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André R. Braga and Marcelo G.S. Bruno

Division of Electronics Engineering

Aeronautics Institute of Technology
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Abstract—This paper presents a distributed online method
for joint state and parameter estimation in a Jump Markov
NonLinear System based on a distributed recursive Expectation
Maximization algorithm. State inference is enabled via the use of
Rao-Blackwellized Particle Filter and, for the parameter estima-
tion, the E-step is performed independently at each sensor with
the calculation of local sufficient statistics. An average consensus
algorithm is used to diffuse local sufficient statistics to neighbors
and approximate the global sufficient statistics throughout the
network. The evaluation of the proposed algorithm is carried
out on a Terrain Based Navigation problem where the unknown
parameters of the observation noise model contain relevant
information about the terrain properties.

I. INTRODUCTION

In a sensor network, several physically dispersed agents

operate in a way they iterate cooperatively with a common

goal, e.g., the estimation of certain unknown information.

Each network node has direct access to the measurements

(observations) of its own sensors and, using its communication

capacity, the global estimation performance can be improved.

In the ideal case, the optimum performance can be reached

when a fusion center (or leader node) has access to all the ob-

servations (centralized architecture) [1]. More flexible systems

do not even need a controller data fusion node because they

can configure themselves. This provides additional robustness,

since a failure in the fusion center would collapse the whole

system [1]. This flexibility can be reached when the nodes

communicate with the neighbors, sending local data in such a

way that the information is spread over the network [2].

Furthermore, when the nodes are not fully connected, which

means that an information needs multiple hops to be spread

over the entire set of nodes or to a fusion center, the centralized

solution for the estimation problem is very costly from the

communication point of view. In order to design such systems,

there is a need of techniques and methods that use only local

communication between neighbors in a cooperative way.

Among possible solutions, consensus algorithm are promis-

ing where all the nodes in the network aim on reaching an

agreement on some certain quantity. The use of the consensus

averaging technique [3] has already been studied in linear

distributed estimation problems using distributed Kalman Fil-

ter (KF) [4] and also in nonlinear problems using Particle

Filter (PF) [1], [5]–[7]. It uses the advantage of asymptotically

reaching the optimal centralized solution.

One of the drawbacks of this approach is the potentially

prohibitive communication overhead due to the multi-iterative

consensus step [8]. The aim of this work is to investigate

how well the consensus algorithm performs in the problem

of sequential estimation of mixtures with constrained commu-

nication (consensus iterations).

The evaluation scenario consists of the problem of Terrain

Based Navigation (TBN), whose concept is basically the use of

terrain height variations along the aircraft flight path together

with information from the Inertial Navigation System (INS) to

provide high performance position estimates in an autonomous

manner without any support information sent to the aircraft

[9]. It is based on the altitude over sea-level measured by a

barometric sensor and provided by the Air Data Computer

(ADC) and the ground clearance measured with a Radar

Altimeter (RALT) pointed downward. These measurements are

compared with a reference database map [10]. The challenge

with TBN is how to deal with its highly nonlinear, non-

analytical nature [11]. Because of that, it has been a technical

driver for real-time applications of the PF in both the signal

processing and robotics communities that basically concern

on positioning using Geographical Information System (GIS)

containing database with features of surrounding landscape

[12].

When measuring the ground clearance, the RALT will

sometimes react on echoes from tree tops or buildings. It

results in different bias and variance on the observations

depending on the terrain category beneath the aircraft which

can be modeled as a Gaussian Mixture Model (GMM) [10],

[11].

The main objective with the estimation of static parameters

is the learning of complex noise models due to reflections

from the overflown terrain. This enables the positioning task to

work properly without a priori knowledge of the altimeter bias

behavior and also provides the terrain coverage characteristics

as a useful information.

This paper is organized as follows. In Section II, the

system model and notations are presented. In Section III, the

Expectation Maximization (EM) algorithm is described in the

context of sensor networks. In Section IV the solution for

the joint state and parameter estimation based on Sequential

Monte Carlo (SMC) is presented. In Section V, the proposal

of a system identification solution for sensor networks is
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provided. In Section VI, the evaluation of the proposed so-

lution is addressed in the problem of joint TBN and coverage

identification. Finally, in Section VII, some conclusions and

perspectives for future extensions are discussed.

