l ∈ {1, · · · , L}), (28)

where ε(0 < ε ≤ 1) is the set iteration accuracy

threshold. ‖ A ‖2 denotes the 2-norm of vector A. If

(28) holds, the state estimate and its covariance will

be determined by col{x̂1m,kN+i|kN+i, x̂2,kN+i|kN+i} =

col{x̂
(l)
1m,kN+i|kN+i

, x̂
(l)
2,kN+i|kN+i

} and P
e(i,i)
k = P

e(i,i)(l)
k ,

respectively.

In Fig. 2, the purpose of the coefficient matrix lineariza-

tion block is to optimize matrix [C
m,s(l)
1,kN+i,j C

m,s(l)
2,kN+i,j ]

iteratively using linearized points col{x
(l)
1m,kN+i, x

(l)
2,kN+i},

(l = 0, 1, · · · , L, L ≥ 1), which are obtained from the initial

state prediction and the state estimation of every iteration

process. The iteration termination decision block, acting as

the feedback control block, is used to make a decision about

whether the state estimation result feedbacks to the coefficient

matrix linearization block to reconstruct the coefficient matrix.

It is the basis of iterative optimization and is vital to the filter

design.

Remark 5: As shown in Fig. 2 the proposed IMSF is a
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joint optimization method. The coefficient matrix linearization

and the state estimation are unified in an iterative optimisation

framework. The state estimation via the l-th iteration is utilized

as the linearized points in determining [C
m,s(l)
1,kN+i,j C

m,s(l)
2,kN+i,j ]

for the (l + 1)-th iteration, and such iteration brings out

the close loop in data processing. In the views of feedback

control, such resultant close loop is helpful in obtaining better

accuracy.

The iteration procedure of the IMSF is given in Table 1.

TABLE I
CALCULATION STEPS OF THE IMSF SCHEME

Step 1.Prediction: Compute x̂1m,kN+i|kN−1, x̂2,kN+i|kN−1,

ẑkN+i|kN−1,nkN+i
, and P

p(i,i)
k

by (18), (21)-(23), respectively.

Step 2. Coefficient matrix linearization: Determine the linearised

point col{x
(l)
1m,kN+i

, x
(l)
2,kN+i

},

and calculate matrix [C
m,s(l)
1,kN+i,j

C
m,s(l)
2,kN+i,j

].

Step 3. Filter gain: Compute the filter gain K
(i,i)
k

by (25).

Step 4. Estimation: Update the state estimation x̂
(l)

1m,kN+i|kN+i
,

x̂
(l)

2,kN+i|kN+i
, and P

e(i,i)(l)
k

by (19), (20), and (24), respectively.

Step 5. Iteration terminate decision: Compute the relative
estimation error by (28).
If (28) holds, go to Step 6.Else let

col{x
(l+1)
1m,kN+i

, x
(l+1)
2,kN+i

} =col{x̂l
1m,kN+i|kN+i

, x̂l
2,kN+i|kN+i

},

and go to Step 2 while l = l + 1.
Step 6. Output: Output the state estimation

x̂1m,kN+i|kN+i = x̂l
1m,kN+i|kN+i

,

x̂2,kN+i|kN+i = x̂l
2,kN+i|kN+i

,

and the covariance estimation P
e(i,i)
k

= P
e(i,i)
k

.

IV. SIMULATION RESULTS

The simulation considers a scenario of two non-

maneuvering targets in the ground coordinates with an average

false measurement density of 400 points per dwell [9]. The

parameters in (1)-(4) are

A11 =

[
1 1
0 1

]

⊗ I2,Γ11 = [0.5, 1]T , B11 = O4×1,

A12 = diag{F1, F2},Γ12 = Γ11, B12 = O4×1,

F1 =

[
cos(2π/300) sin(2π/150)
−sin(2π/300) cos(2π/150)

]

,

F2 =

[
cos(2π/150) sin(2π/300)
−sin(2π/150) cos(2π/300)

]

,

Q11 = Q12 = diag{7.830× 10−6, 1.303× 10−6,

1.491× 10−12, 1.118× 10−14},

R = diag{25, 10−6, 9× 10−6}.

Independent multi-path propagation is assumed via EE,

EF , FE and FF modes, with initial ionospheric heights

set as hE = 100km and hF = 220km. The probability of

target detection for each propagation mode is 0.4. The gate

probability is PG = 0.971, i.e., the tracking gates size is

γ = 16. The revisit period is T = 10s. The initial values
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of target state and error covariance are

x11(0) = [1100, 0.15, 1.46528, 8.72× 10−5]T ,

x12(0) = [2500, 0.13, 1.312865, 6.37× 10−5]T ,

P11(0) = diag{25, 1× 10−6, 9× 10−6, 4.5× 10−8},

P12(0) = diag{16, 1× 10−6, 9× 10−6, 5.6× 10−8},

x2(0) = [100, 220]T , Q2 = 16.

Since all the existing OTHR based tracking methods just

work in the case that the ionospheric heights are given, we

compare the proposed IMSF (without knowing the ionospheric

heights) with the well-known MPDA (with knowing the iono-

spheric heights). As shown in Figs. 3-4, our IMSF is almost

as accurate as the MPDA, this is because though the prior

information about the ionospheric heights is not known in our

IMSF, its updating model is established which compensates

the missing of information about the ionospheric heights. As

shown in Figs. 5-6, the ionospheric heights can be estimated

by our IMSF.

V. CONCLUSION

In this paper, we present the multi-rate joint estimation

problem of target state and ionosphere state without the help

of ionosondes. The state equations and observation equation

have random coefficient matrices (RCM) due to the associ-

ation uncertainty. The multi-rate state filter in the LMMSE

sense is derived according to the orthogonality principle in

the linear case and further extended to the non-linear case

via the iterative optimization of joint state estimation and

parameter identification (the linearized measurement matrix).

