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Abstract - In order to improve the accuracy of INS/GPS 
integrated navigation system during GPS signals blockage, 
an effective and low-cost method is to design the 
corresponding linear or non-linear predictor to predict the 
position and velocity errors between INS and GPS during 
GPS blockage and then to correct the results of INS. 
Based on the distributed data fusion system, a novel 
hybrid prediction method that combines the radial basis 
function network (RBFN) and Kalman filter (KF) 
together was proposed. The predicted value is divided into 
two parts. One part is the innovation component of KF 
and the other is the state prediction component of KF. The 
former is predicted with the designed 6 RBFNs; the latter 
is predicted with two distributed KFs. Through practical 
experiments and data processes, it is shown that the 
proposed hybrid predictor possibly improve the accuracy 
of INS during GPS blockage. 
 
Keywords: distributed information systems, error 
correction, GPS outages, inertial navigation, Kalman filter, 
radial basis function networks. 
 

1 Introduction 
With the emergence of the low-cost MEMS gyroscopes 

and accelerometers, the strapdown inertial navigation 
system (INS) has been widely used in the land vehicle 
navigation system [1, 2]. The biggest problem in INS 
application lies in its lack of a long-term accuracy due to the 
drift errors of inertial sensors [3, 4]. In the land vehicle 
navigation application, one of the most effective methods is 
to adopt the INS/GPS (Global Position System) integrated 
navigation system [5-7]. The most important advantage of 
GPS is that it does not have accumulation errors over time 
and thus can provide the references for INS. 

When the land vehicle drove in urban center or in the 
mountains or tunnels, GPS signals are often blocked or not 
available, so there is no corresponding references for INS. 
In this situation, although we can adopt other auxiliary 
sensors or systems, such as the odometer, the electronic 

compass, and the digital road map system, to provide the 
complementary or redundant information, an effective and 
low-cost method is to design the corresponding linear or 
non-linear predictors to predict the INS position errors 
or/and velocity errors during GPS blockage or outages [8-
16]. The predictor is actually a dynamic system, which 
includes the parameters that are needed to be tuned. When 
GPS signals are normal, the predictor is trained to memorize 
the dynamic characteristics of the system through the 
recursive updates of the parameters. Once GPS signals are 
not available, the predictor can be used to predict the 
position or/and velocity errors between INS and GPS, which 
can further be used to correct the results of INS and thus 
improve the accuracy of the integrated navigation system 
during GPS blockage or outages. 

The researches on the predictors were mainly focused on 
the choices of the architecture and the training algorithm to 
meet the needs of fast convergence, high accuracy and 
flexible suitability to the mobility of the vehicle. Naser EI-
sheimy and his research group in Canada researched several 
kinds of artificial neuron networks (ANN) predictors [8-15]. 
Reference [8] studied a recursive least-squares lattice 
(RLSL) predictor, which weighted coefficients can be 
updated recursively at each time period and is suited for the 
real-time implementation. The performance of RLSL is only 
better in relatively lower vehicle dynamic situations but 
degrades in higher vehicle dynamic situations. Reference [9] 
studied a multi-layer perception (MLP) network to predict 
INS latitude and longitude errors. Regarding the limit of the 
real-time capability of MLP ANN, references [10-12] 
suggested an alternative ANN architectureradial basis 
function network (RBFN) to predict the position errors 
and/or velocity errors of INS. The RBFN generally has 
simpler architecture and faster training procedure than the 
MLP ANN. Furthermore references [13-15] studied an 
adaptive neuron-fuzzy inference system (ANFIS) network. 
Generally the increased accuracy usually means using a 
higher order in the model or a more complicated 
architecture, which often results in more complicated 
calculation and lower training speed. References [13, 16] 
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studied a hybrid prediction model, which combined the 
ANN and KF. This hybrid method made use of the priori 
dynamic characteristics buried in the KF’s state-space 
equation and achieved higher accuracy with the tactical 
grade inertial measurement unit (IMU), differential GPS and 
position and orientation system (POS) [16]. However, 
making use of POS inevitably increases the cost of the 
whole navigation system and it is not suitable for the low-
cost land vehicle navigation system. What’s more, their 
RBFN inputs are the accelerations and the angular rates 
measured by inertial sensors, which often include a large 
amount of measurement noises. The noises make the RBFN 
training procedure become much more difficult since more 
neurons may be needed and the corresponding training time 
inevitably increases accordingly, and what is worse is that it 
may be divergent.  

