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Abstract— Signal processing based on software defined radio
(SDR) carries out innovative potential for advanced data fusion
algorithms. In the field of satellite navigation, SDR is a key
enabling technology for new integration approaches based on
GNSS base band processing. As multipath and non-line-of-
sight (NLOS) errors are the main challenge for GNSS in
automotive applications, much research for the mitigation of
those influences is still ongoing. Existing localization approaches
are suitable to a limited extent for meeting the requirements
of services and applications, especially in the context of driver
assistance and autonomous driving where a proper computation
of confidence levels is of mayor importance. If unhandled,
multipath and NLOS errors introduce a bias to the GNSS
observations resulting in an overestimation of the position con-
fidence which violates the integrity of subsequent applications.
This paper proposes an integrated probabilistic approach for a
continuous implementation of the Bayesian framework within
the signal processing of GNSS receivers. Special attention will
be on modeling ambiguities on signal level that in traditional
GNSS receivers ends up in multipath or NLOS errors. The idea
is based on the theory of multiple object tracking to resolve
ambiguities within the measurement space. The outcome of
this paper is a model which condenses local error sources as
generic system properties and proposes a Bayesian filter which
improves the integrity and accuracy of the position estimate in
urban areas without additional environmental knowledge. This
approach is a step towards the applicability of low cost GNSS
for safety relevant applications in the automotive area.

I. INTRODUCTION

Localization is of steadily increasing importance for

nowadays and next generation ADAS and ITS applications.

Especially in the context of autonomous driving with de-

manding requirements for integrity and availability, current

mass market solutions are not able to provide an appropriate

level of quality. Nevertheless, from mass-market point of

view (service providers and car manufacturers), GNSS is still

the most appropriate technology as it provides a precise and

available service for low cost applications.

Unfortunately, GNSS was intentionally designed for avi-

ation and maritime applications and the protection level

definitions which have been adopted and extended by EGNOS

do not apply for automotive applications [1]. The mayor

reason for that is the lack of a proper modeling of local error

sources like Non-Line-of-Sight (NLOS) or multipath effects.

The offset, which is introduced to the GNSS raw mea-

surements by multipath, leads to a degraded performance

of the estimated uncertainty in the final position estimate.

Probabilistic data fusion implementations often tend to violate
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their estimated confidence interval, as an unobservable offset

in the pseudorange measurements cannot be handled by the

Bayesian filter framework and therefore results in an unob-

servable position bias in the state estimation. These influences

cause false alarms in subsequent applications and become

more relevant, as future applications will advance into inner

cities and urban areas where buildings and urban vegetation

prevent the GNSS signal from directly arriving at the receiver

antenna. Well known data fusion approaches try to improve

the localization quality by the extension of the receiver with

additional sensors like yaw rate, acceleration or velocity

information. These approaches are still subject to multipath

and just extend the time until the position estimate violates

the confidence interval. The second group of algorithms

adds a dedicated multipath model, which helps to identify

the corrupted satellite measurements. In literature there are

different approaches to reduce the influence of multipath to a

position solution. An overview of these so called Multipath

Mitigation algorithms is given in [2]. A straightforward

approach is identifying multipath by considering digital maps

with modeled 3D buildings in order to validate the direct

line of sight to each satellite. In the Bayesian framework

this approach is used to predict multipath affected GNSS

observations [3]. Another algorithm for determining NLOS

with the help of environmental knowledge is described in

[4][5]. A Non-Line-of-Sight signal detection respecting the

satellite shadows in an urban scenario is presented in [6].

Another group is based on additional hardware like a

multi-antenna approach in [7] for checking the consistency

of the GNSS signal reception. An infrared camera to identify

NLOS measurements is proposed in [8]. As these approaches

cause additional costs to implement and do not rigorously

implement the Bayesian framework (which is assumed to be

required for safety relevant applications) the next group is

of significant interest. It uses statistic tests and probabilistic

filtering for the identification and mitigation of multipath. A

known representative in this category is Receiver Autonomous

Integrity Monitoring algorithm (RAIM) or an extension called

Probabilistic Multipath Mitigation (PMM)[9].