II. SYSTEM MODEL

The topology of the sensor network is modeled as G =
(ν, ε), which is an undirected graphical model where ν is the

set of NS sensor nodes and ε are the set of edges, each as an

unordered pair of distinct nodes. The neighborhood of a node

s ∈ ν is defined as Γ(s) , {r|(s, r) ∈ ε}.
The Jump Markov NonLinear System (JMNLS) at each

node s has the following form,

rs,t ∼ Π(rs,t|rs,t−1), (1a)

xs,t ∼ f(xs,t|xs,t−1), (1b)

ys,t ∼ g(ys,t|xs,t, θrs,t). (1c)

This hybrid system presents a continuous state variable

xs,t ∈ R
nx with transition density (1b) and a discrete mode

variable rs,t ∈ {1, ...,K} where K is the number of modes

following a Markov model with transition probabilities

πkℓ = Π(ℓ|k) = P(rt = ℓ|rt−1 = k). (2)

The complete system state zs,t , {xs,t, rs,t} is observed

indirectly through the measurements ys,t ∈ R
ny whose ob-

servation model is parameterized by a set of mode based

parameters θrs,t as in (1c).

The transition probabilities, that form the K×K Transition

Probability Matrix (TPM), Π, as well as the set of Gaussian

component parameters for each mode, θk = {µk, σk}, are

considered the unknown parameters of the model that must be

identified,

θ = ({θk}
K
k=1,Π). (3)

It must be noticed that, although each node presents its

own independent sequence of discrete states, they all share the

common set of parameters. The main idea of using cooperation

between nodes is to take advantage of this property in the

parameters identification.

Although not directly, the local state estimation can also

take advantage of cooperation since it relies on the estimated

parameters for the observation model. It can be seen then as

a cooperative calibration task.

III. EXPECTATION MAXIMIZATION

The main idea of this Maximum Likelihood (ML)-based

solution [13] is the approximation of the joint log-likelihood

of the set of observations, y1:n, and the so called missing data,

z1:n, by a function which is a projection, Q(θ, θ′), onto space

defined by available observations and a current estimate θ′ of

the likelihood maximizer [14],

Q(θ, θ′) = Eθ′ [log p(y1:n, z1:n|θ)|y1:n]

=

∫

log p(y1:n, z1:n|θ)p(z1:n|y1:n, θ
′)dz1:n. (4)

This strategy is based on the assumption that maximiz-

ing the complete likelihood, p(y1:n, z1:n|θ), is easier than

p(y1:n|θ) [15]. In that y1:n = {ys,1:n}
NS

s=1 and the same applies

to z1:n.

It is assumed here that the nonlinear dynamical system

corresponding to each mode belongs to the curved exponential

family composed of S , ψ and A; respectively, the sufficient

statistics, natural parameter and log-partition function [16].

The complete data likelihood can then be factorized as in (5)

when considering a JMNLS and making use of the indicator

function 1(.) [17] as well as with the assumption that y, x and

r are Independent and Identically Distributed (i.i.d.) between

nodes.

log p(x1:n, r1:n, y1:n|θ)

=

NS
∑

s=1

n
∑

t=1

log p(xs,t, rs,t, ys,t|xs,t−1, rs,t−1, θ)

=

NS
∑

s=1

n
∑

t=1

log Π(rs,t|rs,t−1)

+

NS
∑

s=1

n
∑

t=1

log(g(ys,t|xs,t, θrs,t)f(xs,t|xs,t−1))

=

NS
∑

s=1

K
∑

k=1

K
∑

ℓ=1

n
∑

t=1

log(πkℓ)1(rs,t = ℓ, rs,t−1 = k)

+

NS
∑

s=1

K
∑

k=1

n
∑

t=1

1(rs,t = k)

× (〈ψk(θk), sk,t(ys,t, xs,t, xs,t−1)〉 − Ak(θk)). (5)

Based on (5), the auxiliary quantity, or projection function,

can be written as

Q(θ, θ′) =
NS
∑

s=1

( K
∑

k=1

K
∑

ℓ=1

S
(1)
s,kℓ,n log(πkℓ)

+
K
∑

k=1

(〈

ψk(θk),S
(3)
s,k,n

〉

−Ak(θk)S
(2)
s,k,n

)

)

, (6)

with the introduction of local sufficient statistics, whose com-

putation is detailed in [18].