In practical applications, we should balance between the 
accuracy, the real-time capability, and the suitability. The 
main research aim of the paper is to explore a low-cost 
loosely coupled INS/GPS integrated navigation system that 
can achieve better balance between the accuracy, the real-
time capability, and the suitability even during the periods 
of GPS blockage or outages. Based on the distributed data 
fusion method, this paper analyzes and compares the 
characteristics of the RBFN and a kind of linear neuron 
network with the time delay at its input (TDLN). 
Accordingly we propose a distributed low-cost loosely 
coupled GPS/INS integrated navigation system with the 
ANN and KF combined prediction method. According to 
the experiments and data processing results, we have 
conducted the detailed analyses and comparisons and then 
drawn a conclusion finally.  

2 The design of the predictors  

2.1 The distributed data fusion system 
 As mentioned earlier, the errors of INS often accumulate 

with time due to the drift errors of inertial sensors. We can 
make use of the complementary and redundant data 
provided by GPS to undermine their effects. Although the 
classical KF exists limits in terms of non-Gaussian and non-
linear problems and can only get the corresponding 
suboptimal estimations in many practical situations, it is still 
one of the most popular fusion algorithms due to its 
simplicity and ease of implementation. Particle filter (PF) 
provides an alternative for KF when dealing with non-
Gaussian and non-linear issues. However, PF’s computing 
load is heavy since it may require a large number of random 
samples to estimate the desired posterior probability density 
[17]. Its computation burden increases exponentially with 
dimensionality of the state space. Indeed, PF is not 
preferable to our INS/GPS integrated navigation system, 
which includes 15 state variables. 

 There are two data fusion architectures that are the 
centralized fusion (also called data level fusion) and the 

distributed fusion (also called state vectors level fusion) 
respectively [6]. Theoretically, the centralized fusion 
approach is the most accurate approach to fuse data, 
assuming that data association and correlation can be 
performed correctly [6]. The distributed fusion is not as 
accurate as the centralized fusion since there is often an 
information loss on sensors data level fusion so as to make 
the state vector and its associated covariance matrix only 
express the quality of the original data approximately. 
However the distributed fusion reduces the computing load 
by the use of the lower dimensional matrices and provides 
the possibility of parallel processing to improve the real-
time performance. What’s more, based on an appropriate 
hardware configuration it can also provide the fault 
tolerance to improve the reliability of the system. Therefore, 
we divide the observations, which are the difference 
between the results of INS and signals from GPS, into two 
groups: one group is the position observations P= PINS—

PGPS=(λ, L, h) T, including the longitude error λ, the 
latitude error L, and the altitude error h; the other is the 
velocity observations V=VINS—VGPS= (vx, vy, vz) T, 
including the east-velocity error vx , the north-velocity 
error vy , and the up-velocity error vz. Separately aided by 
the two groups’ observations, we design a distributed 
loosely coupled INS/GPS integrated navigation system as 
shown in Figure 1, in which VINS, PINS, and AINS denote the 
INS velocity, position, and attitude respectively; Vˆ , Pˆ , 
and Aˆ are the optimal state estimations through two stages 
data fusion and can be used to correct the INS results; VINS_C, 
PINS_C, and AINS_C denote the corrected INS velocity, 
position, and attitude. 