This approach was implemented within the European

research project GAIN [10] and was able to show the benefits

regarding the improvement of the integrity in a safety relevant

automotive use case. The localization framework was based

on the integration of GALILEO together with the multipath

mitigation algorithm and lane level accurate digital maps.

Within this project, the vehicle dynamics like velocity, gear

shift and acceleration have been adjusted based on the current

position on the map in order to improve the efficiency and fuel
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Fig. 1. Safety relevant use case from the European Research project GAIN
— Due to wrong confidence estimation the vehicle is supposed to drive on
the exit ramp and is reducing the velocity autonomously. This is a dangerous
false alarm.

consumption of vehicles. Image 1 shows a typical scenario of

a false alarm, based on a wrong position integrity. Obviously

the current position estimate of the solid vehicle is wrong

in terms of mean value and covariance. Due to the violated

integrity interval the vehicle is supposed to drive on the exit

ramp and is reducing the velocity autonomously. As in reality

the vehicle is still on the highway, this false alarm causes a

dangerous situation.

This paper evaluates the possible extension of multipath

mitigation algorithms for software defined GNSS under

special consideration of the improvement of confidence levels

in urban areas. As all approaches mentioned before are

implemented on observation level, they suffer from the GNSS

receivers internal signal processing, which is performed to

provided the observation data. This signal preprocessing on

radio level is, especially in ambiguous situations falsifying

the error distribution of the measures which are provided.

That means subsequent systems tend to underestimate the

influence of multipath and NLOS influences. The core idea

is to extend the existing signal preprocessing of GNSS

receivers and to include the Bayesian framework at the

earliest possible receiver stage. An approach on this level is

also described in [11] with special consideration of tracking

time-delays, amplitudes, phases and a Bayesian multisensor

navigation incorporating pseudorange measurements and a

multipath model is presented in [12]. The basic assumption

of this approach is not to identify corrupted signals and

weighting them down within the filtering process — it

is to avoid, that a GNSS receiver provides those faulty

measurements at all. If an ambiguous situation appears,

this information is shared to the subsequent application, in

order to prevent false alarm decisions. This philosophy is

an integral part for leveraging GNSS technology for safety

critical ADAS functions. The focus of this approach is to

reduce restrictions to a minimum in order to guarantee that no

information, especially multimodalities in the measurement

space are discarded. One mayor problem from multipath

mitigation perspective is the early evaluation of the auto

correlation function for each satellite and the irreversible

assignment of a dedicated correlation maximum to the

pseudorange measurement. The proposed approach uses the

idea of well-known tracking implementations, as derivatives of

probabilistic data association (PDA) in order to deal with the

multimodal representation of all correlation maxima within

the correlation function and to resolve ambiguities within the

Bayesian framework.

A. Software defined GNSS

The idea of signal manipulation on radio level is the the

so called software defined radio (SDR). In general the idea

is to substitute signal processing hardware on radio level by

a software implementation. This approach is very demanding

in terms of computing power and data throughput but is very

interesting from scientific point of view as it allows a flexible

implementation and validation of complex signal processing

algorithms. In the field of satellite based navigation it is

called Software Defined GNSS and it compensates hardware

evaluation kits. A famous implementation of a GNSS software

receiver is provided by the GNSS SDR project [13]. Complex

algorithms like the proposed GNSS pseudorange error density

tracking using a Dirichlet Process Mixture in [14] or the

Bayesian approach to multipath mitigation in GNSS receivers

in [11] where implemented based on this technology. In the

course of this chapter the high level idea of the proposed

algorithm is shown and where it is logically set in the context

of the receiver architecture.

A classical GNSS receiver can be split up into two

algorithmic blocks — the signal acquisition and the signal

tracking stage 2. The signal acquisition is in charge to

evaluate the signal in space for the absolute presence of

satellites. Once the acquisition unit has detected the presence

of a given satellite and estimated the rough offset on the

residual carrier and the code phase delay with respect to the

local replicas, the fine synchronization stage, named signal

tracking, is activated to refine these values, keep track and

demodulate the navigation data from the specific satellite.