In order to obtain Ss,n , [S
(1)
s,kℓ,n S

(2)
s,k,n S

(3)
s,k,n]

T , the

EM algorithm requires the computation of densities associated

with a smoothing problem. And, for an online implementation,

the case of additive functionals is possible by means of the

forward-only smoothing techniques [16].

Let then an intermediate quantity be defined as Ts,t(zs,t) ,
Eθ′ [

∑n

t=1 s(zs,t, zs,t−1)|zs,t, ys,1:t], the sufficient statistics

can be obtained from Ts,t(zs,t) by
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Ss,t = Eθ′ [Ts,t(zs,t)|ys,1:t]

=

∫

Ts,t(zs,t)p(zs,t|ys,1:n, θ
′)dzs,t. (7)

It means the additive smoother output can be computed

by the filtered estimate of Ts,t(zs,t) in (7). Furthermore, the

additive structure enables the recursive calculation, being the

basis for the online EM algorithm [19], where the intermediate

quantity is updated at each time step and the new parameter

estimate θ̂t is computed according to (8), where the mapping

Λk(.) is described in [17].

θ̂k = Λk

(

S
(3)
k,n

S
(2)
k,n

)

π̂kℓ =
S
(1)
kℓ,n

∑K

j=1 S
(1)
kj,n

. (8)

Using the additive property for the sufficient statistics [18]

and a stochastic approximation type of forgetting, the recursive

update for the intermediate quantity can be performed as

Ts,t(zs,t)←

∫

[(1− ηt)Ts,t−1(zs,t−1) + ηtst(zs,t−1, zs,t)]

× p(zs,t−1|zs,t, ys,1:t−1, θ
′)dzs,t−1, (9)

where {ηt}t≥1 is a decreasing sequence of step-sizes, which

satisfy the usual stochastic approximation requirement that
∑

t≥1 ηt =∞ and
∑

t≥1 η
2
t ≤ ∞ [17].

IV. SEQUENTIAL MONTE CARLO ONLINE EM FOR

JMNLS

A. Filtering

This work uses the strategy proposed in [18] that utilizes

Rao-Blackwellization for integrating out the discrete state

variable using conditional Hidden Markov Model (HMM)

filters. The idea is to decompose the complete state-space

density,

p(xs,1:t, rs,t|ys,1:t) = p(rs,t|xs,1:t, ys,1:t)p(xs,1:t|ys,1:t).
(10)

Here, the second factor can be approximated using a PF rep-

resented by the set of NP weighted particles {x
(i)
s,1:t, w

(i)
s,t}

NP

i=1.

The first factor of (10) can be approximated with a conditional

HMM filter.

By defining α
(i)
s,t|t−1(ℓ) , P(rs,t = ℓ|x

(i)
s,1:t−1, ys,1:t−1), the

computation of the mode prediction probabilities is performed

by marginalization over rs,t−1, yielding

α
(i)
s,t|t−1(ℓ) =

K
∑

k=1

πkℓα
(i)
s,t−1|t−1(k). (11)

In Rao-Blackwellized filtering, each node s can define the

following quantity,

γ
(i)
s,t(rs,t) , p(ys,t, x

(i)
s,t, rs,t|x

(i)
s,1:t−1, ys,1:t−1)

= g(ys,t|x
(i)
s,t, θrs,t)f(x

(i)
s,t|x

(i)
s,t−1)α

(i)
s,t|t−1(rs,t).