 
The state-space equation of the distributed INS/GPS 

integrated navigation system is expressed as: 
)()()1()1,()( nnnnnn ΓXFX  .           (1)  

Here X(n) is the state vector including 15 state variables, 
which are the longitude error L, the latitude error λ, the 
altitude error h, the east-velocity error vx, the north-
velocity errorvy, the up-velocity errorvz, the pitch error , 
the roll error , the yaw error , and three direction drift 
errors of gyroscopes and three direction bias errors of 
accelerometers, respectively. F(n,n-1) is the state transition 

Figure 1. The distributed loosely coupled INS/GPS 
integrated navigation system. 
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matrix from the previous time point n-1 to the current time 
point n. (n) is the input matrix of the process noise (n). 
The process noise (n) is assumed to be a zero mean white 
noise stochastic process. 

The observation equation can be expressed as follow: 

)()()()(

)()( nvnnn ii  XHz .                      (2)   
Here i equals to 1 or 2, which corresponds to KF_I or 

KF_II in Figure 1 respectively. z(1)(n) is the observation 
vector of KF_I , and z(1)(n)=V=(vx, vy, vz)T. H(1)(n) is 
the output matrix of KF_I, and 
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R(1) is the observation covariance matrix of KF_I, which is 

decided by the accuracy of  GPS velocity signals. Let’s 
assume that these observations are independent of each 
other, and  
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Similarly, the observation vector z(2)(n), the output matrix 
H(2)(n), and the observation covariance matrix R(2) of KF_II 
are expressed as: 

z(2)(n)=P=(λ, L, h)T, 
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R(2)  is decided by the accuracy of  GPS position signals, 
which are also assumed the mutual independent variables. 
On the least mean square (LMS) sense we can get the 
corresponding global optimal fusion result as follows [18]: 
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Here )(
ˆ
)1( nX and )(

ˆ
)2( nX denote the local state estimations 

of the two KFs respectively; )(
ˆ
)1( nP and )(

ˆ
)2( nP  denote the 

corresponding covariance matrices of state estimations of 
the two KFs respectively; )(

ˆ nX  is the global optimal state 
estimation; )(

ˆ nP is the corresponding covariance matrix. 

2.2 The RBFN predictors 
The RBFN is highly nonlinear and can be used to model 

complex input-output mapping [19]. Compared to other 
nonlinear networks, the RBFN is relatively simpler and 
often takes much less time for training, which is important 

for the real-time application. However the RBFN often 
requires more neurons than the standard feedforward 
backpropagation network. The most common used radial 
basis function in the RBFN is the Gaussian function. A 
typical FBFN is a three-layer network with an input layer, 
an intermediate layer of Gaussian units and an output layer 
of linear summation units [19]. Figure 2 is the RBFN with 
single input and single output. 

 
Let’s assume that xk is the input of the RBFN at time point 

k; yk is the output of the RBFN at time point k; ui is the 
output of the ith Gaussian neuron, which is expressed as: 

])(

2

1

exp[

2

i

ik
i

cxu 
 , i=1, 2, …, l .              (5) 

Here, l is the number of Gaussian neurons; ci is the center 
parameter of the ith Gaussian neuron; i is the standard 
derivation parameter of the ith Gaussian neuron. It can be 
seen that the output of each Gaussian neuron depends on 
how close the input xk is to each neuron’s center parameter 
ci. The standard derivation parameter i in each neuron 
determines the width of an area in the input space to which 
each neuron responds. The final output yk of the RBFN is 
expressed as: 

   l

i i

ik
ik

cxwy
1

2

])(

2

1

exp[                          (6) 

Here，wi (i=1~l) is the weighted parameters of the linear 
combiner. 

For the RBFN, the parameters that need to be tuned are ci, i and wi. The training procedure of the RBFN can be 
divided into two stages. For the first stage a non-supervision 
learning rule called K-means clustering algorithm can be 
adopted; for the second stage the gradient descent method 
on the LMS sense is usually used to adjust the weighted 
parameters wi [19].   

