
Air Traffic Monitoring using

Datastream Analysis Techniques

Gereon Schueller ∗, Philip Schmiegelt ∗, Andreas Behrend †

∗Fraunhofer FKIE, Wachtberg, Germany, first.last@fkie.fraunhofer.de
†University of Bonn, Bonn, Germany, behrend@cs.uni-bonn.de

Abstract—The “AIrspace Monitoring System”
(AIMS) analyzes flight data streams with respect
to the occurrence of freely definable complex events
considered critical or at least relevant by its users. In
contrast to already existing tools which often focus on a
single task like flight delay detection, AIMS represents
a general approach to a comprehensive analysis of
aircraft movements, derived from transponder and/or
radar measurements. It has been developed for showing
the usefulness and feasibility of applying conventional
SQL queries for analyzing rapidly changing sensor
data. The key innovative feature of AIMS is that we
apply Magic Sets to incremental view maintenance
techniques in order to process data streams in a typical
real-time scenario.

I. Introduction

The continuous growth of traffic in air space challenges
existing monitoring systems for air traffic control. In fact,
there are still plenty of situations where anomalies or criti-
cal events are detected too late or remain undetected at all.
Many problems are caused by local deviations from flight
plans which may induce global effects to aircraft traffic.
One effect is a considerable number of close encounters
of planes in airspace occurring every day, as well as the
violation of no-fly zones.

The “AIrspace Monitoring System” (AIMS) [15] is a
prototype of a system for monitoring and analyzing lo-
cal and global air traffic. The aim of this system is the
anomaly detection on individual aircrafts movements.

Based on that, a global analysis is supported (e.g., criti-
cal encounters, zones with high flight density, airport jams).
To this end, consistent tracks of individual planes have
to be derived and complex event occurrences within these
track data have to be found in nearly real-time. Currently,
the system is able to monitor the complete German airspace,
i.e. there are measurements every 4 seconds with up to
2000 flights in peak times.

The key innovative feature of AIMS is the use of con-
tinuously evaluated SQL queries which are automatically
materialized and incrementally evaluated by the underly-
ing DBS. Using SQL queries as executable specifications
has the advantage of being able to easily extend the sys-
tem by additional criteria without having to re-program
large amounts of code. In order to continuously re-evaluate
the respective queries, data stream management systems
(DSMSs) such as STREAM [1] or Aurora [3] could be used.

However, DSMSs do not provide all capabilities that are
needed for a reliable in-depth analysis, like recovery con-
trol, multiuser access and processing of historical as well as
static context data. This is why our general research aim
is the development of incremental DBMS-based methods
for real-time gathering and monitoring of streams of track
data.

With respect to data stream management, the following
research questions are addressed by AIMS:

• Which type of continuous queries can be efficiently
evaluated in an incremental way using a DBMS?

• Up to which frequency/volume is it feasible to use an
incremental approach within a relational DBMS for
evaluating continuous queries?

• How can an efficient and transparent caching approach
be realized in this stream context?

In this article, we show how a commercial DBMS in com-
bination with intelligent rule-rewriting can be used to pro-
cess a stream of temporal geospatial data. The proposed
approach provides insights useful for the implementation
and optimization of related applications where geospatial
or sensor data streams have to be analyzed and monitored.
We also applied this method to the task of probabilistic
tracking [6], [17], where radar plots have to be assigned to
tracks, showing the general feasibility of our methods.

II. The AIMS System

A graphical representation of the architecture of AIMS
is shown in Fig. 1. AIMS consists of three main compo-
nents:

1) A feeder component which takes a geospatial data
stream as input and periodically pushes its data into
the database. This track feeder also continuously ac-
tivates the re-evaluation of the anomaly detection
views.

2) An Oracle server which stores the stream data in
regular intervals (every 4 seconds or less) and per-
forms the continuous evaluation of the user-defined
anomaly detection views.