(12)

The update on the mode probabilities can now be calculated

by

α
(i)
s,t|t(ℓ) =

γ
(i)
s,t(ℓ)

∑K

k=1 γ
(i)
s,t(k)

, (13)

and the unnormalized particle weights can be calculated as

w̄
(i)
s,t ∝ w

(i)
s,t−1

p(x
(i)
s,t, ys,t|x

(i)
s,1:t−1, ys,1:t−1)

q(x
(i)
s,t|x

(i)
s,1:t−1, ys,1:t−1)

= w
(i)
s,t−1

∑K

k γ
(i)
s,t(k)

q(x
(i)
s,t|x

(i)
s,1:t−1, ys,1:t−1)

. (14)

The filtering computation can then be summarized by Al-

gorithm 1, considering the use of q(xs,t|x
(i)
s,1:t−1, ys,1:t−1) =

f(xs,t|x
(i)
s,t−1) as the proposal distribution.

Algorithm 1 Rao-Blackwellized Particle Filter (RBPF) for

JMNLS at node s [18]

Input: {x
(i)
s,1:t−1, w

(i)
s,t−1, {α

(i)
s,t−1|t−1(ℓ)}

K
ℓ=1}

NP

i=1

Input: θ̂t−1

1: Resampling if necessary. Result denoted as

{x̃
(i)
s,1:t−1, w̃

(i)
s,t−1, {α̃

(i)
s,t−1|t−1(ℓ)}

K
ℓ=1}

NP

i=1.

2: for i = 1→ NP do

3: Compute {α̃
(i)
s,t|t−1(ℓ)}

K
ℓ=1 as in (11)

4: Draw x
(i)
s,t ∼ f(xs,t|x̃

(i)
s,t−1)

5: Compute {γ
(i)
s,t(ℓ)}

K
ℓ=1 as in (12)

6: Compute {α̃
(i)
s,t|t(ℓ)}

K
ℓ=1 as in (13)

7: Compute unnormalized particle weights w̄
(i)
s,t as in (14)

8: end for

9: Normalize particle weights obtaining {w
(i)
s,t}

NP

i=1

Output: {x
(i)
s,1:t, w

(i)
s,t, {α

(i)
s,t|t(ℓ)}

K
ℓ=1}

NP

i=1

B. Online E-Step

For the computation of the intermediate quantity, from

where the sufficient statistics are obtained in (7), the backward

density can then be extended to

p(xs,1:t−1, rs,t−1|zs,t, ys,1:t−1, θ
′) ∝ f(xs,t|xs,t−1)Π(rs,t|rs,t−1)

× p(rs,t−1|xs,1:t−1, ys,1:t−1, θ
′)p(xs,1:t−1|ys,1:t−1, θ

′),
(15)

by plugging in the filter approximations
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p(xs,1:t−1, rs,t−1 = k|x
(i)
s,t, rs,t = ℓ, ys,1:t−1, θ

′)

≈
NP
∑

j=1

w̃
(i,j)
s,t (ℓ, k)

∑N

u=1

∑K

m=1 w̃
(i,u)
s,t (ℓ,m)

δ(xs,1:t−1 − x
(j)
s,1:t−1),

(16)

with

w̃
(i,j)
s,t (ℓ, k) = f(x

(i)
s,t|x

(j)
s,t−1)πkℓα

(j)
s,t−1|t−1(k)w

(j)
s,t−1. (17)

Finally, the computation of the intermediate quantity,

T̂
(i)
s,t (ℓ) ≈ Ts,t(x

(i)
s,t, rs,t = ℓ), can be done by

T̂
(i)
s,t (ℓ) =

NP
∑

j=1

K
∑

k=1

(

w̃
(i,j)
s,t (ℓ, k)

∑N

u=1

∑K

m=1 w̃
(i,u)
s,t (ℓ,m)

[

(1− ηt)T̂
(j)
s,t−1(k) + ηtst(x

(j)
s,t−1, rs,t−1 = k, x

(i)
s,t, rs,t = ℓ)

])

.

(18)

The Online E-Step can be summarized by Algorithm 2.