In the prediction application during GPS signals blockage 
or outages, we design 6 RBFNs with single input and single 
output as above. The inputs are the longitude, the latitude, 
the altitude, the east-velocity, the north-velocity, and the up-
velocity of INS respectively for each RBFN. The 
corresponding outputs of 6 RBFNs are the errors between 
INS positions & velocities and GPS positions  &  velocities  

 
Figure 2. The RBFN with single input and single output 
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respectively. The reason that we design 6 RBFNs with 
single input and single output lies in two considerations: on 
the one hand, since the different position or velocity signals 
often have the absolutely different characteristics, they 
should be modeled and characterized separately; on the 
other hand, 6 RBFNs could be implemented in parallel to 
meet the requirement of the real-time application. A simpler 
RBFN with single input and single output obviously takes 
much less time for training than a comparatively 
complicated RBFN with more inputs and outputs.   

During our researches, we also found that the RBFN was 
sensitive to the input noises, which make the corresponding 
prediction errors increase. Let’s assume that the RBFN input 
is a sinusoidal signal with am magnitudes, f1 Hz frequencies, 
and 1 initial phases and the input includes an additive 
random noise u, which is the Gaussian white noise with zero 
mean. The target output of the RBFN is another sinusoidal 
signal with the same magnitudes, f2 Hz frequencies, and 2 
initial phases. One thousand groups of data are simulated. 
The first half groups are used for training the RBFN and the 
second half groups are used for verification and prediction. 
In the different signal to noise ratios (SNR) and the different 
f1 to f2 ratios (f1/f2), we carry out the simulations and get the 
prediction outputs and the corresponding prediction errors, 
which are shown in Table 1. At the same time we also give 
out the prediction errors of a linear neural network with 200 
steps time delay at the input (simply called TDLN). 
Compared with the outputs of the TDLN, we can see that 
the designed RBFN is much more susceptible to noises than 
the TDLN. With the SNR decline in input signals, the 
RBFN prediction errors increase greatly. It is known that the 
measurement signals of inertial sensors often include 
enormous random noises due to the drift errors of inertial 
sensors and some other environmental related factors. 
Although we can carry out filtering process to reduce the 
noises level partly, the measurement signals coming from 
inertial sensors still includes much more fluctuations 
compared to the results of INS. The results of INS are the 
positions, velocities, and attitudes of the vehicle obtained by 
the integral calculation. They are often much smoother than 
the signals directly from inertial sensors. Therefore we use 
the positions and velocities of INS as the 6 RBFNs inputs 
instead of the angular rate or acceleration signals. 

When there is a linear relationship between the inputs  
 

 
 
 
 
 
 
 
 
 
 
 

and the outputs at f1/f2 =1 and  =0, the corresponding 
linear network that has not only fast training speed, but also 
high prediction accuracy, is a better choice. However when 
there is a nonlinear relationship between the inputs and the 
outputs, for example at f1/f2 =1/2 and  =/4, the RBFN is 
obviously better than the linear network.  

2.3     The hybrid predictor combined the KF 
with the RBFN 

No matter what it is linear or non-linear, the predictor 
designed above is modelled according to the input and the 
output data and does not make use of any priori motion and 
dynamic characteristics of the navigation system at all. Thus 
in high vehicle mobility situations or over long term of GPS 
blockage or outages, the trained predictor in the last time 
period may be totally not suited for the following time 
period. The suitability of the model is degraded and we 
often cannot obtain the expected accuracy at all. As we have 
known, the state-space equation of KF includes a large 
amount of priori information about the motion of the body 
and reflects the dynamic characteristics of the navigation 
system. How do we use it? The recursive calculation 
procedure of KF includes the prediction update and the 
observation update two periods. The prediction update 
process of KF is to get the state prediction at the current 
time point n according to the state estimation at the last time 
point n-1 [18]. The prediction update process is up to the 
corresponding state transition matrix F(n,n-1), which is 
derived from the equations of inertial navigation calculation 
and buries a large amount of information on the dynamic 
characteristics of INS. During the recursive process the state 
transition matrix F(n,n-1) should continuously acquire the 
position, the velocity, and the attitude of the body from INS 
to update itself at each period. During GPS blockage or 
outages, we can only make use of the latest updated 
observations from GPS. Although the Kalman filtering 
process is not perfect because of the lack of the observations 
updating from GPS, it still can provide the corresponding 
dynamic information of INS partly. So we combine the KF 
and the RBFN to design a kind of hybrid predictor. We 
divide the state estimations )(