This fine synchronization is fundamental for measuring

the pseudorange, based on code phase measurements, or

also the carrier phase measurements. The whole signal

tracking process is a two-dimensional (code and carrier)

signal replication process. In classical implementations it

consists of two interoperating feedback loops, a Delay Lock

Loop (DLL) for code tracking and a Phase Lock Loop (PLL)

for carrier tracking [15].

These classical strategies cannot deal well with multiple re-

ceived signals as they keep track of each satellite signal under

the assumption that the signal received is unimodal. As a result

of this assumption the tracking loops do irreversibly assign

the tracking parameters for each cycle to the pseudorange and

Doppler measures. If the tracking loop is locked on a reflected

signal, this influence and the resulting inaccuracies cannot be

provided with these measurements. Thus, a statistical filter

in a subsequent signal processing suffers from the GNSS

receivers internal signal preprocessing. The logical approach

is to perform the signal tracking within a statistical filter that

is able to deal with measurement ambiguities.

The proposed algorithm is based on the assumption that

a satellite presence originating from the signal acquisition
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Fig. 2. Implementation of the Bayesian framework within the software
receiver.

stage is true, as this observation is a long term evolution and

very robust against short term varying influences. Given this

indication, the proposed architecture will keep the existing

stage of signal acquisition and start from the signal tracking.

The signal received at the input of a GNSS receiver in a

additive Gaussian noise environment can be represented by

yRF (t) =

Ns
∑

i=1

rRF (t) + ηRF (t) (1)

It is assumed that each of the signals Ns is useful and

that s is corresponding to the satellites visible [15]. For each

satellite signal in space i, which is received the following

composition can be assumed:

rRF i = Aici(t−τi)di(t−τi)cos(2π(fRF−fd)t+ωRF i) (2)

where

• Ai is the amplitude of the ith) useful signal,

• τi is the code phase delay introduced by the transmission

channel,

• ci(t− τi) is the spreading sequence which is given by

the product of several terms and it is assumed to take

values in the set /−1, 1/,

• di(t− τi) is the navigation message,

• ωRF i is the initial carrier phase offset,

• fRF is the carrier frequency, depending on the GNSS

signal band.

The spreading sequence ci(t) can be expressed as ci(t) =
c1,i(t)c2,i(t)sb,i(t), where c1,i is the periodic repetition of the

primary spreading code, c2,i the secondary code and sb,i(t)
is the subcarrier signal. In multipath environment, the number

of received satellite signals s increases and Ns splits into

Nx and Nmp where x indicates the valid signals and mp the

signals received via multipath. Equation 1 extends to

yRF (t) =

Nx
∑

i=1

rRF (t)+ηRF (t)+

Nmp
∑

i=1

rRF (t)+ηRF (t). (3)

The main focus of this work is to prospect the decomposi-

tion of equation 3 from the theoretical perspective and how

it can be integrated with the Bayesian filter framework. Most

approaches in literature neglect either NLOS or multipath

effects and — most likely — there are many other local

influences not covered at all by any high level multipath

modeling. In order to incorporate all local signal disturbances,

the approach is to observe all influences from the earliest

stage in the GNSS signal processing. Multipath errors are

said to be hard to observe, as they are caused by a rapidly

changing local environment. In a multipath scenario the

GNSS receiver always provides one of the multiple received

satellite signals while the internal signal processing is trying to

estimate the most likely solution. Unfortunately, the solution

provided, is not always true. This approach is working on the

result of the autocorrelation function in which all of these

cases are reflected. The idea is to not explicitly differentiate

between the signal influences like NLOS, multipath or further

disturbances as they all can be found as special severity

within the autocorrelation function. Multimodalities in this

representation caused by those influences will be statistically

evaluated and respected. The lower part of image 2 represents

the general idea more clearly. The Bayesian framework is

incorporated within the signal tracking block using the result

of the autocorrelation as the basis for generating multiple

measurements.