3) A client program which contains a graphical user
interface and a cache component. The GUI shows the
positions of tracked aircrafts on an OpenStreetMap.
An in-memory database works as a cache and stores
the results of selected queries on the client side. This

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 1238

Feeder

Cleansing

Aggregation

Enrichment

DBMS

New

tracks

Static

domain

knowledge

View

history

Client

Cache

via

HSQLDB

User Interface

push

Anomaly detection

views

pullupdate

2000 tuples
every 4
seconds

pull
Recorded

track data

Netbeans Platform

HSQLDB

OpenStreetMap
Oracle Database 11g

Spring Framework

Oracle SQL*Loader

Map

Google

Earth

Table

Fig. 1: The architecture of AIMS

database forms the basis for a time-shift and video
recorder functionality.

The system works on pre-processed tracks which are com-
puted from radar data and transponder signals. The track-
ing algorithm calculates probabilistic values for a time-
series of inaccurate sensor data quantifying the likelihood
that a measurement belongs to the track of a moving ob-
ject or not. The resulting tracks and transponder signals
are then merged into a stream of highly accurate aircraft
positions. In this way, missed radar measurements, misde-
tections (clutter) and the assignment problem if multiple
objects are in the field of view are handled.

The resulting stream of timestamped position and ve-
locity data is periodically pushed into the DBS using the
feeder component. Every 4 seconds, new track data is pro-
vided and stored in a ’delta table’ containing just the
most recent track data. Its former content is moved to a
history table such that the complete track of each flight is
recorded. A sample output of our tracking algorithm may
look as follows:

time id lon lat alt vel . . .

19:20:43 34 51.12 7.05 4534 300.4 . . .
19:20:44 35 50.98 6.34 2324 240.3 . . .

. .

Questions to be continuously answered using SQL queries
are, e.g.:

• Which aircrafts are currently landing? Which aircrafts
are airborne?

• Which aircrafts approach a bad weather zone or are
over a certain region?

• Which aircrafts approach each other critically?
• Are there critical deviations from flight plans?
• What is the average number of landings for a user-

chosen airport?

The corresponding views are stored in and managed by the
underlying relational database system. The client of AIMS
provides a graphical user interface that allows the user to
select anomaly detection views from the database server

and to monitor their results. It also displays performance
measurements for each periodic query execution. All of the
above queries can be executed in less than 2 seconds which
is important because it is below the radar refreshment rate
of 4 seconds.

Another feature of the client is a “time-slider” function-
ality for reviewing the recent track history [16]. To this
end, the in-memory database system HSQLDB [10] is used
to store the most recent continuous query results and thus
allows for a rewind to and a replay from an arbitrary time
point in the past. For example, the development of critical
encounters could be comprehensively analyzed this way. In
addition, the cached query results can be further analyzed
using refined SQL statements. For example, new criteria
not checked in the original analysis process like “display all
flights in a region of 30 km around the critical encounter”
or “give all tracks that had a critical encounter” could be
applied to the obtained query results.

Even though a considerable degree of analysis can be
achieved by purely recomputing expressive SQL views in
each refreshment cycle, the given stream scenario will
sooner or later drastically slow down our system without
further optimization. In the following sections, we will ex-
plain in more detail how incremental evaluation techniques
can be used for an efficient view-based analysis of stream
data.

III. View-Based Flight Analysis

Although there are various commercial implementations
of flight tracking services (e.g., FlightView [9] or Flight-
Stats [8]), they are often limited to a set of predefined tasks
like delay detection or identification of basic flight states
such as departing, approaching or cruising. In recent time,
some work has been done for the automatical analysis of
hazards in Airspace [11], [12], [7]. However, these systems
have not been extended to continuous monitoring systems.
In order to develop a flexible and extensible monitoring
system, we have decided to use SQL views for analyzing
track data. The view-based analysis is performed over a
stream of track data and almost static domain knowledge

1239

Fig. 2: The GUI of AIMS is programmed in Java
using the NetBeans Platform library. It shows
the positions of analyzed aircrafts on an Open-
StreetMap. This map can be configured in order
to show the result of several selected queries at
the same time, e.g. all airborne flights and current
landings at Frankfurt. Additionally, query results
are displayed in tabular form.

about flight plans and airport specifications. The track
data contains up to 69 attributes including track id, call
sign, timestamp, position, various altitude and velocity
measurements as well as a maneuver respectively ACAS-
report. The flight plans are given in form of a series of
waypoints associated with every flight. The airport data
contains IATA/ICAO codes as well as latitude and longi-
tude values.

