
Gaussian Mixture Multiple-Model Multi-Bernoulli

Filters for Nonlinear Models Via Unscented

Transforms

Tongyang Jiang∗†, Meiqin Liu∗†, Xie Wang†, and Senlin Zhang†

∗State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P.R. China
†College of Electrical Engineering, Zhejiang University, Hangzhou 310027, P.R. China

Email: {jiangtongyang,liumeiqin,wangxiek,slzhang}@zju.edu.cn

Abstract—The multiple-model multi-Bernoulli (MM-MB) filter
is a new attractive approach for estimating multiple maneuvering
targets in the presence of clutter, missed detection and data
association uncertainty. In this paper, we extend the Gaussian
Mixture (GM) MM-MB filter to nonlinear models by using
unscented transform techniques. Moreover, in order to improve
the robustness and numerical stability of the unscented Kalman
(UK) GM-MM-MB filtering algorithm, we propose the square-
root UK (SUK) GM implementation of the MM-MB filter for
nonlinear models. A numerical example is presented to verify
the effectiveness of the UK-GM-MM-MB and SUK-GM-MM-
MB filtering approaches. Simulation results also show that the
SUK-GM-MM-MB filtering approach produces the same filtering
accuracy as the UK-GM-MM-MB filtering approach.

I. INTRODUCTION

Random finite set (RFS) based multi-target tracking ap-

proaches have attracted more attention in recent years. The

RFS-based approach treats the multi-target states and measure-

ments as RFSs, and jointly estimates the number of targets

and their states from the measurements. With RFS models,

Mahler has proposed the optimal multi-target Bayes filter that

propagates the posterior multi-target density recursively in

time [1],[2]. However, since the optimal multi-target Bayes

filter is generally intractable, some approximated approaches

have been proposed, such as the probability hypothesis density

(PHD) based on the first order moment approximation of

multi-target density [1], the cardinalized PHD (CPHD) filter

based on the moment and cardinality approximations [3],

and multi-target multi-Bernoulli (MeMBer) filter based on

density approximations [2]. Since the Mahler’s MeMBer filter

overestimates the number of target, Vo improved the MeMBer

filter and proposed a new version of the MeMBer filter called

the cardinality balanced (CB) MeMBer (CBMeMBer) filter

which has an unbiased estimation in the number of targets

[4]. The PHD, CPHD, and CBMeMBer filters have been

implemented by using Gaussian mixture (GM) and sequential

Monte Carlo (SMC) techniques [4],[5],[6],[7],[8]. In the SMC

implementation, the CBMeMBer filter has a reliable and

inexpensive extraction of target states, since it does not need

an extra clustering algorithm for extracting target states [5].

In the GM implementation, the CBMeMBer filter shows the

similar filtering performance to the PHD filter, and has a

lower computation complexity than the CPHD filter [4]. The

CBMeMber filter will be treated as the multi-Bernoulli (MB)

filter throughout this paper.

For maneuvering target tracking, the multiple-model (MM)

(or jump Markov system model) approach has proven to be an

effective method [9]. By integrating the MB filter with MM

approach, the MM-MB filter for maneuvering targets has been

proposed in [10],[11]. The GM implementation of MM-MB

filter for linear Gaussian models and the SMC implementation

of MM-MB filter for nonlinear models were also proposed in

[10],[11]. In target tracking, nonlinear models are commonly

used, such as radar and sonar measurements are nonlinear

[12]. Although the SMC-MM-MB filter can handle nonlinear

models, it still has some disadvantages. Firstly, similar to the

MM particle filter [13], the number of particles is proportional

to the model probability, if the model probability is very

low, only a small number of particles persists in the model.

This may cause filtering divergence. Secondly, although the

resampling step can reduce the degeneracy problem, it also

causes the loss of diversity among the particles, as the particles

after resampling step contain many repeated points. This

phenomenon will be severe if the process noise is small.

One solution to these problems is to increase the number of

particles. However, a large number of particles means a large

amount of calculation.

The GM-MM-MB filter has a close-form solution under

assumptions of linear Gaussian models. However, the GM-

MM-MB filter does not directly accommodate to nonlinear

models. In addition, at present there is no closed form solution

to GM-MM-MB filter for nonlinear models. Therefore, in this

paper we extend the GM-MM-MB filter to nonlinear models

by using unscented transforms [14]. Moreover, in order to im-

prove the robustness and numerical stability of the unscented

Kalman (UK) GM-MM-MB filter for nonlinear models, we

propose the square-root UK (SUK) GM implementation of the

MM-MB filter for nonlinear models. A numerical example is

also presented to compare the UK-GM-MM-MB and SUK-

GM-MM-MB filtering approach with the existing SMC-MM-

MB filtering approach.

The rest of this paper is organized as follows. Section II

provides the background on the MM-MB filter. The detailed

description of the UK-GM-MM-MB and SUK-GM-MM-MB

filtering approaches for nonlinear models are provided in
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Section III. A numerical example is presented in Section IV.

