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Abstract—Recent years have seen an increasing interest in
making use of the smartphone as a cheap and viable navigation
device for land-vehicles. However, smartphone-based automotive
navigation suffers from the fact that the orientation of the
smartphone’s inertial measurement unit, with respect to the
vehicle, in general is unknown. In this study, we present a
method for simultaneous vehicle navigation and smartphone-to-
vehicle alignment. In addition to the state estimates obtained
from applying a standard global navigation satellite system-aided
inertial navigation system to estimate the smartphone dynamics,
this will also provide us with estimates of the vehicle’s attitude.
These estimates are used to improve the navigation solution,
and also enables the estimation of additional vehicle, road, and
driver characteristics, which requires knowledge of the vehicle’s
attitude. The performance of the proposed method is evaluated
with both simulations and experimental data.

Index Terms—Inertial navigation systems, Smartphone sen-
sors, GNSS-aided INSs, IMU alignment.

I. INTRODUCTION

The navigation of land-vehicles using vehicle-fixed sensors

is a mature technology with numerous commercial applica-

tions [1]. One of the current challenges of the intelligent trans-

portation systems society lies in extending these navigation

systems to implementations which can be based solely on

measurements from cheap and readily accessible devices such

as smartphones.

The processing power of commercial smartphones has in the

past years increased at a fast pace. In addition, smartphones

have been equipped with more and more features, and today

typically include both a low-cost global navigation satellite

system (GNSS) receiver, and an inertial measurement unit

(IMU). All in all, the modern smartphone is capable of

functioning as a portable and user-friendly navigation device

or measurement probe for vehicles in many settings and en-

vironments. Promising applications can be found in the fields

of traffic state estimaton [2], fleet management [3], advanced

driver-assistance systems [4], and insurance telematics [5].

As opposed to when using vehicle-fixed sensors,

smartphone-based vehicle navigation suffers from the

fact that the orientation of the smartphone’s IMU, with

respect to the vehicle, in general is unknown. In this study,

we show how to align the smartphone with respect to the

vehicle, without the use of reference data. The motivation

for this is twofold. First, knowing the relative orientation

of the smartphone and the vehicle, it is possible to utilize

constraints on the vehicle dynamics to improve the navigation

solution. Second, this also enables the estimation of vehicle,

road, or driver characteristics, which requires knowledge of

the vehicle’s attitude.

Reproducible research: The simulated and real-world data

used in this paper is available at www.kth.se/profile/jwahlst/

together with a Matlab implementation of the proposed

method.

II. PROBLEM FORMULATION

The implementation of a GNSS-aided inertial navigation

system (INS) for smartphone-based automotive navigation

poses several challenges. Typically, relevant design choices

involve a trade-off between ease of use, which pays off in

terms of commercial viability, and navigation performance.

Many of the smartphone-based GNSS-aided INSs presented

in the literature put restrictions on both the smartphone usage

while driving [6], and on the vehicle motion during initializa-

tion [7]. Some implementations also make use of additional

data coming from more expensive and logistically demanding

sources (such as the vehicle’s on-board-diagnostics system

or vehicle-aligned IMUs) to e.g., estimate the smartphone-

to-vehicle orientation [8]. In the following, we discuss these

issues in more detail.

One of the most challenging aspects of smartphone-based

vehicle navigation is the question of how to separate the

dynamics of the smartphone from the dynamics of the vehicle.

So far, published studies have generally assumed that the

smartphone is fixed with respect to the vehicle (see e.g., [6],

[7], [8]). A simple way to generalize frameworks based on this

assumption is to implement a detector that attempts to detect

when the smartphone is non-stationary with respect to the

vehicle [9]. All data obtained during the detected period is then

discarded, after which the relative attitude of the smartphone

must be re-estimated. The success of an implementation of this

kind to a large extent depends on the navigation system’s abil-

ity to perform an in-motion smartphone-to-vehicle alignment.