ˆ
)( niX of KF, which reflects the 

differences between the results of INS and the observations 
of GPS, into two components. One is the state prediction 
component )1|(

ˆ
)( nniX  from the prediction update period; 

Table 1.  Comparisons of the TDLN and the RBFN predictors. 
Input-output signals TDLN RBFN 

Order 
number SNR 

(dB) f1/f2 
Phase 

difference  

Training  
performance 

(MSE) 

Prediction 
Performance 

(MSE) 

Training 
 performance 

(MSE) 

Prediction 
Performance 

(MSE) 
1 40 1/1 0 2.486010-7 1.584110-6 8.582110-5 8.854810-5 
2 30 1/1 0 3.521610-6 1.465210-5 8.225810-4 1.250010-3 
3 20 1/1 0 2.353410-5 1.249810-4 7.468010-3 8.900010-3 
4 40 1/2 /4 0.3783 0.8741 6.682410-4 7.712810-4 

SNR is just for the RBFN input signals. The training performances of the TDLN are gained at 3 ~ 6 epoch; the training performances of 
the RBFN are gained at 500 epoch. Simulations are carried out with the help of MATLAB Neural Network Toolbox. 
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the other is the innovation component )(
ˆ
)( niX  from the 

observation update period. And there are: 
)(

ˆ
)1|(

ˆ
)(

ˆ
)()()( nnnn iii XXX   .            (7) 

Here the state estimations are particularly referred to the 
position errors and velocity errors between INS and GPS. 
After the equation (7) is expanded, we can get: 

)()1|()( )1()1()1( nvnnvnv xxx   ,                     

)()1|()( )1()1()1( nvnnvnv yyy  ,                     

)()1|()( )1()1()1( nvnnvnv zzz   ,                     
)()1|()( )2()2()2( nLnnLnL   ,                     
)()1|()( )2()2()2( nnnn   ,                     

 )()1|()( )2()2()2( nhnnhnh   .                (8) 

 
When GPS signals are available, the distributed KF data 

fusion system works normally and 6 RBFNs are being 
trained in real-time as shown in Figure 3(a). During the 

training stage, the inputs of 6 RBFNs are the longitude L_INS, 
the latitude λ_INS, the altitude h_INS, the east-velocity vx_INS , 
the north-velocity vy_INS , and the up-velocity vz_INS of the 
body from INS respectively. The corresponding outputs of 
them are the innovation components )(

ˆ
)( niX from the 

observation update periods of the two KFs. Through the 
real-time training, 6 RBFNs build up the non-linear 
mappings between the results of INS and the innovation 
components of KFs. When GPS signals are not available, 
although the distributed KF data fusion system cannot work 
completely normally, it still can approximately provide the 
state predictions )1|(

ˆ
)( nniX , which make use of the 

motion and dynamic characteristics buried in the state 
transition matrix F(n, n-1). At this situation, 6 RBFNs work 
as the predictors and provide the predictions of the 
innovation components )(

ˆ
)( niX of KFs. Then the state 

predictions )1|(
ˆ
)( nniX  from the two KFs and the 

innovation predictions )(
ˆ
)( niX form 6 RBFNs are 

respectively summed together to form the local state 
estimations )(

ˆ
)( niX  as shown in Figure 3(b). Then we can 

further carry on the optimal data fusion to get the optimal 
state estimations )(

ˆ nX and finally correct the results of INS 
with them. 

3 Experiments and data analysis 

3.1 Experimental method and setup 

 
We set up the corresponding experimental setup which 

block diagram is shown in Figure 4. It is composed of the 
inertial sensors, data acquisition board, OEMStar low cost 
single-frequency GPS receiver from NovAtel and data 
processing computer. The inertial sensors include three low-
cost MEMS-based gyroscopes and three low-cost MEMS-
based accelerometers. The performance indexes of inertial 
sensors are listed in Table 2. The experimental setup was 
mounted on the vehicle that moved along the track on the 
campus. The inertial sensors data are conditioned, sampled 
and then processed in the computer. GPS signals are 
received by the receiver board and are transmitted to the 
computer through RS232 serial interface. It is very crucial 
to keep the synchronization between inertial sensors’ 
measured data and GPS received signals. We utilized 1 PPS 
(one pulse per second) signal from GPS receiver to be 
synchronizing signal to the data acquisition board. The 