Finally, the conclusion is drawn in Section V.

II. THE MM-MB FILTER

The MM-MB filter has been proposed in [10],[11]. There

is a little difference between [10] and [11]. In paper [11], the

authors added an mixing stage before the predicted step. In

this section we omit the mixing stage and adopt the MM-MB

filter proposed by [10]. Here, we summarize the MM-MB filter

as follows.

Prediction: If at time k−1, the posterior multi-target density

πk−1 = {(r(i)k−1, p
(i)
k−1(xk−1, sk−1))}Mk−1

i=1 (1)

is given, where r
(i)
k−1 denotes the existence probability of

the ith hypothesized track, p
(i)
k−1(·) denotes the probability

density of the ith hypothesized track, Mk−1 is the number of

hypothesized tracks, sk−1 is the model variable at time k− 1,

then the predicted multi-target density is described by

πk|k−1 ={(r(i)
P,k|k−1, p

(i)
P,k|k−1(xk, sk))}Mk−1

i=1 ∪
{(r(i)Γ,k, p

(i)
Γ,k(xk, sk))}MΓ,k

i=1

(2)

where,

r
(i)
P,k|k−1 = r

(i)
k−1〈p

(i)
k−1(xk−1, sk−1), pS,k(xk−1, sk−1)〉 (3)

p
(i)
P,k|k−1(xk, sk) =

〈
fk|k−1(xk|xk−1, sk)tk|k−1(sk|sk−1),

p
(i)
k−1(xk−1, sk−1)pS,k(xk−1, sk−1)

〉

〈
p
(i)
k−1(xk−1, sk−1), pS,k(xk−1, sk)

〉

(4)

〈·, ·〉 is the inner product defined between two real-valued func-

tions α and β by 〈α, β〉 =
∫
α(x)β(x)dx (or

∑∞
i=0 α(i)β(i),

when α and β are sequences), fk|k−1(·|xk−1, sk) denotes

a single target transition density conditioned on model sk,

tk|k−1(·|·) is the motion transition probability, pS,k(xk, sk) is

the existence probability of a target given state xk conditioned

on model sk, and {(r(i)Γ,k, p
(i)
Γ,k(xk, sk))}MΓ,k

i=1 are the parame-

ters of birth targets at time k.

Update: If at time k, the predicted multi-target density is

πk|k−1 = {(r(i)
k|k−1, p

(i)
k|k−1(xk, sk))}Mk|k−1

i=1 (5)

then the posterior multi-target density is approximated by

πk ={(r(i)L,k, p
(i)
L,k(xk, sk))}Mk|k−1

i=1 ∪
{(rU,k(zk), pU,k(xk, sk; zk))}zk∈Zk

(6)

where

r
(i)
L,k = r

(i)
k|k−1

1−
〈
p
(i)
k|k−1(xk, sk), pD,k(xk, sk)

〉

1− r
(i)
k|k−1

〈
p
(i)
k|k−1(xk, sk), pD,k(xk, sk)

〉 (7)

p
(i)
L,k(xk, sk) =

p
(i)
k|k−1(xk, sk)

1− pD,k(xk, sk)

1−
〈
p
(i)
k|k−1(xk, sk), pD,k(xk, sk)

〉
(8)

rU,k(zk) =

∑Mk|k−1

i=1

r
(i)

k|k−1
(1−r

(i)

k|k−1
)〈p

(i)

k|k−1
(xk,sk),ψk,z(xk,sk)〉

(1−r
(i)

k|k−1
〈p

(i)

k|k−1
(xk,sk),pD,k(xk,sk)〉)2

κk(zk) +
∑Mk|k−1

i=1

r
(i)

k|k−1
〈p

(i)

k|k−1
(xk,sk),ψk,z(xk,sk)〉

1−r
(i)

k|k−1
〈p

(i)

k|k−1
(xk,sk),pD,k(xk,sk)〉

(9)

pU,k(xk, sk; zk) =

∑Mk|k−1

i=1

r
(i)

k|k−1

1−r
(i)

k|k−1

p
(i)
k|k−1(xk, sk)ψk,z(xk, sk)

∑Mk|k−1

i=1

r
(i)

k|k−1

1−r
(i)

k|k−1

〈p(i)
k|k−1(xk, sk), ψk,z(xk, sk)〉

(10)

ψk,z(xk, sk) = gk(zk|xk, sk)pD,k(xk, sk) (11)

where Zk is the measurement set at time k, gk(·|xk, sk) is the

single measurement likelihood given state xk conditioned on

model sk at time k, pD,k(xk, sk) is the detection probability

conditioned on model sk at time k, and κk(·) is the clutter

intensity at time k.

