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Abstract—We propose a distributed particle filtering algorithm
based on optimal fusion of local posterior estimates. We derive
an optimal fusion rule from Bayesian statistics, and implement
it in a distributed and iterative fashion via an average consensus
algorithm. We approximate local posterior estimates as Gaus-
sian mixtures, and fuse Gaussian mixtures through importance
sampling. We prove that under certain conditions the proposed
distributed particle filtering algorithm converges to a global
posterior estimate locally available at every sensor in the network.
Numerical examples are presented to demonstrate the perfor-
mance advantages of the proposed method in comparison with
other posterior-based distributed particle filtering algorithms.

Index Terms—Distributed particle filtering, consensus, data
fusion, Gaussian mixture model, importance sampling.

I. INTRODUCTION

Particle filtering, also known as the sequential Monte Carlo

method, is a powerful tool in sequential Bayesian state es-

timation [1]. Unlike Kalman filtering [2], particle filtering

works with nonlinear models and non-Gaussian noises, and

is thus applicable to sequential estimation problems under

more general assumptions. To improve estimation accuracy,

a particle filter is often built on observations from more than

one perspective or sensor. These sensors form a network and

collaborate via communication. The network can designate one

of the sensors as a fusion center that receives and processes

observations sent from all the other sensors in the network.

This centralized implementation provides optimal accuracy,

but does not scale with growing network size in applications

like target tracking, environment monitoring, and smart grids,

which motivates distributed particle filtering [3].

Distributed particle filtering consists of separate particle

filters that have access to local measurements only, but produce

global estimates based on information exchanged among them-

selves. It is often implemented using a consensus algorithm

[4], where sensors in a network reach agreement in their beliefs

iteratively through local communications between neighbor-

ing sensors. Depending on the information communicated in

the consensus algorithm, a distributed particle filtering algo-

rithm can be categorized as weight-based, likelihood-based, or

posterior-based.

Weight-based algorithms [5], [6] communicate the weight

of each particle in an ensemble. In order to approximate a dis-

tribution accurately, an ensemble has to contain a sufficiently

large number of particles, which results in a considerably large

amount of information to be communicated in a weight-based

algorithm. Also, in order for weight consensus to make sense,

different filters must have ensembles of identical particles,

which requires perfect synchronization between the random

number generators of different sensors. Although synchroniza-

tion methods have been well developed for sensor networks

[7]-[9], the dependence on perfect synchronization, together

with the high communication overhead, makes weight-based

algorithms costly to implement in practice.

Likelihood-based algorithms [10]-[12] communicate local

likelihood functions. The fusion of local likelihood functions is

straightforward if sensor observations are uncorrelated, but the

communication is challenging. In order to be communicated in

a compact form, a likelihood function has to be parametrically

represented. Since a likelihood function varies greatly with

both the observation model and the observation noise, there

are few, if any, parametric approaches that apply to an arbitrary

likelihood function in a sufficiently accurate way, not to

mention that the parametric representation has to be easy to

fuse. Hence, likelihood consensus might not be an ideal choice

for general applications.

Posterior-based algorithms [13]-[16] communicate local

posterior estimates of states. Unlike likelihood functions, pos-

terior estimates are essentially density functions, and thus easy

to represent parametrically. If an estimate follows a (multi-

variate) Gaussian distribution, it can be losslessly represented

by its mean and variance (covariance matrix); if an estimate

follows a non-Gaussian distribution, it can be sufficiently

accurately approximated by a convex combination of multiple

Gaussian components, i.e., a Gaussian mixture (GM) [17].

However, local posterior estimates are not always easy to

fuse. In [13] and [14], local posterior estimates are fused in a

Bayesian fashion, but assumed to be Gaussian for convenience

of fusion. As we know, a posterior estimate follows a Gaussian

distribution only if both the state transition model and the

observation model are linear with additive Gaussian noises.