In the following, we will discuss two examples of anomaly
detection, using Datalog expressions rather than SQL quer-
ies for the sake of the simplicity. The first example con-
siders landing airplanes whereas the second one returns
critical encounters. Afterwards, we combine both queries
in order to detect landing planes on a collision course
showing the flexibility of our analysis.

a) Landings: Usually, a continuous query is based on
rapidly changing track data as well as on fixed domain
knowledge. As an example for this combination let us con-
sider landing flights. To this end, the plane must have a
negative vertical speed (i.e., it is descending), it has to be
below a certain flight level (like 3000 ft), and it must be in
the vicinity of an airport, e.g. closer than 20000 ft. These
criteria can be expressed in SQL as follows:

landing(id)←tracks(vvert, level, pos1),

←airports(pos2), vvert < 3000ft/min,

level < 3000ft, ||pos1 − pos2|| < 20km

(1)

The user-defined function (UDF) dist calculates the Eu-
clidean distance between two positions on the globe. The
table airports stores data about position and names of
airports.

This view returns all tracks that can be classified as
landings, including those detected a long time ago. In a
real-time application, it is typically much more interesting
to find all those tracks associated with currently landing
flights. A simple solution would be the selection of the
respective tracks using the most recent timestamps. How-
ever, this would require an additional selection criterion
to be added to every view. In order to avoid this costly
overhead, we provided the necessary focus in a different
way, two tables are used: a delta table for storing the
newest flight tracks and a history table for recording older
track information. For synchronizing the two tables, a set
consisting of the following update rules is employed:

∆+hist(track_id, · · ·)←∆+tracks(track_id, · · ·)

∆+trackTTL(id, TTL)←trackTTL(id, TTL),

¬∆+tracks(id, _)

with TTL := TTL + 1

∆+trackTTL(id,′ 15′)←∆+tracks(track_id, _),

¬trackTTL(id, _)

(2)

This updates the delta table and moves its former
content to the history table. The table tracks maintains
all track data arriving in one of the last 15 refreshment
cycles by decrementing and resetting a time to live (TTL)
attribute. This technique is important because not all
tracks are caught with every update, since tracks may be
missed or delayed, and a simple deletion could erase still
active tracks. The same technique can be applied to other
problems arising in air space monitoring, as will be shown
in Section IV.

1240

Fig. 3: Angular view of a critical Encounter

The focus on new track information is employed in al-
most every anomaly detection view we use. However, even
this focus on new track data is sometimes not sufficient
for avoiding performance problems.

b) Critical Encounters: As an example, consider the
view definition for finding critical approaches. Suppose the
position and velocity of two planes is given by the vectors
~p1 and ~v1 as well as ~p2 and ~v2, respectively. The two
planes are on a potential collision course if the following
conditions hold:

1) There are two scalar values λ1 and λ2 such that the
following equation holds:

~p1 + λ1 ~v1 = ~p2 + λ2 ~v2 (3)

2) Both planes fly towards the potential collision point
pc, i. e., ~pc − ~pi is parallel but not anti-parallel with
respect to ~vi.

3) Both planes would arrive at the collision point si-
multaneously, i. e.

dist(~p1, ~pc)

~v1
=

dist(~p2, ~pc)

~v2
(4)

In practice, however, the above conditions are much too
sharp and a general security distance dc has to be addition-
ally taken into account. This can be achieved by simply
modifying conditions 1 and 2 as follows:

1) The distance between the skew lines derived from the
plane trajectories is smaller than the critical distance
dc (e.g., dc ≈ 300 feet):

d = (~p1 − ~p2) ·
(~v1 × ~v2)

|~v1 × ~v2|
< dc (5)

2) The time interval in which the planes would reach
the collision point is smaller than the critical time
range tc (e.g., tc ≈ 60 seconds):

∣

∣

∣

∣

dist(~p1, ~pc1)

~v1
−

dist(~p2, ~pc2)

~v2

∣

∣

∣

∣

< tc (6)

The position vectors ~pc{1,2} denote the points on the
lines where the common perpendicular crosses.