A numerical example shows the effectiveness of the proposed

filter.
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PROOF OF THEOREM. 1

According to the orthogonality principle, the LMMSE filter

has the following expression:

x̂e
k = x̂p

k +Kk

(

zk − ẑk|k−1

)

,

where ẑk|k−1 = E
{
zk|zj , j < k

}
. Noting E{vk} = 0, and

vk is independent of Zk−1, we substitute the definition ofx̂p
k

into the definition of ẑk|k−1 and hence we have

ẑk|k−1 = E
{

Ckxk + vk
∣
∣Zk−1

}

= CkE
{

xk

∣
∣Zk−1

}

+ E
{

vk
∣
∣Zk−1

}

= Ckx̂
p
k.

Expanding the above equation into its sub-block form, we have

(22).

By noting that E{wk} = 0 and wk−1 is independent of

Zk−1, utilizing the definition x̂p
k = E{xk|Z

k} and (14), we

have

ˆ̄xp
k = E

{
Axk−1 +Buk−1 + Γwk−1

}

= AE
{

xk−1|Z
k−1

}

+BE
{

uk−1|Z
k−1

}

+E
{

Γwk−1|Z
k−1

}

= Ax̂e
k−1 +Buk−1.

Based on this equation and the definition x̂p
k = E{xk|Z

k},

we get (18) and (21).

According to the expression of x̂e
k and (18), we get (19)

and (20).

According to the definition of P p
k and P e

k, we have

P p
k = E

{(
Ax̃e

k−1 + Γwk−1

)
(·)

T
}

= AP e
k−1 + ΓQ

k−1
ΓT ,

P e
k = E

{

(xk − x̂p
k −Kk (Ckx̃

p
k + vk)) (·)

T
}

= E
{

((I −KkCk) x̃
p
k −Kkvk) (·)

T
}

= (I −KkCk)P
p
k (I −KkCk)

T
+KkRkK

T
k .

Based on the special structure of Kk, P p
k and P e

k can be

rewritten in block style as (23)-(24).

The LMMSE performance index is

min
K

k

E
{

(xk − x̂e
k)

T
(·)

}

= min
K

k

N+1∑

i=1

E

{(

x
(i)
k − x̂

e(i)
k

)T

(·)

}

=

N+1∑

i=1

min
Ki

k

{

E

{(

x
(i)
k − x̂

e(i)
k

)T

(·)

}}

.

Thus, minimizing the trace of the augmented state estimate

error covariance matrix is equivalent to minimizing the original

state estimate error. In other words, the LMMSE estimate

of the lifted system with causality constraint is equivalent to

the LMMSE estimate of the original multi-rate system. The

augmented LMMSE estimate leads to an optimal estimate for

each state.

On account of the causality constraint of the gain matrix, K̄k

is a non-free matrix containing large quantities of zero blocks.

To solve the gain matrix, denote the causality constraint matrix

Mi = [Iim, Oim×(N−i)m]. The filter gain Ki
k is derived in two

cases.

Case 1: i ≤ N − 1

x̂
e(i)
k = x̂

p(i)
k +

[

Ki,1
k , · · · ,Ki,i

k , 0, · · · , 0
]

[zk − Ckx̂
p
k]

= x̂
p(i)
k +

[

Ki,1
k , · · · ,Ki,i

k

]

︸ ︷︷ ︸

Ki
k

Mi [zk − Ckx̂
p
k]

= x̂
p(i)
k +Ki

k

[

z
(i)
k − C

(i)
k x̂p

k

]

,
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with

z
(i)
k = Miz̄k = col{zkN , · · · , zkN+i+1},

C
(i)
k = MiC̄k =

[
Ii ⊗ C1,k Oi×(N−i) ⊗ C1,k 1i ⊗ C2,k

]
.

Up to this point, the problem has been transformed into

calculating Ki
k, an unconstrained parameter matrix. Utilizing

the orthogonal principle, it will be derived that

Ki
k = cov

(

x
(i)
k − x̂

p(i)
k , z

(i)
k − C

(i)
k x̂p

k

)

︸ ︷︷ ︸

Ui
k

×

cov−1(z
(i)
k − C

(i)
k x̂p

k, z
(i)
k − C

(i)
k x̂p

k)
︸ ︷︷ ︸

(V i
k
)−1

,

U
(i)
k = E

{

x̂
p(i)
k

(

C
(i)
k x̂p

k + vik

)T
}

= E
{

x̂
p(i)
k (x̂p

k)
T
}(

C
(i)
k

)T

=
[

P
p(i,1)
k P

p(i,2)
k · · ·P

p(i,i)
k

]

CT
1,k

+1Ti ⊗ P
p(i,N+1)
k CT

2,k,

V
(i)
k = E

{(

C
(i)
k x̂p

k + vik

)

(·)
T
}

= C
(i)
k P p

k

(

C
(i)
k

)T

+R
(i)
k ,

with

v
(i)
k = col{vkN , · · · , vkN+i−1},

R
(i)
k = diag{RkN , · · · , RkN+i−1}.

Case 2: i = N,N + 1
By the fact that Ki

k is not constrained , based on the orthogonal

principle, we immediately have K
(i)
k = U i

k

(

V
(i)
k

)−1

, where

U
(i)
k =

[

P
p(i,1)
k · · ·P

p(i,N)
k

]

CT
1,k+1TN⊗P

p(i,N+1)
k CT

2,k, V
i
k =

CkP
p
kC

T
k +R

(i)
k , i.e., (25).
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