From the recursive equations of the MM-MB filter, we can

see that the MM-MB filter is similar to the MB filter. The

key idea of the MM-MB filter is that the model variable is

augmented for the recursions of the MB filter.

III. THE GM-MM-MB FILTER FOR NONLINEAR MODELS

Although the GM-MM-MB filter has a closed form solution

for linear Gaussian models, it does not accommodate to

nonlinear models. In single target tracking, the UK filter is

an attractive approach for nonlinear filtering [14]. Hence, in

this section we propose the GM-MM-MB filter for nonlinear

models by using unscented transform techniques.

A. The UK-GM-MM-MB Filtering Approach

Suppose the motion and measurement model of each target

for a given model are nonlinear, which are described by

xk = fk(xk−1, sk) + wk−1(sk) (12)

zk = hk(xk, sk) + vk(sk) (13)

where fk(·) and hk(·) are the known nonlinear functions,

wk−1(sk) and vk(sk) are independent zero mean Gaussian

process noise and measurement noise with known covariances

Qk−1(sk) and Rk(sk), respectively. The survival probability

and detection probability are assumed to be state independent,

i.e. pS,k(xk−1, sk−1) = pS,k(sk−1), pD,k(xk, sk) = pD,k(sk).
Based on the unscented transform techniques and the GM-

MM-MB filter, the UK-GM-MM-MB filtering approach can

be obtained.

Prediction: If at time k−1, the posterior multi-target density

is given by (1), and each probability density p
(i)
k−1(xk−1, sk−1)

is the form of GM, i.e.

p
(i)
k−1(xk−1, sk−1) =

J
(i)
k−1

(sk−1)
∑

j=1

w
(i,j)
k−1 (sk−1)N (xk−1;m

(i,j)
k−1(sk−1), P

(i,j)
k−1 (sk−1))

(14)
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then the predicted multi-target density (2) can be computed as

follows:

r
(i)
P,k|k−1 = r

(i)
k−1

∑

sk−1

J
(i)
k−1(sk−1)
∑

j=1

w
(i,j)
k−1 (sk−1)pS,k(sk−1),

(15)

p
(i)
P,k|k−1(xk, sk) =

∑

sk−1

J
(i)
k−1(sk−1)
∑

j=1

w
(i,j)
P,k|k−1(sk, sk−1)×

N (xk;m
(i,j)
P,k|k−1(sk, sk−1), P

(i,j)
P,k|k−1(sk, sk−1))

(16)

where

χ
(i,j)
k−1(sk−1) =

[

m
(i,j)
k−1(sk−1) m

(i,j)
k−1(sk−1) + γ

[
B

(i,j)
k−1 (sk−1)

]

l

m
(i,j)
k−1(sk−1)− γ

[
B

(i,j)
k−1 (sk−1)

]

l

]

, l = 1, · · · , n
(17)

γ =
√
n+ λ (18)

P
(i,j)
k−1 (sk−1) = B

(i,j)
k−1 (sk−1)(B

(i,j)
k−1 (sk−1))

T (19)

X (i,j)
l,k|k−1(sk, sk−1) = fk(χ

(i,j)
l,k−1(sk−1), sk), l = 0, · · · , 2n

(20)

m
(i,j)
P,k|k−1(sk, sk−1) =

2n∑

l=0

W a(l)X (i,j)
l,k|k−1(sk, sk−1) (21)

w
(i,j)
P,k|k−1(sk, sk−1) =

w
(i,j)
k−1 (sk−1)pS,k(sk−1)tk|k−1(sk|sk−1)

∑

sk−1

∑J
(i)
k−1(sk−1)

j=1 w
(i,j)
k−1 (sk−1)pS,k(sk−1)

(22)

P
(i,j)
P,k|k−1(sk, sk−1) =

2n∑

l=0

W c(l)(m
(i,j)
P,k|k−1(sk, sk−1)−X (i,j)

l,k|k−1(sk, sk−1))×

(m
(i,j)
P,k|k−1(sk, sk−1)−X (i,j)

l,k|k−1(sk, sk−1))
T +Qk−1(sk)

(23)

W a =

[

λ

(n+ λ)
,

1

2(n+ λ)
, · · · , 1

2(n+ λ)
︸ ︷︷ ︸

2n

]

(24)

W c =

[

λ

(n+ λ)
+ (1 − α2 + β),

1

2(n+ λ)
, · · · , 1

2(n+ λ)
︸ ︷︷ ︸

2n

]

(25)

n is the dimension of the state m
(i,j)
k−1(sk−1), λ, α, and β are

the scaling parameters [15], and [·]l denotes the lth column of

the matrix. {(r(i)Γ,k, p
(i)
Γ,k(xk, sk))}MΓ,k

i=1 are parameters of birth

targets, and p
(i)
Γ,k(xk, sk) is given by

p
(i)
Γ,k(xk, sk) =

t
(i)
Γ,k(sk)

J
(i)
Γ,k

(sk)
∑

j=1

w
(i,j)
Γ,k (sk)N (xk;m

(i,j)
Γ,k (sk), P

(i,j)
Γ,k (sk))

(26)

t
(i)
Γ,k(·) is the probability distribution of the models for given

birth targets, and w
(i,j)
Γ,k (·), m

(i,j)
Γ,k (·), P

(i,j)
Γ,k (·) are given pa-

rameters.