An obvious disadvantage of this approach is that all data will

be lost during the detected period, which in e.g., insurance

telematics applications might encourage fraudulent behavior

through excessive smartphone interaction when the driver do

not wish to share driving data.
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The smartphone-to-vehicle orientation is typically estimated

by first assuming that the vehicle is horizontally aligned during

the initialization period, so that the vehicle’s roll and pitch

angles relative to a tangent frame both are zero. Assuming that

the vehicle does not experience any acceleration, the smart-

phone’s roll and pitch angles can be estimated from accelerom-

eter measurements of the gravity vector. The smartphone’s

yaw angle can then be identified using magnetometer measure-

ments, while the vehicle’s yaw angle is estimated using GNSS

measurements of planar course [10]. Alternatively, one can

directly estimate the relative yaw angle of the smartphone and

the vehicle by studying accelerometer measurements during

pronounced acceleration [6] or deceleration [9].

Measurements from IMUs that are rigidly attached to the

vehicle, with its axes aligned to the vehicle frame, have been

used for many purposes besides navigation. These include

driver recognition and maneuver classification [11], detection

of road bumps [12], and detection of additional roof load

[13]. Relaxing the assumption of a vehicle-aligned IMU, it

is possible to expand the application area of any of these

frameworks.

If constraints on the true navigation state are known,

these can be used to reduce the vector space of possible

navigation solutions, which will improve the performance

of the navigation system. In low-cost automotive navigation,

the most commonly applied constraints restrict the vehicle’s

velocity to be approximately zero in directions perpendicular

to the forward direction of the vehicle frame [14]. These are

often referred to as non-holonomic constraints (NHCs), i.e.,

constraints on the vehicle’s velocity.

In this paper, we propose a method for simultaneous ve-

hicle navigation and smartphone-to-vehicle alignment, which

can be seen as an extension of the standard GNSS-aided

INS. The alignment is performed by applying NHCs with

the smartphone-to-vehicle orientation as an unknown state

element. The relative orientation can then be recursively

estimated in a Kalman filter. The navigation system is well-

suited for a real-time implementation, and requires no pre-

calibration of the smartphone sensors.

The proposed method is evaluated in a simulation study

which randomizes the smartphone-to-vehicle orientation and

the sensor errors. In addition, we show the results of a field

study where driving data from several ubiquitous devices are

compared to reference data. Convergence of the estimated

smartphone-to-vehicle orientation is shown to occur within

minutes, and the accuracy of the estimated vehicle attitude

is in the order of 2 [◦] for each Euler angle. It is further

demonstrated that the method reduce the position error growth

during GNSS outages.

III. STATE-SPACE MODEL

In this section, the navigation problem discussed in the

preceding section is formulated as a constrained nonlinear

filtering problem. First, we present the navigation equations

and measurements used in the standard GNSS-aided INS.

The navigation state is then augmented with the relative

b

s

i

t

Fig. 1. The employed coordinate frames: body frame b; smartphone frame
s; tangent frame t; earth-centered inertial frame i.

smartphone-to-vehicle orientation, after which constraints on

the vehicle motion are employed to introduce a coupling be-

tween the smartphone dynamics and the relative smartphone-

to-vehicle orientation.

Values of the generic variable c will throughout the paper be

separated as measured c̃, estimated ĉ, or developing in discrete

time ck, where k (often omitted for notational convenience) is

the index of the sampling instance Tk. Further, ĉk1|k2
denotes

the estimate of ck1
using GNSS measurements up until Tk2

.

We let cκ3

κ2κ1
denote the physical quantity c of frame κ1 with

respect to frame κ2, resolved in frame κ3. Naturally, cκ3

κ2κ1,k

refers to cκ3

κ2κ1
at sampling instance Tk. The coordinate frames

(see Fig. 1) are denoted by b (forward-right-down body frame,

also known as the vehicle frame), s (smartphone frame), t
(north-east-down tangent frame), and i (earth-centered inertial

frame).