 
Figure4. The block diagram of the experimental setup 

 
(a) Training procedure during GPS normal 

 
(b)Predicting procedure during GPS outages 

Figure 3. Distributed INS/GPS integrated navigation 
system based on the hybrid predictor 
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sampling frequency of inertial sensors measured data is 
500Hz and the updating frequency of GPS signals is 1Hz. In 
the data process, we assumed that the GPS signals 
maintained the latest receiving values during every updating 
period. During the whole experiment procedure, the 
numbers of satellites that could be observed were more than 
4 and the GPS signals were very well.  

 

3.2 Data processes and analysis 

 
We used GPS signals as the references and processed the 

experiment data based on KF data fusion algorithm to get 
the 2D trajectories of the vehicle as shown in Figure 5. In 
Figure 5, the trajectory observed by GPS was a ‘’ shape 
denoted in red solid lines. The computation results of INS 
denoted in blue dash lines exist a huge deviation from GPS 
observations due to the drift errors of inertial sensors and 
some environmental factors. In Figure 5 there are also 
results of two separate KFs which observations are GPS 
positions and GPS velocities respectively. We can see that 

with the help of the observations from GPS the navigation 
accuracy of INS is improved obviously. The corresponding 
position state estimations of KF_I with GPS velocities as the 
observations are not better than that of KF_II with GPS 
positions as the observations. If we further fuse the results 
from two separate KFs, we can get the more accurate results 
that are also shown in Figure 5 in blue solid lines, which 
achieves about 1.2m root mean square (RMS) error 
accuracy relative to GPS positions. 

To verify the effectiveness of the designed hybrid 
predictors during GPS blockage or outages, we intentionally 
cut off GPS signals at 30 seconds and 60 seconds time 
intervals respectively. From Figure 6 to Figure 11, we 
provide the corresponding errors of the longitude, the 
latitude, the altitude, the east-velocity, the north-velocity 
and the up-velocity when they are corrected with the 
different predictors during GPS outages. We can see that all 
positions and velocities during GPS outages are improved to 
some extent with the help of these predictors. Generally, the 
performance of the designed KF-RBFN hybrid predictors is 
superior to that of the RBFN predictors or the TDLN 
predictors alone, which is proved in Figure 6, Figure 8, 
Figure 9 and Figure 11. What’s more, we can see that the 
performance of the KF-RBFN hybrid predictors is 
particularly outstanding in the correction of the altitude and 
the up-velocity. But there are also some exceptions, which 
can be seen in Figure 7 and Figure 10. The accuracy of the 
latitude corrected with the KF-RBFN hybrid predictors is 
equivalent to that with the RBFN predictors or the TDLN 
predictors alone. The accuracy of the north-velocity 
corrected with the KF-RBFN hybrid predictors is a little less 
than that with the TDLN or the RBFN predictors. From 
Figure 6, Figure 9, and Figure 11, we can also see that in 
most instances the performance of the RBFN predictors is 
better than that of the TDLN predictors. The performance of 
the predictor is mainly up to its architecture and algorithm. 
Moreover it is also closely related to the data’s variation 
characteristics, which are very complicated in practical 
situations. Table 3 gives out the RMS errors of the positions 
and the velocities during 30 seconds and 60 seconds GPS 
outages intervals with the different predictors. We can see 
that the accuracy of the predictors is declining with the 
increase of GPS outages time interval. 
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Figure 5. The trajectories obtained with the different 
fusion methods : the trajectory in green dotted lines is 
obtained from KF_I; the trajectory in green dashed lines 
is from KF_II; the trajectory in blue solid lines is from 
the two KFs fusion; the trajectory in red solid lines is the 
GPS reference; the trajectory in blue dashed lines is from 
the calculation of INS. 