II. BAYESIAN APPROACH ON RF LEVEL

In this section the theoretical background of the proposed

system is discussed. The general idea is based on multiple

object tracking algorithms [16] and was initially implemented

as the probabilistic multipath mitigation algorithm (PMM) [9]

on observation level. As described in I the generation of this

observation data is already subject to a loss of information.

Additionally, this approach can result in high computational

load with a large number of satellites. In order to overcome

these limitations, the receiver internal signal processing shall

partly be substituted by the proposed approach.

Multiple object tracking algorithms (MOT) can be divided

into two groups. The first one is the group of single instance

filters, which are using one single filter instance for represent-

ing multiple objects within a scene. From a statistical point

of view, this can be regarded as a multi-modal probability

density function (PDF), where each mode represents one

single object. Currently, the probability hypothesis density

(PHD) filter family is often used for single instance filter

implementations. The second group—the so called multiple

instance filters—uses one distinct filter instance for each

object hypothesis. For the automotive field and its limited

computation resources, the latter group is of high practical

relevance as its computational demand is small compared to

single instance filters. Therefore, this paper is focused on an

implementation based on multiple instance filters. Fortunately,

the main challenge for MOTs—the solution of the data

association problem—does not exist for the proposed GNSS

related solution, as it is initially unequivocal by CDMA from

which satellite the measurements do originate. That means

there is a fixed number of filter instances regarding the number

of satellites being observed, where for each time step k the

measurement set {z}, originating from the autocorrelation

function can directly be associated to.

A Straightforward approach for assigning several obser-

vations to an object without a hard association decision is
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the probabilistic data association (PDA) method [17]. This

method also assumes that the objects already tracked do exist.

The state of each object is updated by each of the observations

{z}k = {z1k, . . . , z
nz

k } weighted by its likelihood p(zik|xk)
resulting in a Gaussian mixture representation. The subsequent

approximation of the Gaussian mixture by a single Gaussian

is a remaining problem. It needs to be evaluated to which

extent this assumption affects the performance under different

multipath situations.

A typical situation for GNSS signal tracking under Multi-

path in the code domain is illustrated in 3. Several correlation

maxima, each representing a possible candidate for the true

code phase delay τ̂ , will be assumed as measurements

z
1, . . . , zN ∈ {z}, where N is a system parameter defin-

ing the number of phase delays to be considered. The

measurement set {z} consists of a subset of multipath

measurements {z}mp and one measurement zx representing τ̂ .

The subsequent task is to identify if zx ∈ {z} and to separate

z
x from {z}mp. In order to reach this goal a set of all possible

association hypotheses is defined where each hypothesis is

represented by a discrete association event in Am
i ∈ Am ⊂ A.

The subsets Am contain all association events Am
i assuming

that m is the number of valid phase delay measurements.

As previously mentioned, there is either one valid phase

delay τ̂ and additional delayed measurements - this set is

defined to be A1 (multipath scenario) or none of the phase

delays is representing the true delay - which is subset A0

and represents a NLOS scenario. From these assumptions

the cardinality of Am is derived by
(

N
m

)

= N |m = 1. For N
phase delays, the set of association events is given by

A =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

A0 = ANLOS =
{

A0
0 if {z} = {z}NLOS

A1 = AMultipath

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A1
1 if z1 is LOS

...

A1
N if zN is LOS

(4)

A. State Update

The core idea of the PGT is to condition the posterior state

(PDF) on the association events, that is

p(xk|Zk) =
∑

Am
i
∈A

p(xk|Zk, A
m
i )P (Ai|Zk). (5)

The conditioned posterior PDFs p(xk|Zk, A
m
i ) can be

determined by performing standard filtering operations. The

association probability P (Am
i |Zk) is determined by applying

the Bayes rule:

P (Am
i |Zk) = η · p({z}k|A

m
i ,Zk−1)P (Am

i |Zk−1). (6)

The unconditional association probability P (Ai|Zk−1) is

assumed to be independent from previous measurements

P (Am
i |Zk−1) = P (Am

i ). The prior distribution of this

probability is assumed to be uniformly distributed. Thus,

P (Am
i ) cancels out in equation 6.