We begin by presenting the navigation equations and mea-

surement equations commonly employed in low-cost GNSS-

aided INSs. These navigation systems propagate the navigation

solution using high-rate IMU measurements, and then bound

the resulting navigation errors using GNSS measurements

available at a lower rate. Refer to e.g., [15] and [16] for details.

Let the navigation state be defined as

z̄
Δ= [(rtts)

ᵀ (vt
ts)

ᵀ (ψt
ts)

ᵀ]ᵀ (1)

where r and v denote three dimensional position and velocity,

respectively, and the superscript (·)ᵀ denotes the transpose of

a matrix. Further, the roll, pitch, and yaw angle are elements

in ψt
ts

Δ= [φt
ts θtts ψt

ts]
ᵀ. The input vector u is given by

u
Δ= [(asis)

ᵀ (ωs
is)

ᵀ]ᵀ (2)

where asis and ωs
is denote specific force and angular velocity,

respectively. The state-space model describing the time devel-

opment of the navigation state, and the GNSS measurements,

is typically formulated as

z̄k+1 = f NE

k (z̄k,uk), (3a)

yk = hGNSS(z̄k) + εk. (3b)

Refer to [16] for details on the mechanized navigation equa-

tions f NE. (In practice, process noise have to be considered

in (3a) since the input u cannot be measured perfectly.) The
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GNSS measurements of position, speed, and planar course, are

modeled as

hGNSS(z̄) Δ=
[
(rtts)

ᵀ v̄tts atan2
(
[vt

ts]2, [v
t
ts]1

)]ᵀ
(4)

where the horizontal speed is defined as

v̄tts
Δ=
√
([vt

ts]1)
2 + ([vt

ts]2)
2 (5)

and [c]i denotes element i in c. The measurement noise ε is

assumed to be white with covariance matrix [17]

RGNSS Δ= Cov(ε)

= blkdiag
(
σ2
r I2, σ

2
r,vert, σ

2
v̄, σ

2
v̄/(v̄

t
ts)

2
)
.

(6)

Here, blkdiag(·, ..., ·) denotes the blockdiagonal matrix with

block matrices given by the arguments, and In is the identity

matrix of dimension n. Using (3), it is possible to implement

a GNSS-aided INS that recursively estimates the smartphone

dynamics, see e.g., [15].

Augmenting the navigation state with the Euler angles

relating the smartphone frame to the vehicle frame, we obtain

the augmented navigation state

z = [z̄ᵀ (ψs
sb)

ᵀ]ᵀ. (7)

To make the corresponding augmented system observable, the

GNSS measurements need to be complemented with additional

measurements or constraints. One possibility is to utilize that

the vehicle’s velocity typically is close to zero in the lateral

and up/down directions of the vehicle frame [14]. To this end,

we introduce the NHCs

gv(z) ≤ dv (8)

where dv is some constant, while gv(z) Δ= |Avb
tb| and A

Δ=
[02,1 I2] with 0n1,n2

denoting the zero matrix of dimension

n1× n2. Further, ≤ and |·| are used to denote component-wise

inequality and absolute value, respectively.

Moreover, we note that the vehicle’s roll angle typically

varies around zero without any large deviations, leading us to

introduce the additional constraint

gφ(z) ≤ dφ (9)

where dφ is some constant, while gφ(z) Δ= |bᵀψt
tb| and b

Δ=
[1 0 0]ᵀ.