Update: If at time k, the predicted multi-target density (5) is

given and each probability p
(i)
k|k−1(xk, sk) is the form of GM,

i.e.

p
(i)
k|k−1(xk, sk) =

J
(i)

k|k−1
(sk)

∑

j=1

w
(i,j)
k|k−1(sk)N (xk;m

(i,j)
k|k−1(sk), P

(i,j)
k|k−1(sk)),

(27)

then the updated density (6) can be computed as follows:

The legacy track components are

r
(i)
L,k = r

(i)
k|k−1

1− ̺
(i)
L,k

1− r
(i)
k|k−1̺

(i)
L,k

(28)

p
(i)
L,k(xk, sk) =

J
(i)

k|k−1
(sk)

∑

j=1

w
(i,j)
L,k (sk)N (xk ;m

(i,j)
k|k−1(sk), P

(i,j)
k|k−1(sk))

(29)

where

̺
(i)
L,k =

∑

sk

J
(i)

k|k−1
(sk)

∑

j=1

w
(i,j)
k|k−1(sk)pD,k(sk) (30)

w
(i,j)
L,k (sk) =

w
(i,j)
k|k−1(sk)(1− pD,k(sk))

1− ̺
(i)
L,k

(31)

The measurement-updated track components are

rU,k(zk) =

∑Mk|k−1

i=1

r
(i)

k|k−1
(1−r

(i)

k|k−1
)̺

(i)
U,k

(zk)

(1−r
(i)

k|k−1
̺
(i)
L,k

)2

κk(zk) +
∑Mk|k−1

i=1

r
(i)

k|k−1
̺
(i)
U,k

(zk)

1−r
(i)

k|k−1
̺
(i)
L,k

(32)

pU,k(xk, sk; zk) =

Mk|k−1
∑

i=1

J
(i)

k|k−1
(sk)

∑

j=1

w
(i,j)
U,k (sk; zk)×

N (xk,m
(i,j)
U,k (sk; zk), P

(i,j)
U,k (sk; zk))

(33)

where

̺
(i)
U,k(zk) =

∑

sk

J
(i)

k|k−1
(sk)

∑

j=1

w
(i,j)
k|k−1(sk)pD,k(sk)q

(i,j)
k (sk; zk)

(34)

χ
(i,j)
k|k−1(sk) =

[

m
(i,j)
k|k−1(sk) m

(i,j)
k|k−1(sk) + γ

[
B

(i,j)
k|k−1(sk)

]

l

m
(i,j)
k|k−1(sk)− γ

[
B

(i,j)
k|k−1(sk)

]

l

]

, l = 1, · · · , n
(35)

P
(i,j)
k|k−1(sk) = B

(i,j)
k|k−1(sk)(B

(i,j)
k|k−1(sk))

T (36)

z
(i,j)
l,k|k−1(sk) = hk(χ

(i,j)
l,k|k−1(sk), sk), l = 0, 1, · · · , 2n (37)
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η
(i,j)
U,k|k−1(sk) =

2n∑

l=0

W a(l)z
(i,j)
l,k|k−1(sk) (38)

q
(i,j)
k (sk; zk) = N (zk; η

(i,j)
U,k|k−1(sk), S

(i,j)
U,k (sk)) (39)

S
(i,j)
U,k (sk) =

2n∑

l=0

W c(l)(η
(i,j)
U,k|k−1(sk)− z

(i,j)
l,k|k−1(sk))×

(η
(i,j)
U,k|k−1(sk)− z

(i,j)
l,k|k−1(sk))

T +Rk(sk)

(40)

G
(i,j)
U,k (sk) =

2n∑

l=0

W c(l)(m
(i,j)
k|k−1 − χ

(i,j)
l,k|k−1(sk))×

(η
(i,j)
U,k|k−1(sk)− z

(i,j)
l,k|k−1(sk))

T

(41)

K
(i,j)
U,k (sk) = G

(i,j)
U,k (sk)

[

S
(i,j)
U,k (sk)

]−1

(42)

w
(i,j)
U,k (sk; zk) =

r
(i)

k|k−1

1−r
(i)

k|k−1

w
(i,j)
k|k−1(sk)q

(i,j)
k (sk; zk)pD,k(sk)

∑Mk|k−1

i=1

r
(i)

k|k−1

1−r
(i)

k|k−1

̺
(i)
U,k(zk)

(43)

m
(i,j)
U,k (sk; zk) = m

(i,j)
k|k−1(sk) +K

(i,j)
U,k (sk)(zk − η

(i,j)
U,k|k−1(sk))

(44)

P
(i,j)
U,k (sk; zk) =

P
(i,j)
k|k−1(sk)−K

(i,j)
U,k (sk)S

(i,j)
U,k (sk)(K

(i,j)
U,k (sk))

T
(45)

Multi-target state extraction: extract multi-target states is the

same as that of the GM-MM-MB filter, for more details see

[10].