Thus, the Gaussian assumption is generally too strong, and

will incur obvious approximation errors in many applications.

In [15] and [16], local posterior estimates are approximated

with Gaussian mixtures, but fused linearly. The linear fusion

rule is, however, suboptimal, because it is not supported by
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underlying statistical theories.

In this paper, we propose a distributed particle filtering

algorithm based on posterior estimates. We use Gaussian

mixtures to accurately model posterior estimates, and fuse

local estimates via an optimal distributed fusion rule derived

from Bayesian statistics and implemented through consensus.

Unlike other posterior-based algorithms, the proposed algo-

rithm seeks consensus on the posterior distribution, rather

than on parameters of the posterior distribution, thus giving

flexibility to local approximations and allowing each Gaussian

mixture to use an optimal but often nonuniform number of

components. We design algorithms to fuse Gaussian mixtures

within each consensus step. Finally, we prove the convergence

of the proposed distributed particle filtering algorithm and

demonstrate its advantages through numerical examples.

The rest of the paper is organized as follows. Section II in-

troduces the sensor network model and the state-space model.

Section III introduces centralized particle filtering. Section IV

presents our distributed particle filtering algorithm. Section V

proves the convergence of the proposed algorithm. Section VI

presents numerical examples. Section VII concludes the paper.

II. PROBLEM FORMULATION

A. Network Model

We model a sensor network as a graph G = (V ,E),
where V = {S1, S2, . . . , SK} is the set of vertices or sensors

with cardinality |V | = K, and E is the set of edges

or communication links between sensors. We assume each

communication link to be bidirectional, and thus the graph

G to be undirected. We restrict each communication link to

a local neighborhood, in the sense that a sensor can directly

communicate only with its neighbors. Also, we assume that

the graph G is connected, or in other words that there exists a

multi-hop communication route connecting any pair of sensors

in the network. In addition, we assume the sensor network to

be synchronized.

B. Signal Model

We connect target state transition with sensor observation

using a discrete-time state-space model,

{
xn = g(xn−1) + un

yn,k = hk(xn) + vn,k (k = 1, 2, . . . ,K)
, (1)

where

1) xn ∈ R
d is the target state at the nth moment;

2) yn,k ∈ R
b is the observation taken by Sk at the nth moment;

3) g is a known state transition function;

4) hk is a known observation function of Sk;

5) {un} and {vn,k} are uncorrelated additive noise;

6) the distribution of x0 is given as prior information;

7) state transition is Markovian, i.e., past and future states are

conditionally independent, given the current state;

8) the current observation is conditionally independent of past

states and observations, given the current state.

C. Goal

The goal is to sequentially estimate the current state xn

based on the currently available observations y1:n.

D. Notation

We represent consecutive states {x1,x2, . . . ,xn} as x1:n,

consecutive observations {y1,k,y2,k, . . . ,yn,k} taken by Sk as

y1:n,k, observations taken by the network at the nth moment

{yn,1,yn,2, . . . ,yn,K} as yn, and consecutive observations

{y1,1,y1,2, . . . ,yn,K} by the network as y1:n. We use f to

denote a probability density function (pdf), and q to denote

the pdf of a proposal distribution.

III. CENTRALIZED PARTICLE FILTERING

The problem formulated in Section II is a filtering problem.

A filtering problem is often solved by a particle filter when the

state-space model is nonlinear or the noises are non-Gaussian.

A particle filter can be implemented in a centralized fashion

by collecting observations from all the sensors in the network

and processing them together.