The state-space model (3) and the dynamic constraints (8)

and (9) can be summarized by the new system model

zk+1 = fk(zk,uk) +wk, (10a)

yk = h(zk) + εk, (10b)

and the constraints

g(zk) ≤ d. (10c)

We have here assumed that h(z) Δ= hGNSS(z̄) and fk(zk,uk)
Δ=

[(f NE

k (z̄k,uk))
ᵀ (f ψ(zk,uk))

ᵀ]ᵀ, where f ψ is some function

describing the time development of ψs
sb,k. Further, we have

made use of the definitions g(z) Δ= [(gv(z))ᵀ gφ(z)]ᵀ and

d
Δ= [(dv)ᵀ dφ]ᵀ. The problem of estimating z from (10)

defines a constrained nonlinear filtering problem which can be

approached by several methods. One alternative is to formulate

the constraints (10c) as pseudo observations and then linearize

the system in an extended Kalman filter (EKF) [18]. This

method is considered next.

IV. EKF-BASED NAVIGATION SYSTEM

In what follows, we present an EKF-based solution to

the constrained nonlinear filtering problem presented in the

preceding section. First, the navigation equations are linearized

around the estimated motion dynamics and the IMU mea-

surements. The state constraints are then re-formulated as

pseudo observations that extend the measurement equation,

after which also the measurement equation is linearized.

The resulting state-space model forms the basis of an EKF

which provides estimates of the vehicle dynamics. The section

concludes with a discussion on filter initialization.

A. Model of the System Error Dynamics

We begin by defining the error vector

x
Δ=
[
(δz)ᵀ (δu)ᵀ

]ᵀ
(11)

where δz Δ=
[
(δrtts)

ᵀ (δvt
ts)

ᵀ (δψt
ts)

ᵀ (δψs
sb)

ᵀ
]ᵀ

. In addition

to the estimation errors δrtts
Δ= r̂tts − rtts, δvt

ts
Δ= v̂t

ts − vt
ts,

δψt
ts, and δψs

sb (the last two of which are defined by (19) in

the Appendix), the error vector also include the IMU bias δu.

Note that x can be obtained as a straightforward extension

of the 15-state error vector in the standard GNSS-aided INS

framework (see e.g., [16]).

Linearizing (10a) around ẑ and ũ, the time development of

x can be described by

xk+1 = Φkxk +Gkwwk (12)

where the process noise covariance is Cov(wwk) = Qk (see

e.g., [15] for example derivations and definitions of filter

matrices). The implementation considered here models ψs
sb,k

as a random walk.

We now reformulate the dynamics constraints (10c) as the

pseudo observations

02,1 = hps,v(zk) + ε
ps,v
k , (13a)

0 = hps,φ(zk) + ε
ps,φ
k , (13b)

where hps,v(z) Δ= Avb
tb and hps,φ(z) Δ= bψt

tb. The mea-

surement errors εps,v and εps,φ are modeled as white with

covariance matrices Rps,v Δ= σ2
ps,vI2 and Rps,φ Δ= σ2

ps,φ,

respectively. For notational convenience, the measurement

function and the measurement noise covariance matrix for the

complete set of pseudo observations are denoted by hps(z) Δ=
[(hps,v(z))ᵀ hps,φ(z)]ᵀ and Rps Δ= blkdiag(Rps,v,Rps,φ),
respectively.

Linearizing the GNSS measurement equations (10b) and

the pseudo observations (13) around ẑ and ũ, we obtain the

measurement equation (see the Appendix)

δyk = Hkxk + ek (14)
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Algorithm 1 : EKF-based navigation algorithm.

1: Perform a Kalman filter time update using (3a) and (12).

The navigation state errors are set to zero as the navigation

solution is updated in the last step of the algorithm.

ẑk+1|k = fk(ẑk|k, ũk − δûk|k),

Pk+1|k = ΦkPk|kΦ
ᵀ

k +GkQkG
ᵀ

k,

x̂k+1|k = [01,12 (δûk|k)
ᵀ]ᵀ.

2: If there are GNSS measurements at Tk+1, use (14) to

perform a Kalman filter measurement update utilizing

GNSS measurements, and pseudo observations of velocity

and roll:

Sk+1 = Hk+1Pk+1|kHk+1
ᵀ

+Rk+1,

Kk+1 = Pk+1|kH
ᵀ

k+1S
−1
k+1,

x̂k+1|k+1 = x̂k+1|k +Kk+1δyk+1,

Pk+1|k+1 = (I18 −Kk+1Hk+1)Pk+1|k.