Algorithm 2 Online E-Step for JMNLS at node s [18]

Input: {x
(i)
s,1:t, w

(i)
s,t, {α

(i)
s,t|t(ℓ)}

K
ℓ=1}

NP

i=1

Input: {{T̂
(i)
s,t−1(ℓ)}

K
ℓ=1}

NP

i=1

Input: θ̂t−1

1: Compute {{T̂
(i)
s,t (ℓ)}

K
ℓ=1}

NP

i=1 as in (18)

2: Compute Ŝs,t =
∑NP

i=1

∑K

ℓ=1 w
(i)
s,tα

(i)
s,t|tT̂

(i)
s,t (ℓ)

Output: Ŝs,t

The computational complexity of this algorithm is

O(K2N2
P ), which is basically the effort for the computation

of (18). In [18], a way to reduce its complexity was proposed

and relies on path-based smoothing.

The M-Step will be subject to the type of cooperation

considered between nodes.

V. NETWORKED SYSTEM IDENTIFICATION

A lot of focus has been given in the research community

to the problem of distributed parameter estimation in sensor

networks using EM. Some efforts have been concentrated on

estimation of GMM density parameters.

The work on [20] takes the advantage of the fact that E-steps

can be computed at each node and then properly accumulated

by means of some message passing but all the observations

are collected and the EM is performed offline.

The solution proposed in [21] also operates in batches, but

considers a consensus filter in order to make the network reach

an agreement on the global sufficient statistics.

In [22], an algorithm that process sequentially the obser-

vations in a distributed manner is proposed. It relies on a

simplified information exchange protocol by which only one

or few nodes share their own sufficient statistics and presents

an evaluation on a scalar GMM density estimation.

Since, in the problem of navigation for multiple nodes, each

one has its own space state, it was decided to let each one to

run its own independent RBPF. It leads to a more flexible

network and not to very large state space.

A. Centralized Online EM for JMNLS

Within the centralized approach, it is assumed that a fusion

center is available and is able to concentrate all available

information in the network at each time step. The result of

Algorithm 2 is here considered as the output information

provided by each node.

Strictly speaking, the global sufficient statistics is simply the

sum of all local quantities [21], but considering the M-step

in (8), the average of the local sufficient statistics will lead

to the same result because the term 1/NS will be cancelled.

This assumption enable the use of average consensus on the

network without the need for each node to have knowledge

on the total number of nodes in the network.

Then, for the parameter calculation point of view, the

global summary quantities can be viewed as averages of

local summary quantities from all nodes, the global sufficient

statistics St can be calculated as an average like

Ŝt =
1

NS

NS
∑

s=1

Ŝs,t. (19)

In the centralized approach, each node can calculate the

local quantities based on its observations and the current

parameter set. Then, each node sends its local sufficient

statistics to a centralized unit which calculates the estimated

parameters based on both (8) and (19). Finally, the update

on the estimated parameter set is sent back to every node

connected to the graph G, introduced in Section II.

B. Consensus Based Distributed Online EM for JMNLS

In the consensus strategy, a linear iterative method is used

in order to compute, or approximate, the average of the

sufficient statistics in a distributed manner. It requires the

system to operate in two time scales. One is the estimation

step, where both the filtering and identification are performed,

i.e. Algorithms 1 and 2 are executed. The other is the inner

iterative consensus, in that the nodes exchange information

over the network G aiming the approximation of the global

sufficient statistics.

This enables the use of consensus in order to approximate

asymptotically the global summary quantities through infor-

mation diffusion over the network [23]. Between estimation

time steps, each inner consensus iteration q at node s updates

its local state, ζ
(q)
s , with a linear combination of its own state

and the states of its neighbors

ζ(q)s = assζ
(q−1)
s +

∑

r∈Γ(s)

asrζ
(q−1)
r . (20)

The local state is initialized as the output of Algorithm 2,

i.e. ζ
(0)
s = Ŝs,t, and asr is the linear weight on ζ

(q−1)
r at
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node s. Setting asr = 0 means that r /∈ Γ(s). Notice that the

weight matrix A ∈ R
NS×NS has the sparsity defined by the

communication graph G [23].

The choice for the weights should be made in such a way

that

lim
q→∞

ζ(q)s =
1

NS

NS
∑

r=1

ζ(0)r . (21)

This work proposes to utilize the consensus strategy in

order to make the nodes in the network to agree in the global

sufficient statistics, Ŝt, of the network.