B. The SUK-GM-MM-MB Filtering Approach

From the UK-GM-MM-MB filter recursions, we can see that

while designing the sigma points for each hypothesized track,

we should compute the square-root of state covariance ma-

trices. Hence the state covariance matrices should be positive

definite. However, due to the error caused by the arithmetic

operation performed on digital computers, the state covariance

matrixes may not be positive definite. This phenomenon may

cause numerical problems. To improve the robustness and

numerical stability, inspired by [16] we propose the SUK-GM

implementation of the MM-MB filter for nonlinear models.

While propagating the MB parameters, the SUK-GM-MM-MB

filtering approach directly propagates square-root of the state

covariances. So this can avoid the square-rooting operations.

The SUK-GM-MM-MB filtering approach is given as follows.

Prediction: If at time k−1, the posterior multi-target density

is given by (1), and each probability density p
(i)
k−1(xk−1, sk−1)

is described by

p
(i)
k−1(xk−1, sk−1) =

J
(i)
k−1(sk−1)
∑

j=1

w
(i,j)
k−1 (sk−1)N (xk−1;

m
(i,j)
k−1(sk−1), C

(i,j)
k−1 (sk−1)(C

(i,j)
k−1 (sk−1))

T )
(46)

then the predicted multi-target density (2) can be computed as

follows: compute r
(i)
P,k|k−1 according to (15)

p
(i)
P,k|k−1(xk, sk) =

∑

sk−1

J
(i)
k−1

(sk−1)
∑

j=1

w
(i,j)
P,k|k−1(sk, sk−1)×

N (xk;m
(i,j)
P,k|k−1(sk, sk−1),

C
(i,j)
P,k|k−1(sk, sk−1)(C

(i,j)
P,k|k−1(sk, sk−1))

T )
(47)

χ
(i,j)
k−1(sk−1) =

[

m
(i,j)
k−1(sk−1) m

(i,j)
k−1(sk−1) + γ

[
C

(i,j)
k−1 (sk−1)

]

l

m
(i,j)
k−1(sk−1)− γ

[
C

(i,j)
k−1 (sk−1)

]

l

]

, l = 1, · · · , n
(48)

compute γ, X (i,j)
l,k|k−1(sk, sk−1), m

(i,j)
P,k|k−1(sk, sk−1), and

w
(i,j)
P,k|k−1(sk, sk−1) according to (18), (20), (21) and (22),

respectively.

X ∗(i,j)
k|k−1(sk, sk−1) =
[√

W c(0)
(
X (i,j)

0,k|k−1(sk, sk−1)−m
(i,j)
P,k|k−1(sk, sk−1)

)
,

√

W c(1)
(
X (i,j)

1,k|k−1(sk, sk−1)−m
(i,j)
P,k|k−1(sk, sk−1)

)
,

· · · ,
√

W c(2n)
(
X (i,j)

2n,k|k−1(sk, sk−1)−m
(i,j)
P,k|k−1(sk, sk−1)

)]

(49)

C
(i,j)
P,k|k−1(sk, sk−1) = Tria([X ∗(i,j)

k|k−1(sk, sk−1), CQ,k−1(sk−1)])
(50)

Qk−1(sk−1) = CQ,k−1(sk−1)(CQ,k−1(sk−1))
T (51)

”Tria” denotes a general triangularization algorithm. For

example, S = Tria(A), where S is the lower triangular

matrix. Let R be an upper triangular matrix obtained from

QR decomposition on AT , then S = RT [17].

Update: If at time k, the predicted multi-target density (5)

is given, and each probability p
(i)
k|k−1(xk, sk) is described by

p
(i)
k|k−1(xk, sk) =

J
(i)

k|k−1
(sk)

∑

j=1

w
(i,j)
k|k−1(sk)N (xk;m

(i,j)
k|k−1(sk),

C
(i,j)
k|k−1(sk)(C

(i,j)
k|k−1(sk))

T ),
(52)

then the updated density (6) can be computed as follows:

The legacy track components: compute ̺
(i)
L,k and r

(i)
L,k ac-

cording to (30) and (28), respectively.

p
(i)
L,k(xk, sk) =

J
(i)

k|k−1
(sk)

∑

j=1

w
(i,j)
L,k (sk)N (xk;m

(i,j)
k|k−1(sk),

C
(i,j)
k|k−1(sk)(C

(i,j)
k|k−1(sk))

T )

(53)