3: If there are no GNSS measurements at Tk+1, use (13)

to perform a Kalman filter measurement update utilizing

pseudo observations of velocity and roll:

Sk+1 = H
ps
k+1Pk+1|k(H

ps
k+1)

ᵀ +R
ps
k+1,

Kk+1 = Pk+1|k(H
ps
k+1)

ᵀ
S−1
k+1,

x̂k+1|k+1 = x̂k+1|k −Kk+1h
ps(ẑk+1|k),

Pk+1|k+1 = (I18 −Kk+1H
ps
k+1)Pk+1|k.

4: Correct the navigation solution using the estimated er-

rors. The rotation matrix update is given by (18) in the

Appendix. The Euler angle estimates ψ̂κ1κ2

κ1 are uniquely

defined by the rotation matrix Ĉκ1

κ2
.

[ẑk+1|k+1]1:6 = [ẑk+1|k]1:6 − [δzk+1|k+1]1:6,

Ĉt
s,k+1|k+1 = (δCt

s,k+1|k+1)
ᵀĈt

s,k+1|k,

Ĉs
b,k+1|k+1 = (δCs

b,k+1|k+1)
ᵀĈs

b,k+1|k.

where we use the notation

δy Δ=

[
y

03,1

]
−

[
hGNSS(ˆ̄z)
hps(ẑ)

]
, (15)

H
Δ=

[
(HGNSS)ᵀ (Hps)ᵀ

]ᵀ
, and ek

Δ= [(εk)
ᵀ (εps,vk )ᵀ ε

ps,φ
k ]ᵀ,

with HGNSS and Hps defined in the Appendix. The measure-

ment noise covariance matrix is

R
Δ= Cov(ek)

= blkdiag(RGNSS,Rps).
(16)

Algorithm 1 displays one iteration of the filtering algorithm

resulting from implementing an EKF based on (12) and (14),

with Pk1|k2
denoting the state covariance of x̂k1|k2

. The

computational cost of the algorithm, not considering e.g.,

symmetry properties, will be dominated by a term in the order

of 6d3 per iteration, where d denotes the dimension of the

state vector [19]. Running the algorithm at 20 [Hz] would then

require 20 · 6 · 183 [flops] ≈ 0.7 [Mflops], which is several

orders of magnitude smaller than the maximum number of

flops performed by standard smartphones.

It can be noted that the pseudo observations of roll (13b)

are needed to fade out the effect the initial smartphone-to-

vehicle roll angle (the value of φs
sb does not have any effect

on the error estimates x̂ if only GNSS measurements and

NHCs are employed). The design parameters σ2
ps,v and σ2

ps,φ

describe the trade-off between allowing for vehicle dynamics

which deviates from those implied by perfect measurements in

(13), and increasing the ability to utilize the added information

provided by the same equations.

The estimates of the smartphone’s position and velocity will

also be the estimates of the vehicle’s position and velocity.

This follows from making the assumption of zero relative

position and velocity when utilizing the NHCs in the derivation

of (14). While studies have been presented on how to estimate

the smartphone-to-vehicle position [20], these assume that

reference data is available either from the vehicle’s on-board-

diagnostics system, or from additional smartphone devices.

B. Initialization

The smartphone’s position and velocity are initialized using

the first available GNSS measurements, with the initial veloc-

ity in the vertical direction of the tangent frame set to zero.

All sensor biases are initialized as zero.

It is convenient to express the initial attitudes as ψ
t
ts,0

and ψt
tb,0 and then compute ψs

sb,0 from Cs
b,0 = Cs

t,0C
t
b,0,

where Cκ2

κ1
denotes the rotation matrix from frame κ1 to

frame κ2. The first two elements in ψt
ts,0 can be estimated

from accelerometer measurements during presumed zero ac-

celeration [15]. Moreover, the first two elements in ψt
tb,0 are

generally close to zero, and the yaw angle of the vehicle can be

initialized from the first GNSS measurement of planar course.