It is obvious that the calculation of planes on a collision
course would consume much time if all planes currently
flying were checked against each other. However, there is
a simplification that will drastically speed up the compu-
tation. The idea is to check only those planes that occupy
adjacent quadrants such that a collision detection becomes
crucial. To this end, the absolute value of the longitude
and latitude difference for the respective planes should be
below 1. The reason is the natural speed maximum for
common planes (less than 300 m/s) such that collision
points which take more than 40 minutes to be reached
can be ignored. In fact, during that time the course will
typically change anyway such that a potential collision will
not be detected later. An unavoidable drawback of this
approach is that it will not work near polar regions.

Using the above selection conditions, a rule set for
detecting collision courses could be defined as follows:

encounter(id)←∆track(id1), t2(id1).

t2(id)←∆track(id1, la1, lo1),

id1 6= id2,

||lo1 − lo2|| < 1, ||la1 − la2|| < 1,

doCollide == TRUE

(7)

where the user defined functions doCollide returns TRUE
if both planes satisfy the criteria specified in equations
5 and 6 from above. In our scenario with up to 2000
flights, this view can be executed in less than 1 second. An
example of two flights critically approaching each other
is given in Figure 3. It shows the tracks of two civil
aircrafts with a slope distance of less than 1000 meters
and a vertical distance of less than 300 feet. The critical
approach itself is indicated by the two circles in the middle
of the picture while the courses of the respective airplanes
30 seconds before and after this event are depicted, too.
Note that the curved lines already represent computed
tracks which result from interpreting the dotted radar data
also provided in the picture. In Figure 4, a different view
of a similar event is given where a descending airplane
critically approaches a cruising one. Again, the critical
approach itself is indicated by the two circles in the middle
of this picture.

c) Critical Landings: The client of AIMS allows to
freely add new user-defined anomaly detection views which
are to be continuously evaluated by the system. For
example, a user may combine landing flights and close
encounters in order to define a new view for determining
critical landings:

critLanding(id)← encounter(id), landing(id). (8)

IV. Robust Flight Phase Detection

In principle, we distinguish between the determination
of a certain system state from the occurrence of an event. A
flight state usually holds for a certain time period whereas
an event occurs at a certain point in time with no duration.

1241

For example, a flight may have the state departing, landing
or cruising. In contrast, interesting events may be:

• A new track id is reported from the sensor.
• A track id is no longer reported.
• A plane has abnormally changed its altitude.
• Two planes have steered into a collision course.
• A plane has left its predefined flight way.

All these event types can be detected by AIMS and may
lead to a change of state for the respective flight. Since the
state of a flight has a certain duration, its determination
must be robustly defined. For example, a turning plane
may be on a “collision course” for some seconds, leaving
this state immediately. Thus, a situation like this is more
like an artifact rather than a change of status. Only if the
collision course lasts for some seconds, a critical situation
has occurred and a corresponding flight state should be
derived. Another example is that planes may change their
flight levels during their cruising period only because of
noise in the underlying track data, while a landing plane
may even increase for a short time in order to adjust its
approach. All these events do not cause a change in the
state of a flight and should be ignored.