The measurement-updated track components: compute
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rU,k(zk) according to (32)

pU,k(xk, sk; zk) =

Mk|k−1
∑

i=1

J
(i)

k|k−1
(sk)

∑

j=1

w
(i,j)
U,k (sk; zk)×

N (xk,m
(i,j)
U,k (sk; zk), C

(i,j)
U,k (sk; zk)(C

(i,j)
U,k (sk; zk))

T )

(54)

where

χ
(i,j)
k|k−1(sk) =

[

m
(i,j)
k|k−1(sk) m

(i,j)
k|k−1(sk) + γ[C

(i,j)
k|k−1(sk)]l

m
(i,j)
k−1(sk−1)− γ[C

(i,j)
k|k−1(sk)]l

]

, l = 1, · · · , n
(55)

̺
(i)
U,k(zk), z

(i,j)
l,k|k−1(sk) and η

(i,j)
U,k|k−1(sk) are computed accord-

ing to (34),(37) and (38), respectively.

Z(i,j)
U,k|k−1(sk) =

[√

W c(0)
(
z
(i,j)
0,k|k−1(sk)− η

(i,j)
U,k|k−1(sk)

)
,

√

W c(1)
(
z
(i,j)
1,k|k−1(sk)− η

(i,j)
U,k|k−1(sk)

)
,

· · · ,
√

W c(2n)
(
z
(i,j)
2n,k|k−1(sk)− η

(i,j)
U,k|k−1(sk)

)]

(56)

X (i,j)
U,k|k−1(sk) =

[√

W c(0)
(
χ
(i,j)
0,k|k−1(sk)−m

(i,j)
k|k−1(sk)

)
,

√

W c(1)
(
χ
(i,j)
1,k|k−1(sk)−m

(i,j)
k|k−1(sk)

)
,

· · · ,
√

W c(2n)
(
χ
(i,j)
2n,k|k−1(sk)−m

(i,j)
k|k−1(sk)

)]

(57)

Czz,k|k−1(sk) = Tria([Z(i,j)
U,k|k−1(sk), CR,k(sk)]) (58)

Rk(sk) = CR,k(sk)(CR,k(sk))
T (59)

S
(i,j)
U,k (sk) = Z(i,j)

U,k|k−1(sk)(Z
(i,j)
U,k|k−1(sk))

T (60)

G
(i,j)
U,k (sk) = X (i,j)

U,k|k−1(sk)(Z
(i,j)
U,k|k−1(sk))

T (61)

K
(i,j)
U,k (sk) = (G

(i,j)
U,k (sk)/(Czz,k|k−1(sk))

T )/Czz,k|k−1(sk)
(62)

q
(i,j)
k (sk; zk), w

(i,j)
U,k (sk; zk), m

(i,j)
U,k (sk; zk) are computed ac-

cording to (39), (43), and (44), respectively.

C
(i,j)
U,k (sk; zk) = Tria([X (i,j)

U,k|k−1(sk)−K
(i,j)
U,k (sk)×

Z(i,j)
U,k|k−1(sk),K

(i,j)
U,k (sk)CR,k(sk)])

(63)

From the above recursions we can see that, the SUK-GM-

MM-MB filtering approach directly propagates the square-root

of state covariances. So square-rooting operations are avoided.

This improves the robustness and numerical stability of the

UK-GM-MM-MB filtering approach.

IV. SIMULATION RESULTS

A. Simulation Scenario

Consider the noisy bearings and range measurements with

varying number of targets observed in clutter and missed

detection environments. The surveillance region size is [0, π]
rad × [0, 2000] m. A maximum of 10 maneuvering targets

appears in the scenario, and targets appear and terminate at a

  500
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  2000

30

60

90

120

150

180 0

Radius (m)
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Fig. 1. True target tracks in rθ plane (the start/end positions for each track
are denoted by ◦/△, and the sensor is denoted by �).

random time. The true target tracks are shown in Fig. 2. The

kinematic state of the target xk = [px,k, ṗx,k, py,k, ṗy,k, ωk]
T

consists of the position (px,k, py,k), velocity (ṗx,k, ṗy,k), and

turn rate ωk. For the coordinated turn (CT) model, if the turn

rate is not a constant, the CT model becomes a nonlinear one.

The CT model is described by [18]

xk = F (ωk−1)xk−1 + wk−1, (64)

The process noise wk−1 ∼ N (·; 0, Qk−1), and the matrices

F (ωk−1) and Qk−1 are given as follows

F (ωk−1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 sinωk−1T

ωk−1
0 − 1−cosωk−1T

ωk−1
0

0 cosωk−1T 0 − sinωk−1T 0

0
1−cosωk−1T

ωk−1
1

sinωk−1T

ωk−1
0

0 sinωk−1T 0 cosωk−1T 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(65)

Qk−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

T 3

3 q̃w
T 2

2 q̃w 0 0 0
T 2

2 q̃w T q̃w 0 0 0

0 0 T 3

3 q̃w
T 2

2 q̃w 0

0 0 T 2

2 q̃w T q̃w 0
0 0 0 0 T q̃ω

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(66)

where q̃w and q̃ω are related to the process noise intensities.