The initial yaw angle of the smartphone typically has to

be estimated by nonlinear methods. We choose to marginalize

the navigation system in a marginalized particle filter (MPF),

where each particle is associated with a unique initial state

(refer to [21] for details on MPFs). Similar methods for other

applications have previously been discussed in [22] and [23].

When sufficient weight has been distributed to one of the

particles, the particle filter is terminated and the navigation

system can continue with the identified initial state.

V. SIMULATION STUDY

We will now present the results of the conducted simula-

tion study. True navigational data emulating typical vehicle

dynamics was generated along the trajectory shown in Fig.

2. The corresponding horizontal speed is shown in Fig. 3.

When generating the trajectory, the NHCs were utilized as

hard equality constraints, so that the true vehicle dynamics

satisifed hps,v(zk) = 02,1. Furter, the vehicle’s roll angle

was simulated as a zero mean, auto-regressive process of

first order. Each run of the simulation generated a stationary

smartphone-to-vehicle orientation, a constant IMU bias, and

white, normally distributed sensor and measurement noise over

the full trajectory. The update rates of the IMU sensor and the

GNSS receiver were set to 20 [Hz] and 1 [Hz], respectively.

1440



0 200 400 600 800 1000 1200
0

100

200

300

400

500

[rttb]1 [m]

[r
t tb
] 2
[m

]
Simulated vehicle trajectory

T = 34 [s]

T = 72 [s]

T = 93 [s]
Elapsed distance: 1.49 [km]
Elapsed time: 120 [s]

Fig. 2. Vehicle trajectory generated from Monte Carlo simulations.
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Fig. 3. Vehicle speed generated from Monte Carlo simulations.

The root-mean-square error (RMSE) and the theoretical

standard deviation (SD) of each of the vehicle’s Euler angles

are shown in Fig. 4. The displayed figures are the result of

100 Monte Carlo realizations. The SDs were obtained by

employing the approximation (readily obtained from (26) in

the Appendix)

Cov(δψtb
t ) ≈ Cov(δψts

t ) + Ĉt
sCov(δψsb

s , δψts
t ) (17)

+ (Ĉt
sCov(δψsb

s , δψts
t ))ᵀ + Ĉt

sCov(δψsb
s )Ĉs

t

in each simulation, and then computing the average of the

corresponding standard deviations at each sampling instance.

Here, Cov(·) and Cov(·, ·) denote the covariance matrix of

a random vector and the cross-covariance matrix of two

random vectors, respectively. Note that all covariance and

cross-covariance matrices in the right-hand-side of (17) can

be obtained as sub-matrices of the state covariance matrix P.

As indicated in Fig. 4, convergence typically occurs within

60 seconds, with a steady state RMSE in the order of 2 [◦]
for each Euler angle. For comparison, it can be noted that

estimating the roll and pitch angles as 0 [◦] at each sampling

instance would result in a time-averaged RMSE of 5.74 [◦]
and 4.29 [◦], respectively. The simulations employed the same

filter as was used for the experimental data in Section VI,

and hence, the theoretical SDs generally exceed the RMSEs.

This is a consequence of filtering with a nonzero measurement

noise covariance in the pseudo observations of velocity, and

nonzero process noise covariance in the time development of

ψs
sb,k.

The exact error graphs in Fig. 4 will be highly dependent

on the vehicle dynamics. As an example, the estimates of the

roll and pitch angles can be seen to exchange information

uncertainty as the vehicle changes course (consider e.g., the

change in theoretical SD of the roll and pitch estimates when

the vehicle corners at T = 72 [s]). This can be attributed to

the fact that the system’s observability varies with the vehicle
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E
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(c) Error of yaw estimates
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Fig. 4. Estimation errors of the vehicle’s Euler angles.

dynamics. Refer to e.g., [24] for details on the observability

of GNSS-aided INSs during different vehicle maneuvers.