In order to avoid this kind of false alerts, we employ the
“time to live” (TTL) approach already introduced above
for maintaining the delta and history table. This time, it is
employed to make state derivations using our anomaly de-
tection views more robust. For instance, let us reconsider
the view for detecting landing planes from Section III.
Each of the three criteria employed in the respective view
– a negative vertical speed, a flight level below zero and
the proximity to an airport – could be violated for a short
time. Therefore, the view is materialized and a TTL value
added for maintaining its content. The following set of
delta rules is used to update TTL values accordingly:

∆+hist(track_id, · · ·)←∆+tracks(track_textid, · · ·)

∆uland(id, TTL′, conf′)←landTTL(id, TTL, conf),

¬∆+tracks(id,)

withTTL′ := TTL− 1

∆uland(id, TTL, conf′)←landTTL(id, TTL, conf),

∆+tracks(id, pos1, _),

airports(pos2), vvert < 3000ft/min,

level < 3000ft,

||pos1 − pos2|| < 20km

with TTL := 15, conf′ = conf + 1

∆+land(id, TTL, 1)←∆+track(id, _),¬land(id,)

with TTL := 15

(9)

In the first block, the TTL counter is decremented. All
previously existing tracks are refreshed in the second block
and the confirmation counter CONF is increased by 1. In the
following block, new data is inserted with a “fresh” time to
live but with a confirmation counter of 0, meaning that the
status has not been confirmed yet. Last, all “dead” landing
tracks are deleted from land. In the GUI of AIMS, all
unconfirmed landings are ignored and thus, not depicted.

Fig. 4: Horizontal view of a critical encounter

V. Incremental Query Evaluation

The employed anomaly detection views are standard
SQL views where the user defines flight anomalies in a
declarative way. Internally, the continuous recomputation
of these views is carried out by using update propagation
methods. Update propagation has been studied mainly in
the context of integrity checking and materialized views
maintenance. Its application for analyzing data streams,
however, has not attracted much attention so far. The key
idea is to transform each SQL view already at schema de-
sign time into a so-called delta view, a specialized version
of the view referring to changes in the underlying tables
(data streams), only. The original view definitions are
employed only once; namely for materializing their initial
answers while the specialized versions are used afterwards
for continuously updating the materialized results.

We adopted this idea for AIMS, using delta-view tech-
niques for a synchronized update of detected anomalies.
To this end, update statements within triggers are applied
instead of the original indicator views for incrementally
maintaining the materialized values. In principle, these
update statements can be automatically compiled from
the original views. However, we do not have a full-fledged
delta view compiler yet, therefore we are performing our
experiments with hand-compiled delta views for the time
being.

A. Magic Updates

Because of the stream scenario, a special update propa-
gation method called Magic Updates (MU) is applied [5].
The problem of ordinary delta views is that classical
query optimization strategies - such as pushing selections
- cannot deal with new selection constants dynamically
introduced by the underlying data streams. For solving
this problem, Magic Sets is used for enhancing the in-
cremental view definitions. As an example consider the
following algebra expression for defining the view P (x)
based on the relations Q(x), R(x), S(x, y) and T (x, z):

1242

P (x)←Q(x),¬U(x)

P (x)←R(x),¬U(x)

U(x)←S(x, y), T (x, z)

(10)

The following rule would yield the induced insertions
P_i of P resulting from insertions Q_i into Q:

∆+P (x)←∆+Q(x),¬R(X),¬U(x)

U(x)←S(x, y), T (x, z)
(11)

Despite of the focus on changes with respect to Q,
no optimization effect is achieved with respect to the
evaluation of the the negated expression U(x). A pos-
sible reordering of operations by using classical rules of
algebraic optimization cannot provide a better focus on
the changes of Q either. However, another way is to use
the small number of streaming tuples in Q_i already for
determining all matching join partners by introducing two
semi-joins:

∆+P (x)←∆+Q(x),¬R(X),¬U(x)

magic_U(x)←(∆+Q(x), S(x, y)),

(∆+Q(x), T (x, z))

(12)

Under the assumption that S and T are quite large in
comparison to the size of Q_i and that there is a low
selectivity of the tuples in Q_i, the argument sizes of
the join and difference operator are considerably reduced.
Thus, the resulting incremental expression provides a
much better focus on the changes to Q.