T = 1 s is the sampling period.

Two motion models are used: Model 1 is a CT model with

a known turn rate of 0 rad/s. Model 2 is a CT model with

an unknown turn rate. The standard deviations of the process

are q̃w = 0.25 m2/s3 and q̃ω = 0.04 rad2/s3 for motion 1 and

model 2. The transition probability matrix is set to

tk|k−1(sk|sk−1) =

[
0.6 0.4
0.4 0.6

]

, (67)

The measurement is the noisy bearing and range model [6],

which is described by

zk =

[

arctan
(

px,k−pSe,x

py,k−pSe,y

)

√
(px,k − pSe,x)2 + (py,k − pSe,y)2

]

+ vk, (68)
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where (pSe,x, pSe,y) = (0, 0) m is the position of the sensor,

The measurement noise vk follows a zero mean Gaussian

distribution with the known covariance Rk = diag{σθ, σr}2,

where σθ = 1 × (π/180) rad and σr = 5 m are the standard

deviation of measurements for bearing and range portions,

respectively.

The birth process is modeled as an MB-RFS [4],

which is given by πΓ,k = {(r(i)Γ,k, p
(i)
Γ,k(xk, sk))}4i=1

where r
(1)
Γ,k = r

(2)
Γ,k = 0.02, r

(3)
Γ,k = r

(4)
Γ,k = 0.03, and

p
(i)
Γ,k(xk, sk) = t

(i)
Γ,k(sk)N (xk;m

(i)
Γ,k(sk), P

(i)
Γ,k(sk)), where

t
(i)
Γ,k(sk) = [0.5, 0.5], m

(1)
Γ,k(sk) = [−1200, 0, 400, 0, 0]T ,

m
(2)
Γ,k(sk) = [−200, 0, 1050, 0, 0]T , m

(3)
Γ,k(sk) =

[300, 0, 800, 0, 0]T , m
(4)
Γ,k(sk) = [800, 0, 1600, 0, 0]T , and

P
(i)
Γ,k(sk) = diag{30, 30, 30, 30, 3× (π/180)}2.

The survival probability is pS,k = 0.99. The detection

probability is pD,k = 0.98. Clutter is modeled as a Poisson

RFS with intensity [6]

κk = λcV u(zk), (69)

where λc is the average clutter intensity, V is the volume of

the surveillance region, and u(·) is the uniform density over

the surveillance region. The clutter density is set to λc =
1.6× 10−3(rad m)

−1
(an average of 10 clutter measurements

per scan).

In the implementation of SUK-GM-MM-MB and UK-GM-

MM-MB filters for nonlinear models, pruning and merging

strategies are used to limit the number of hypothesized tracks

and GM components [4],[6], each hypothesized track is pruned

with a threshold of 10−4, and the maximum of hypothesized

tracks is 100. The pruning and merging threshold for GM

components are 10−5 and 4, respectively. The maximum

number of Gaussian components for each hypothesized track

is 100. The scaling parameters for unscented transform are set

to α = 1, β = 0, and λ = 2.

In this numerical example, we compare the UK-GM-MM-

MB and SUK-GM-MM-MB filtering approaches with the

existing SMC-MM-MB filter for nonlinear models. In the

implementation of the SMC-MM-MB filters, pruning of hy-

pothesized tracks is performed with a threshold of 10−4, too.

To compare the filtering performance of the SMC-MM-MB

filtering approach under different number of particles, two

kinds of particles are used. SMC-MM-MB1: a maximum of

Lmax = 10000 and a minimum of Lmin = 3000 particles

is imposed for each hypothesized track; SMC-MM-MB2: a

maximum of Lmax = 5000 and a minimum of Lmin = 1000
particles is imposed for each hypothesized track.

B. Metrics for Multi-Target Filtering

The optimal sub-pattern assignment (OSPA) metric [19] is

considered for evaluating the filtering performance, since it

can jointly capture difference in cardinality and individual

elements between two finite sets. For two arbitrary finite sets

X = {x1, · · · , xm} and Y = {y1, · · · , yn}, the OSPA metric

is defined as follows.
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Fig. 2. True tracks, measurements, and estimates in xy positions versus time
for the SUK-GM-MM-MB filtering approach.
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Fig. 3. Cardinality statistics versus time for (a) SUK-GM-MM-MB (b) UK-
GM-MM-MB (c) SMC-MM-MB1 (d) SMC-MM-MB2.

d̄(c)p (X,Y ) :=
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(
1
n

(

minπ∈Πn

∑m

i=1 d
(c)(xi, yπ(i)

)p + cp(n−m)
)) 1

p

,

m ≤ n

d̄(c)p (Y,X), m > n
0, m = n = 0

(70)

where d(c)(x, y) := min (c, ‖x− y‖), ‖·‖ is the Euclidean nor-

m, and Πn denotes the set of permutations on {1, 2, · · · , n}.