In order to comply with the convergence criteria, the follow-

ing conditions are necessary and sufficient for the symmetric

and (doubly) stochastic weight matrix A

1
TA = 1

T , (22a)

A1 = 1, (22b)

ρ(A− 11
T /NS) < 1, (22c)

where ρ(.) denotes the spectral radius of a matrix and 1 is a

vector of ones [3].

The operation performed at each consensus iteration is given

by Algorithm 3. The parameter qmax provides a tradeoff

between accuracy on the global average calculation and re-

sources allocation, such as time and communication load, in

the cooperative task.

Algorithm 3 Average Consensus at node s

Input: Initial internal state at node s: ζ
(0)
s = Ŝs,t

1: q ← 0
2: while q < qmax do

3: Increment iteration: q ← q + 1
4: Broadcast ζ

(q−1)
s to all neighbors r ∈ Γ(s)

5: Receive ζ
(q−1)
r from all neighbors r ∈ Γ(s)

6: Compute ζ
(q)
s = assζ

(q−1)
s +

∑

r∈Γ(s) asrζ
(q−1)
r

7: end while

Output: Global Ŝt approximation as s

VI. SIMULATIONS

The simplified model used for solving the TBN is the 2D

position and velocity estimation for an aircraft flying over a

terrain. The only available measurement is the height above

terrain and it is also assumed that altitude above sea level

is known. For this kind of mixed estimation problem it is

appropriate to use joint inference and learning algorithms, i.e.

applying a PF due to the nonlinear nature of the measurement

together with a learning strategy for calibration.

The dynamics of the aircraft movement is based on a

constant velocity model [24] and is presented in (23), where

the pairs
{

pXt , p
Y
t

}

and
{

vXt , v
Y
t

}

represent the 2D position

and velocity at time instant t, respectively

0 20

p
(e

)

e [m]

Figure 1. Distribution for terrain elevation error due to radar altimeter model.

xt+1 =









1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

















pXt
pYt
vXt
vYt









+









T 2

2 0

0 T 2

2
T 0
0 T









[

wX
t

wY
t

]

, (23)

where

[

wX
t

wY
t

]

∼ N (0, Q) , Q =

[

QXX 0
0 QY Y .

]

. (24)

Further, the measurement is the terrain elevation based on

the radar height, modeled as

yt = h(pXt , p
Y
t ) + ert , (25)

where h(., .) is a non-analytical and nonlinear lookup table that

represents the terrain elevation database, according to position
{

pXt , p
Y
t

}

.

The observation noise, ert , is primarily modeled to consider

the effect of multiple reflections of the RALT echo signal

on the open terrain model [25]. The echo reflections are

modeled by a 2-state Markov chain [26] with unknown mode-

dependent mean, standard deviation (θrt ) and TPM (Π). Figure

1 presents a histogram of the terrain elevation error due to the

measurement model considered in the simulated scenario.

The network consists of four aircraft flying on a finger four

formation [27] and, for the centralized solution, the flight

leader (node 1) is the fusion center. Figure 2 presents the

graphical model, G, where the dashed white lines indicate

the flight path and the ground clearance is highlighted with

the black dashed ones towards the ground. The bidirectional

communication links (edges ε) are also displayed as gray lines

connecting the nodes.

The performance is assessed via 100 independent Monte

Carlo runs evaluating a 90 seconds (1800 measurements) of

stabilized flight over a simulated terrain created by a 2D

Gaussian lowpass filter over uniform noise [12].

At time t = 0, x
(i)
s,0 = xs,0, w

(i)
s,0 = 1/NP and α

(i)
s,0|0(ℓ) =

1(rs,0 = ℓ) for i = 1, ..., NP . The parameter estimation starts
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Figure 2. Networked flying platforms over terrain.

Table I
SIMULATION PARAMETERS

Parameter Value

Number of Particles (NP ) 300

Number of Modes (K) 2

[µ1 µ2] [m] [0 20]

[σ1 σ2] [m] [1 4]

[π11 π22] [0.85 0.6]

QXX , QY Y [m/s2] 100

vX
0

, vY
0

[m/s] 170

T [ms] 50

ηt t−0.7

after 2.5 seconds (50 iterations) in order to guarantee that the

M-step update is numerically well-behaved [17]. The initial

system parameters are: [µ1 µ2] = [−5 25], [σ1 σ2] = [5 5]
and [π11 π22] = [0.5 0.5].