In AIMS, MU has been employed in various anomaly
detection views which are part of a multi-level view hierar-
chy. As an example, consider the determination of delayed
flights which are involved in a critical landing:

delayCritLand(id)← critLanding(id), delayed(id). (13)

For determining delayed flights we have to access the
usually very large table of flight plans. Additionally, costly
extrapolation is necessary in order to compute the ideal
position of an airplane for a given timestamp based on the
sequence of waypoints in its flight plan. However, the small
number of critical landings can be used as an additional
selection criterion for determining relevant flight plans
and waypoints, only. To this end, the determined critical
landings are used to form so-called magic subqueries

magic_delayed(id)← critLanding(id). (14)

which are joined with the table of flight plans first:

delayed(id, d)←magic_delayed(id), ∆(id, id1, ~v),

flightPlan(id, t2),

d := f(t1, t2, ~v, . . .).

(15)

Using this MU approach allowed to speed up the
recomputation of anomaly detection views dramatically
(see Sec. VII). The introduction of auxiliary Magic Sets
containing dynamically generated selection constants can
also be used for improving the focus within recursive delta
views. However, Magic Sets do not always lead to an
improved evaluation. Generally, its optimization effects
strongly depend on relation sizes, selectivities and the
chosen SIP strategy. One research goal is to develop a cost-
based MUs compiler for automatically generating well-
optimized delta views.

B. Aggregate Functions

As soon as stream data have been processed they be-
come historical data which have to be stored by the sys-
tem. Historical data are necessary for provenance analysis
or may be relevant for continuous queries involving certain
statistics. A very elegant approach for accessing historical
data is the Total Recall facility of Oracle [13]. It turned
out, however, that Total Recall performs rather slow such
that it is only suitable for purely historical queries (e.g.,
count all landings on Tuesday last week).

In case a statistical query with a sliding window is to
be answered, AIMS employs the incremental approach
mentioned above. Generally, the new aggregate value is
computed based on its former value and the new incoming
stream data. However, it is sometimes necessary to keep
track of the values contained in the sliding window. As
an example, consider the determination of the number of
flights over Frankfurt within the last 60 minutes. Due to
the implicit duplicate elimination of the COUNT function,
we have to store the contents of the sliding window in
an intermediate table tbl_OverFRA which is maintained
incrementally using the following trigger:

∆+overFRA(id, time)←∆+tracks(id, pos, lo, la),

time = NOW(),

la < 50.80 ∧ la > 50.40∧

lo < 8.46.4 ∧ lo > 8.35

∆−overFRA(id,)←overFRA(id, time),

time < NOW()− 3600 s

(16)

The count update can then be performed based on the
updated window content as follows:

∆uCtOverFRA(count)← CtOverFra(_),

count = count+

|∆+overFRA(id)| − |∆−overFRA(id)|

(17)

VI. Evaluation of Update

Propagation Methods

For showing the feasibility of update propagation in
this context, we have evaluated different propagation tech-
niques in AIMS. In the following, we give a typical example
of run-time measurements for anomaly detection views
used in AIMS.

1243

y = 9EͲ06x2 Ͳ 0,0003x + 0,6888

y = 0,0073x + 0,4313

y = 0,0167x + 0,4301

y = 0,0067x + 0,3227

y = 0,0115x4 Ͳ 0,3043x3 + 2,7166x2 Ͳ 8,6933x + 7,5

0

5

10

15

20

25

1

1
0
1

2
0
1

3
0
1

4
0
1

5
0
1

6
0
1

7
0
1

8
0
1

9
0
1

1
0
0
1

1
1
0
1

R
u
n
ti
m
e

 [s
]

Iteration Number

incr. mat.

incr. virt.

naive virt.

magic virt.

naive mat.

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60

R
u
n
ti
m
e

 [m
s]

Iteration #
materialized virtual naive magic

Fig. 5: Comparison of the run time of various methods. In the left image, the run times vs. the iteration number is shown. The
lighter lines show the actual results, the darker lines show the trend. The formula for the trend fit is shown right hand side. The
right image shows the results for the first iterations rounds (using a sliding median for evening out spikes).

A common task is the classification of flights based on
the information coming from the feed of track data and
the feed of flight plans.