The OSPA metric can be decomposed into two components

each separately accounting for localization and cardinality

errors [19]. For p < ∞, the localization and cardinality errors
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are given respectively by

ē
(c)
p,loc(X,Y ) :=
⎧

⎨

⎩

(
1
n

(

minπ∈Πn

∑m

i=1 d
(c)(xi, yπ(i)

)p
)) 1

p

, m ≤ n

ē
(c)
p,loc(Y,X), m > n

(71)

ē
(c)
p,card(X,Y ) =

⎧

⎨

⎩

(
cp(n−m)

n

) 1
p

, m ≤ n

ē
(c)
p,card(Y,X), m > n

(72)

The order parameter p determines the sensitivity to outliers,

and the cut-off parameter c determines the relative weighting

of the penalties assigned to cardinality and localization errors,

for more details see [19]. In this paper, the parameters are set

to p = 2 and c = 200.

TABLE I
COMPARISON OF THE FILTERING ACCURACY

Algorithm
Time avg.
OSPA (m)

Time avg.
loc. error (m)

Time avg.
card. error (m)

SUK-GM-MB 32.7526 14.9246 20.8781

UK-GM-MB 32.7526 14.9246 20.8781

SMC-MB1 35.3897 15.8299 22.8230

SMC-MB2 46.1154 18.6798 32.4827

C. Monte Carlo Runs

To compare the filtering performance of these approaches

for nonlinear models, 200 Monte Carlo (MC) runs are per-

formed. In each MC simulation, the target trajectories are the

same, but measurements are independently generated. Fig. 2

plots true tracks, measurements, and estimates in xy positions

versus time for the SUK-GM-MM-MB filtering approach. It is

shown that the SUK-GM-MM-MB is able to estimate multi-

ple maneuvering targets’ states. Fig. 3 plots the cardinality

statistics. It is shown that the averages of the cardinality

statistics of the SUK-GM-MM-MB, UK-GM-MM-MB and

SMC-MM-MB1 converges to the true value, and the SMC-

MM-MB2 deviates from the true value. The OSPA distance is

plotted in Fig. 4. As shown in Fig. 4, the curves of the SUK-

GM-MM-MB and UK-GM-MM-MB are indistinguishable, the

filtering accuracy of SUK-GM-MM-MB and UK-GM-MM-

MB is slightly better than that of SMC-MM-MB1, and the

filtering accuracy of the SMC-MM-MB2 is the worst. The

localization and cardinality errors are plotted in Fig. 5. From

Fig. 5, the SUK-GM-MM-MB, UK-GM-MM-MB, and SMC-

MM-MB1 show almost the same filtering performance in both

localization and cardinality errors, and the filtering accuracy

of the SMC-MM-MB2 is the worst in both localization and

cardinality errors.

Table I gives the comparison of the filtering accuracy for

these approaches. From Table I we can see that the SUK-GM-

MM-MB shows exactly the same filtering accuracy as the UK-

GM-MB in the time-averaged OSPA distance, localization and

cardinality errors. The filtering accuracy of the SMC-MM-MB

depends on the number of particles. The filtering accuracy is

reduced when the number of particles is not enough. With the

increasement of the number of particles, the filtering accuracy

is improved. However, a large number of particles means

a large amount of calculation. This will limit the realtime

performance of the filtering approach. Overall, the SUK-

GM-MM-MB and UK-GM-MM-MB filtering approaches are

attractive approaches for nonlinear models.

Remark: For highly nonlinear models, the SMC-MM-MB

filter is an attractive approach. For example, in track-before-

detect (TBD) tracking, the measurement modes are highly

nonlinear, the SMC implementation is a good choice. Note

that the MCMC move step [20] can be applied to the SMC-

MM-MB filter to increase the particle diversity. In addition,

to reduce the number of particles, non-point particles, such as

box particles [21] can also be considered for the SMC-MM-

MB filter. However, these may be outside the scope of this

paper.
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V. CONCLUSION

In this paper, we propose the UK-GM implementation of

the MM-MB filter for nonlinear models. In order to improve

the robustness and numerical stability of the UK-GM-MM-MB

filtering approach, the SUK-GM implementation of the MM-

MB filter is presented. Simulation results demonstrate that the

proposed approaches are able to estimate multiple maneuver-

ing targets for nonlinear models, and SUK-GM-MM-MB and

UK-GM-MM-MB produce the identical estimates. Recently,

the labeled random finite set approaches [22],[23],[24] have

been proposed to improve the estimating accuracy, which can

also estimate targets’ tracks. Extension of labeled random

finite set approaches to MM will be considered in future work.
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