For the consensus strategy, a fixed matrix, A, of consensus

iteration weights based on the maximum-degree rule [23] was

assumed and is given as

A =









1/2 1/4 1/4 0
1/4 3/4 0 0
1/4 0 1/2 1/4
0 0 1/4 3/4









. (26)

Also, the distributed strategy was evaluated considering three

different iterative average consensus configurations in that the

maximum number of consensus iterations, qmax, was limited

to 1, 5 and 10 iterations. The main simulation parameters are

presented in Table I.

A. Results Analysis

When the position estimation Root Mean Square (RMS)

error is addressed, the different strategies do not differ much

on performance in the steady state as presented in the upper

part of Figure 3. From the navigation performance point of

view, it means that the network does not take significant

advantage of cooperation between nodes in terms of position

accuracy. However, when looking with more details in the

initial instants of the simulation, in the lower part of Figure

3, the estimation error increases up to the starting point of
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Figure 3. Position RMS error.

the parameter estimation (2.5 seconds). The strategies that

rely on some sort of cooperation also lead to a slightly faster

convergence towards the steady state positioning error.

In Figure 4, the dynamic behavior of parameter estimation is

presented during the simulation time. It can be perceived that

the centralized solution presents the lowest overall variance on

parameter estimation, while the noncooperative approach the

highest. The variance of the consensus solution is in-between

the noncooperative and centralized, providing a good trade off

between complexity and accuracy.

In Figures 5 and 6, the RMS error for the parameter

estimation presents a performance improvement when using

cooperation between nodes. As expected, the centralized ap-

proach leads to the best results. The consensus strategy with 10

iteration performs almost as good as the centralized approach.

When the number of consensus iterations is reduced, the

performance degrades but still outperforms the noncooperative

solution.

B. Communication Analysis

In Table II, the network throughput requirements are pre-

sented for each strategy. The network throughput is the total

communication bandwidth required by the entire network

in order to accomplish each strategy. It is based on the

assumption of a four-Byte representation for a floating point

value and that the set of sufficient statistics and parameters

demand 10 and 6 floats (40 and 24 Bytes), respectively.

The consensus with only one iteration has similar communi-

cation requirements as the centralized approach and provides

substantially performance increase as was shown in previous

section.
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Figure 4. Parameter identification results. From left to right: Noncooperative, Centralized, Consensus 1, Consensus 5, and Consensus 10. From top to bottom:
(µ1, µ2),(σ1, σ2), and (π11, π22). The lines show the averages and the shaded areas show the upper and lower bounds.
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Figure 5. Noise mean RMS estimation error.
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Figure 6. Noise standard deviation RMS estimation error.
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Table II
NETWORK THROUGHPUT

Strategy Throughput [KB/s]

Noncooperative 0

Centralized 4.5

Consensus 1 4.7

Consensus 5 23.5

Consensus 10 46.9

It must be highlighted that the centralized approach is very

dependent on the network topology and, the larger the network,

the more costly it is, since it demands more hops for the

information to be concentrated and then spread from one single

node. Another advantage of the consensus approach is that it

is more robust and flexible, since it does not rely on a single

point on the network and also does not require routing tables

for the information flow.

VII. CONCLUSION

We have proposed a method of networked distributed system

identification in JMNLS jointly with state estimation using

the online EM and Rao-Blackwellization. The method was

evaluated in a TBN in that there is also the interest for

identifying observation noise parameters, that characterize the

overflown terrain coverage.

The results on a network of flying platforms in formation

flight show that cooperation using consensus on the sufficient

statistics provides an improvement on the parameters identi-

fication, approximating the results obtained by a centralized

approach. The state estimation takes advantage of cooperation

between node in terms of convergence during the calibration

process (parameters identification).

As possible future extensions for this work, the increase on

the accuracy for the navigation function can be exploited by

adding inter-node distance measurements. Real maps and mea-

surements can also be used in order to test the effectiveness

of this approach in realistic scenarios.
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