Let us consider the stream flights and the query
cancelled, where the latter is a filter on the flight plans
bearing the attribute “cancelled”. A query hierarchy for
finding all “via”-flights then is:

activeFlights(id)←tracks(id, _),

¬cancelledToday(id).

cancelledToday(id)←cancelled(id, date),

date == TODAY().

(18)

Note that the date attribute is needed as the flight IDs
are not unique but reassigned every day. The via flights
can then be selected using the statement

viaFlights(id)←tracks(id, dest1),

activeFlights(id, dest2),

dest1, 6= dest2.

(19)

Due to the implicit self-join of flights in this hierarchy,
a quadratic run-time could be expected. However, the
common selectivity will be substantially lower than 100%.
Using synthetic data (for comparability), we measured the
run-time with a selectivity of 0.0004, which is equal to 400
tuples in the result set. We employed five UP methods:

• The virtual naive method, updating the underlying
base relations and re-evaluating the complete view
hierarchy

• The materialized naive method, storing all views as
materialized, including all intermediate views.

• The virtual incremental method, using an incremental
re-writing of the rules and feeding new data into a
special delta table

• The materialized incremental method, using rule re-
writing and materializing the adapted views.

• The MU method, the Magic Set transformed version
of the virtual incremental variant.

A comparison of the three methods is given in Figure 5.
The number of tuples inserted in every update step was
fixed to 1000. In each iteration, the attribute dateTime

was adjusted to the current date and time, so the selectiv-
ity w.r.t. the newly inserted data will be constant in each
iteration and the size of the total result set will increase
linearly. The measurements were done on an Intel i5-2500
@ 3.3 GHz with 8 GB RAM running Windows 7 64 bit
and using Oracle 11g. For the first two methods, the query
time, and for the materialized method the insert time was
measured.

It can be seen that in the first iterations, the naive
method will be slightly faster than the other. After about
50 iterations, the materialized incremental method will
perform fast, but due to the quadratic asymptotic run-
time behavior, it will perform slower after approx. 800
iterations. The virtual incremental method shows linear
behavior and has half of the slope as the naive method. It
has to be mentioned that the run time behavior strongly
depends on the selectivity. In a scenario with a selectivity
of 50%, the naive method was 1000 times slower than
the virtual incremental method. The naive materialized
method, however, has O(n4) runtime and is not feasible.

The asymptomatically fastest method for this scenario,
the MU method, (cf. Section V-A) also shows a linear
run time. Here, the offset is decreased and the slope is
smaller, yielding to the best asymptotic behavior in this
scenario. However, with increased selectivity, we could also
obtain a larger slope for the MU than for the incremental
virtual method. For instance, with a selectivity of 25%,

1244

MU became slower than the virtual incremental method
after approx. 3500 iterations.

VII. First Results and Future Work

After more than a decade of research on data stream
management, it is widely believed that conventional re-
lational database systems are not well-suited for dynam-
ically processing continuous queries [4], [14]. Therefore,
various SQL extensions (e.g., [2]) and stream processing
engines have been proposed (e.g. [3]) some of them even
designed as full-fledged commercial products (e.g, Stream-
Base [14]).

As a first result, however, AIMS already indicates that
incrementally evaluated SQL queries can be used for ef-
ficiently processing a realistic stream scenario. AIMS is
capable of monitoring the entire German airspace by pro-
cessing ≈2400 tuples (12 attributes) every 3 - 4 seconds,
while most of the monitoring tasks could be solved in less
than 1 second showing the feasibility of our incremental
approach. It could be shown that incremental propagation
and Magic Updates provide a feasible way for optimizing
stream processing tasks.

AIMS could successfully identify critical situations like
close encounters or deviations from the flight plan. It was
interesting to notice the high number of large deviations
(sometimes more than 50 miles). In addition, the high
number of critical approaches was very surprising, as there
were far more close encounters than expected. We could
also show violations of no-fly zones and determine zones
with a critical high number of aircraft movements. Cur-
rently we are working on the determination of abnormal
landing approaches and even these detection views can be
efficiently evaluated.