The likelihood for the appearance of the measurement set

{z}k needs to be split into several components. As defined

previously, the set of measurements consists of one true

measurement and a set of clutter measurements. For the

sake of notational consistency the true measurement will

be assumed as set of measurements containing actually one

element. Both sets are assumed to be independent where the

likelihood can be written as

p({z}k|A
m
i ,Zk−1) = p({z}xk|A

m
i ,Zk−1)p({z}

mp
k |Am

i ,Zk−1)

and for multipath measurements, independence between

two time points is assumed. That assumption derives

p({z}k|A
m
i ,Zk−1) = p({z}xk|A

m
i ,Zk−1)p({z}

mp
k |Am

i )
(7)

Each of the two likelihood expressions can be split

up into a cardinal and a spatial likelihood. The cardinal

likelihood defines the probability for a certain number of

true or multipath measurements. It is assumed that the

presence of a true measurement is independent from previous

measurements and the cardinal measurement likelihood is

given by P (nx|A
m
i ), while the cardinal multipath likelihood

is denoted as P (nmp|A
m
i ). The sum of both cardinalities is

given by nz = nmp+nx. The spatial likelihood is defined by

the product of the spatial likelihoods for each measurement.

For true measurements it is derived from the Kalman filter

equations as p(zik|Zk−1) = Λi
k. The spatial likelihood for

the set of true measurements is given by

p({z}xk|A
m
i ,Zk−1) =

nz
∏

j=1

(Λi
k)

Cm
nz

[i,j]. (8)

For multipath measurements, the single likelihoods are

assumed to follow a rayleigh distribution. Thus, the overall

spatial multipath likelihood is given by

p({z}mp

k |Am
i ) = V −(nz−m). (9)

Inserting these four likelihood terms into equation 7 gives

p({z}k|A
m
i ,Zk−1) =

P (nx|A
m
i )P (nmp|A

m
i )F−(nz−m)

nz
∏

j=1

(Λi
k)

Cm
nz

[i,j].
(10)
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B. Proposed Sensor Model

The number of true measurements nx is supposed to be

either 0 or 1. It follows a discrete uniform distribution

P (nx|A
m
i ) =

PDPE

n
for nx > 0, (11)

PD denotes the detection probability (true positive) and

PE the existence probability. From the condition that the

satellite to be tracked is given, PE is set to 1. The multipath

density is modeled using a Poisson distribution determined

by the parameter λ which represents the expectation value of

the number of multipath measurements within the observed

correlation frame, that is λ = E[nmp/F ]. Deeper consider-

ations on distribution assumptions and noise behaviour are

evaluated in [14]. With this parameter the distribution of the

multipath cardinality is given by

P (nmp = k) =
(λ · F )k

k!
e−λ·F . (12)

C. Filter Equations

The association probabilities

P (Am
i |Zk, i = 0) =

1− PDPE

1− δPE

=
1− PD

1− δ
(13)

and

P (Am
i |Zk, i > 0) =

PDnm
z λ−m

n(1− δ)

nz
∏

j=1

(Λi
k)

Cm
nz

[i,j]
(14)

where nm denotes the falling factorial n!/(n−m)! and

the auxiliary variable δ is defined as

δ = PD −
PD

n
·

min(n,nz)
∑

m=1

(nz)
m · λ−m

(nz
m )
∑

i=1

nz
∏

j=1

(Λi
k)

Cm
nz

[i,j]
. (15)

III. DISCUSSION AND CONCLUSION

In this paper, a generalized approach for an integrated

multipath mitigation strategy for software defined GNSS

was proposed. The idea is to improve the integrity of the

final position solution by considering the ambiguities in the

autocorrelation functions of the code phase delay caused by

multipath and NLOS effects. This is reached by rigorously

integrating the Bayesian framework until the signal level and

adopting approaches from the field of multiple object tracking

under clutter. The next steps are the implemenatation within

the proposed GNSS software receiver from section I-A and

the evaluation of the system. A particle filter will be used in

order to implement the equations derived in section II.
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