A centralized particle filter approximates the posterior distri-

bution of the current state, f(xn|y1:n), as a weighted ensemble

of Monte Carlo samples, also known as particles:

f(xn|y1:n) ≈
M∑

m=1

w(m)
n δ(xn − x(m)

n ), (2)

where M is the number of particles, x
(m)
n is the mth particle,

w
(m)
n is the weight of x

(m)
n with

∑M

m=1 w
(m)
n = 1, and δ

is the Dirac delta function. Using importance sampling [18],

a particle is generated according to a proposal distribution

q(x
(m)
n |x

(m)
1:n−1,yn), and the weight is updated according to

w(m)
n ∝

f(yn|x
(m)
n )f(x

(m)
n |x

(m)
n−1)

q(x
(m)
n |x

(m)
1:n−1,yn)

× w
(m)
n−1. (3)

The proposal distribution q is commonly chosen as the state

transition pdf f(x
(m)
n |x

(m)
n−1), which, although suboptimal,

yields a convenient weight update rule:

w(m)
n ∝ f(yn|x

(m)
n )× w

(m)
n−1. (4)

The likelihood function f(yn|x
(m)
n ) is global, and can be

factorized into the product of local likelihood functions,
∏K

k=1 f(yn,k|x
(m)
n ), thus providing a centralized fusion rule.

Due to the finite number of particles, the weight in an

ensemble tends to be concentrated in only a few particles

as time goes on, resulting in a small effective sample size

and thus a poor approximation. When an ensemble’s effective

sample size is lower than a threshold, a remedy is to resample

the ensemble according to the particle weights. A frequently

used estimate of the effective sample size is

M̂e =
1

∑M

m=1(w
(m)
n )2

, (5)

and the threshold can be set as, for example, 60% of the

original sample size M , or 100% if one plans to resample

in every iteration.
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Although centralized particle filtering is optimal, it is im-

practical for large-scale sensor networks. First, it expends

considerable energy and bandwidth on transmitting raw mea-

surements from everywhere in the network to a common fusion

center. Also, its dependence on a single fusion center makes

it vulnerable to single point failure. Moreover, it does not

scale with the network size. Therefore, it is often preferable

to perform distributed particle filtering.

IV. DISTRIBUTED PARTICLE FILTERING

In distributed particle filtering, every sensor in the network

performs separate particle filtering on its own observations and

communicates locally with its neighbors about their posterior

estimates for the purpose of data fusion.

A. Consensus

Consensus [4] is a type of data fusion algorithm in which

each agent in the network iteratively communicates with its

neighbors and updates its own belief in a certain fact based

on its neighbors’ beliefs, until convergence. We fuse local

posterior estimates from different sensors via consensus, so

that every sensor in the network ultimately obtains the same

global posterior estimate.

Likelihood factorization, as mentioned in Section III, makes

data fusion convenient, because its logarithmic form

log f(yn|xn) =
K∑

k=1

log f(yn,k|xn) (6)

gives rise to a straightforward implementation of an average

consensus algorithms [4]. However, unlike a prior or posterior

density function, a likelihood function is difficult to approx-

imate parametrically through a generally applicable approach

like the Gaussian mixture model. The consequent inconve-

nience in communicating likelihood functions motivates us to

communicate posterior density functions instead.

Due to conditional independence, a likelihood function can

be equivalently written as

f(yn,k|xn) = f(yn,k|xn,y1:n−1), (7)

which, according to Bayes’ Theorem, can be rewritten as

f(yn,k|xn) =
f(xn|yn,k,y1:n−1)f(yn,k|y1:n−1)

f(xn|y1:n−1)
. (8)

Substitute (8) into the original form of (6), and then we get

log
f(xn|yn,y1:n−1)f(yn|y1:n−1)

f(xn|y1:n−1)

=
K∑

k=1

log
f(xn|yn,k,y1:n−1)f(yn,k|y1:n−1)

f(xn|y1:n−1)
, (9)

which yields

log
f(xn|yn,y1:n−1)

f(xn|y1:n−1)
=

K∑

k=1

log
f(xn|yn,k,y1:n−1)

f(xn|y1:n−1)
+ const.

(10)

The constant term comes from the density functions

f(yn|y1:n−1) and f(yn,k|y1:n−1), because they do not involve

state variables.