In the future, the system shall be expanded to carry
out more statistics on the observed air traffic, mainly in
order to improve the organization of air traffic flow and to
straighten out “hot spots”, i.e., regions with abnormally
high air traffic. It is also planned to add a simulator
component for simulating an increase in air traffic. We
also want to add further anomaly detection views for
discovering blind areas where radar data is typically not
available. In addition, the prediction capabilities of our
system ought to be employed in order to improve the
dynamic models used in tracking software. For example,
the knowledge about air-traffic routes can be used to
predict a flight curve even if no radar data is available.

VIII. Conclusion

We have presented the airspace monitoring system
AIMS which allows the detection of interesting and critical
situations in air traffic using SQL views. In contrast to
already existing commercial systems like FlightView [9] or

FlightStats [8], AIMS provides a more flexible approach
to airspace monitoring allowing the free definition of ar-
bitrary complex events over a stream of flight data. The
flexibility results from using SQL views which freely add
and combine user-defined anomaly detection view speci-
fications. In contrast, systems like OpenATC, FlightView
or FlightStats do not allow for any user-defined analyzes
while AirNav systems solely provides pre-defined filters,
which can be freely combined though. In fact, filters in this
system can be used to track aircrafts by altitude, range
to a specific location or type. The system AirNav does
not support, however, the detection of general emergency
situations nor the identification of geographic regions with
certain/critical flight statistics.

Our first performance results already indicate that con-
ventional database systems are capable of handling this
interesting geospatial stream scenario. This encourages us
to believe that traditional relational database techniques
are indeed suited for analyzing a wide spectrum of data
streams. Another result of our prototype is the detection
of a large number of critical flight approaches which
underline the need for an automated monitoring tool like
AIMS.

References

[1] A. Arasu et al.: STREAM: The Stanford Stream Data
Manager. SIGMOD 2003: 665.

[2] A. Arasu, S. Babu, and J. Widom: The CQL Continuous Query
Language: Semantic Foundations and Query Execution. VLDB J.
15(2): 121-142 (2006).

[3] D. J. Abadi et al.: Aurora: A Data Stream Management System.
SIGMOD 2003: 666.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom:
Models and Issues in Data Stream Systems. PODS 2002: 1-16.

[5] A. Behrend, R. Manthey: Update Propagation in Deductive
Databases Using Soft Stratification. ADBIS 2004: 22-36.

[6] A. Behrend, R. Manthey, G. Schüller, and Monika
Wieneke: Detecting Moving Objects in Noisy Radar Data Using
a Relational Database. ADBIS 2009: 286-300

[7] T. Bosse, A. Sharpanskykh, J. Treur, H.A.P. Blom, S.H.
Stroeve: Agent-Based Modelling of Hazards in ATM SID 2012

[8] Flightstats: http://www.flightstats.com/ (2011)
[9] FlightView: http://www.flightview.com/ (2011)
[10] The HSQL Development Group, HyperSQL 2.2 :

http://www.hsql.com/ (2011)
[11] K. Clegg, R. Alexander: ASHiCS: Automating the Search for

Hazards in Complex Systems in SID 2011
[12] K. Clegg, R. Alexander: Searching Air Sectors for Risk in

SID 2012
[13] Oracle Corp.: Oracle Database 11g Release 2 (2009)
[14] M. Stonebraker, U. Çetintemel: “One Size Fits All”: An

Idea Whose Time Has Come and Gone (Abstract). ICDE 2005:
2-11.

[15] G. Schüller, A. Behrend, and R. Manthey: AIMS: an SQL-
based system for airspace monitoring, in ACM SIGSPATIAL
IWGS 2010, pp. 31–38.

[16] G. Schüller, R. Saul, and A. Behrend: In-Memory Caching
for Fast Stream History Access, in ACM SIGSPATIAL IWGS
2011, pp. 37–40.

[17] G. Schüller and A. Behrend: Towards a Universal Tracking
Database, in SSDBM 2013, pp. 10:1–10:12.

1245