VI. FIELD STUDY

The algorithm presented in Section IV was applied to 25
minutes of driving data collected from a Samsung S3, a

Samsung S4, and an iPhone 5, all fixed to the dashboard

but with an unknown orientation. Simultaneously, reference

data was collected using a Microstrain 3DM-GX3-35 aligned

to the vehicle’s coordinate frame. The update rates of the

IMUs were set to 20 [Hz], while the GNSS receivers of the

smartphones and the reference system were operating at update

rates of 1 [Hz] and 4 [Hz], respectively. The reference data

was processed in a standard GNSS-aided INS. Due to limi-

tations in the accuracy of the reference system, the presented

results should be considered as an indication of achievable

performance, rather than as exact measures. Although the

presented framework does not explicitly require the smart-

phone to be fixed with respect to the vehicle, convergence is,

according to the authors’ experience, difficult to achieve when

the smartphone is rotating with respect to vehicle. However,

since the angular velocity measured when a user picks up

the smartphone generally is much larger than any angular

velocity caused by vehicle maneuvers, sporadic user initiated

movements should be possible to filter out as described in

Section I.

The time-averaged RMSEs of the vehicle’s Euler angle esti-

mates are shown in Table I, and can be seen to be in the same

order as the RMSEs obtained in the simulation study in Section

V. Further, Fig. 5 displays the position drifts during simulated

GNSS outages, in terms of the root-mean-square horizontal

position error RMSE([r̂ttb]1:2). Outages were simulated by
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TABLE I
ROOT-MEAN-SQUARE-ERRORS OF VEHICLE ANGLES.

Samsung S3 Samsung S4 iPhone 5

φt
tb [

◦] 0.86 0.96 1.49
θttb [

◦] 0.87 0.86 1.29
ψt
tb [

◦] 2.36 2.08 3.21
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Fig. 5. Position drifts during GNSS outage as dependent on the time length
of the outage.

removing GNSS data from sequential periods of 60 seconds,

starting 240 seconds after start-up and continuing up until the

end of the data set. The proposed IMU alignment method was

run several times with GNSS measurements removed from one

of the periods in each run. For comparison, the corresponding

position drifts resulting from applying the standard 15-state

GNSS-aided INS to each smartphone are also shown. As seen

from Fig. 5, the IMU alignment method reduces the position

error growth considerably for each of the three smartphones.

This confirms that the pseudo observations of velocity and

roll provide the navigation system with valuable information

despite small errors in the estimated smartphone-to-vehicle

orientation. Noteworthy is that the error drift is still quite

large due to the poor quality of the inertial sensors in the

smartphones.

VII. CONCLUSIONS

This paper has presented a method for simultaneous vehicle

navigation and smartphone-to-vehicle alignment, which can

be seen as an extension of the standard GNSS-aided INS.

The alignment is performed by applying NHCs with the

smartphone-to-vehicle orientation as an unknown state ele-

ment. The accuracy of the estimated vehicle attitude is in the

order of 2 [◦] for each Euler angle, with convergence occuring

within minutes. It was further shown that the proposed method

reduce the position error growth during GNSS outages.

With reliable estimates of the relative smartphone-to-vehicle

orientation, measurements from the smartphone’s inertial mea-

surement unit can be utilized in the same way as if the

smartphone had been manually aligned to the vehicle frame.

Hence, the proposed method opens up a wide range of

applications utilizing smartphone-based inertial measurements

for automotive navigation, without setting any requirements

on the smartphone’s orientation with respect to the vehicle.