Table 2. The performance indexes of inertial sensors. 
Indexes Accelerometers Gyroscopes 

Voltage supply ±12V ±12V 
Supply current <20mA <30mA 

Range ±2g ±20 o/s 
Resolution 0.001g < 0.01o/s 
Sensitivity 2000±30mV/g 500mV/o/s 

Nonlinearity 0.5%FS <0.1%FS 
Band Width 400Hz 60Hz 

Noise 5（g/ Hz）  
Zero bias 0±0.2V ±0.5 o/s 
Sensitivity 

temperature drift  0.5%（max） 

Bias temperature 
drift  ±0.2 o/s 

Bias stability  ±0.02 o/s 
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(a) 30s outage interval             (b) 60s outage interval 

Figure 6. Errors of the longitude during GPS outages.  
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4 Conclusion 
In the INS/GPS integrated navigation system application 

GPS signals are often blocked and unavailable in the urban 
center or in the mountains or tunnels. In order to improve 
the accuracy of INS in such situation, an effective and low-
cost method is to design the corresponding linear or non-
linear predictors to predict the errors between INS and GPS 
and then use the predicted errors to correct the results of 
INS. We analyze and compare the performances of the 

 
 
 
 
 
 

 
 
 
 

 

 
RBFN and the TDLN. For the purpose of achieving better 
balance between the accuracy, the real-time capability and 
the suitability for nonlinearity, we choose and design 6 
RBFNs predictors. However, the classical predictor is 
modeled according to the input and the output data, which 
does not make use of any priori dynamic characteristics of 
the navigation system at all so that in many situations the 
suitability of the model is degraded and cannot realize the 
expected accuracy. In view of the state transition matrix of 
KF, which includes a large amount of information about the 
dynamic characteristics of INS, based on the distributed 
INS/GPS integrated navigation system we propose a hybrid 
prediction method that combines the designed 6 RBFNs and 
two KFs together. 6RBFNs are trained and used to predict 
the innovation components of the state estimations. Two 
KFs are used to provide the state prediction components 
from the last time point n-1 to the current time point n. Two 
parts are summed together to form the expected predictions 
to correct the results of INS. Through the practical 
experiments and data processing, it shows that the designed 
hybrid predictors improve the accuracy of INS during GPS 

Table 3.  RMS errors of positions and velocities with the different predictors during GPS outages. 
TDLN Predictors RBFN Predictors Hybrid Predictors Items 

30s outage interval 60s outage interval 30s outage interval 60s outage interval 30s outage interval 60s outage interval 
Longitude 48.8457 368.5379 6.7454 12.0465 2.9495 8.8609 
Latitude 4.8964 2.7340 4.7034 3.3548 4.9846 3.0110 

Position 
RMS 

Errors(m) Altitude 2.837e+3 2.2941e+4 6.8774e+3 3.2891e+4 0.3719 2.5718 
East 0.5132 2.7722 0.1886 1.5799 0.1162 0.2351 

North 0.2328 0.1926 0.1615 0.2314 0.5534 0.4023 
Velocity 

RMS 
Errors(m/s

) Up 133.4138 248.3301 30.4365 158.1367 0.0190 0.0500 
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(a) 30s outage interval    (b) 60s outage interval 

Figure 11. Errors of the up-velocity during GPS outages.  
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(a) 30s outage interval    (b) 60s outage interval 

Figure 10. Errors of the north-velocity during GPS 
outages.  
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(a) 30s outage interval    (b) 60s outage interval 

Figure 9. Errors of the east-velocity during GPS outages.  
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Figure 8. Errors of the altitude during GPS outages.  
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Figure 7. Errors of the latitude during GPS outages.  
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signals blockage or outages and achieve about 9.3m 2D 
position errors accuracy and 0.45m/s velocity errors 
accuracy with the low-cost and low grade inertial sensors 
and GPS receiver. At the same time, we also see that any 
method has its limits. Although in most cases the designed 
hybrid predictor is better than the RBFN and the TDLN, 
there are also some exceptions because of the complicated 
signals scenarios. 
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