APPENDIX

This appendix derives the linearized measurement matrix

Hk and the measurement error δyk in (14) by linearizing the

measurements (10b) and (13) around ẑ. We will use that

δCκ1

κ2

Δ= Ĉκ1

κ2
Cκ2

κ1
(18)

where Ĉκ1

κ2
and Cκ2

κ1
are uniquely defined by ψ̂κ1κ2

κ1 and ψκ1κ2

κ1 ,

respectively, while δCκ1

κ2
defines δψκ1

κ1κ2
through the small

angle approximation

[δψκ1

κ1κ2
]× Δ= δCκ1

κ2
− I3. (19)

Here, [c]× is the skew symmetric matrix defined such that

[c1]
×c2 is equal to the cross product of c1 and c2.

First, we approximate the measurement function in (10b) as

hGNSS(z̄) ≈ hGNSS(ˆ̄z) +
∂hGNSS(ˆ̄z)

∂z̄
(z̄− ˆ̄z)

= hGNSS(ˆ̄z) +
∂hGNSS(ˆ̄z)

∂x
x

(20)

which gives

y − hGNSS(ˆ̄z) ≈ HGNSSx+ ε (21)

where

HGNSS Δ=
∂hGNSS(ˆ̄z)

∂x

=

[
−

∂hGNSS(ˆ̄z)

∂z̄
05,9

]
(22)

= −

⎡
⎣ I3 03,1 03,1 03,13

01,3 [v̂t
ts]1/v̄

t
ts [v̂t

ts]2/v̄
t
ts 01,13

01,3 −[v̂t
ts]2/(ˆ̄v

t
ts)

2 [v̂t
ts]1/(ˆ̄v

t
ts)

2 01,13

⎤
⎦.

Moving on to the pseudo observations of velocity in (13a) and

assuming r
(·)
bs ≈ 0 and v

(·)
bs ≈ 0, we have

vb
tb = Cb

sC
s
tv

t
tb

≈ Cb
sC

s
tv

t
ts

= Ĉb
sδC

s
bĈ

s
tδC

t
s(v̂

t
ts − δvt

ts) (23)

= Ĉb
s(I3 + [δψs

sb]
×)Ĉs

t (I3 + [δψt
ts]

×)(v̂t
ts − δvt

ts)

≈ Ĉb
sĈ

s
t (v̂

t
tb − δvt

ts + [δψt
ts]

×v̂t
ts) + Ĉb

s[δψ
s
sb]

×Ĉs
t v̂

t
ts

= v̂b
tb − Ĉb

sĈ
s
t (δv

t
ts + [v̂t

ts]
×δψt

ts)− Ĉb
s[Ĉ

s
t v̂

t
ts]

×δψs
sb

and hence, we can write

02,1 − hps,v(ẑ) ≈ Hps,vx+ εps,v (24)
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where

Hps,v Δ= −A
[
03,3 Ĉb

sĈ
s
t Ĉb

sĈ
s
t [v̂

t
ts]

× Ĉb
s[Ĉ

s
t v̂

t
ts]

× 03,6

]
.

(25)

For the pseudo observations of roll in (13b) we note that

[δψt
tb]

× = Ĉt
bC

b
t − I3

= Ĉt
sĈ

s
bC

b
sC

s
t − I3

= Ĉt
sC

s
t + Ĉt

s[δψ
s
sb]

×Cs
t − I3

≈ [δψt
ts]

× + Ĉt
s[δψ

s
sb]

×Ĉs
t

(26)

which further gives

ψ
t
tb ≈ ψ̂tb

t − δψt
tb

≈ ψ̂tb
t − δψt

ts − Ĉt
sδψ

s
sb.

(27)

This results in

0− hps,φ(ẑ) ≈ Hps,φx+ εps,φ (28)

where

Hps,φ Δ= −bᵀ
[
03,6 I3 Ĉt

s 03,6

]
. (29)

The linearized measurement matrix H in (14) can now be

obtained from

Hps Δ=
[
(Hps,v)ᵀ (Hps,φ)ᵀ

]ᵀ
. (30)
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