(10) presents a centralized fusion rule for local posterior

estimates. f(xn|yn,k,y1:n−1) on the right-hand side of (10)

is a local posterior estimate obtained by Sk based on its

current observation yn,k and the network’s past observations

y1:n−1, while f(xn|yn,y1:n−1) on the left-hand side of (10)

is a global posterior estimate based on the network’s current

and past observations y1:n. There are two other terms in

(10), namely f(xn|y1:n−1) and the constant term, but they

do not affect data fusion. f(xn|y1:n−1), the prediction of the

current state based on the network’s past observations, can be

calculated from earlier estimates as

f(xn|y1:n−1) =

∫

f(xn|xn−1)f(xn−1|y1:n−1)dxn−1.

The constant term will disappear when we normalize a poste-

rior density function so that it integrates to 1.

Similar to (6), (10) can be iteratively implemented using an

average consensus algorithm as

log
f(xn|y

(i+1)
n,k ,y1:n−1)

f(xn|y1:n−1)
= const+ log

f(xn|y
(i)
n,k,y1:n−1)

f(xn|y1:n−1)

+ ǫ
∑

j∈Nk

(

log
f(xn|y

(i)
n,j ,y1:n−1)

f(xn|y1:n−1)
− log

f(xn|y
(i)
n,k,y1:n−1)

f(xn|y1:n−1)

)

.

(11)

Here y
(i)
n,k denotes the weighted set of observations fused into

the belief of Sk up to the ith consensus iteration during the nth

iteration of particle filtering, Nk denotes the index set of neigh-

bors of Sk (with Sk excluded), and ǫ ∈ (0, 1/maxk |Nk|) is

a parameter controlling the consensus step size. (11) can be

simplified to

log f(xn|y
(i+1)
n,k ,y1:n−1) = ǫ

∑

j∈Nk

log f(xn|y
(i)
n,j ,y1:n−1)

+ (1− ǫ|Nk|) log f(xn|y
(i)
n,k,y1:n−1) + const, (12)

which we call the distributed fusion step. Each sensor updates

its own belief in the posterior distribution of xn according

to (12) in each consensus iteration, and disseminates its

updated belief to its neighbors in the next consensus iteration.

According to the convergence property of average consensus

[4], under certain conditions, for ∀ k, we have

lim
i→∞

log f(xn|y
(i)
n,k,y1:n−1) =

1

K

K∑

j=1

log f(xn|y
(0)
n,j ,y1:n−1),

(13)

where y
(0)
n,j = yn,j . With (10) and (13), we have

f(xn|yn,y1:n−1) ∝

(

limi→∞ f(xn|y
(i)
n,k,y1:n−1)

)K

f(xn|y1:n−1)K−1
, (14)

which, called the recovery step, concludes the consensus.
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B. Gaussian Mixture Model

Consensus necessitates inter-sensor communication. Com-

munication is a major source of energy consumption for most

wireless sensor networks. Since wireless sensor networks are

usually subject to strong energy constraints, it is important to

minimize the amount of communication needed in consensus.

A possible solution to communication minimization is to com-

press the data to be transmitted. In our problem, the data to be

transmitted are posterior density functions, and we compress

them using a parametric approach, the Gaussian mixture model

[17]. A Gaussian mixture is a convex combination of Gaussian

distribution components,

f(xn|y1:n,k,y1:n−1) =
C∑

c=1

αc N (µc,Σc) , (15)

where C is the number of components, and αc, µc, and Σc are

the weight, mean, and covariance matrix of the cth Gaussian

component, respectively.

A Gaussian mixture model can be used to approximate an

arbitrary probability distribution, and is often learned via the

expectation-maximization (EM) algorithm [19] from samples

generated from the underlying distribution. Most Gaussian

mixture learning algorithms assume the samples to be un-

weighted. However, samples or particles in particle filtering

are usually weighted. Admittedly, resampling a weighted en-

semble can produce an unweighted ensemble, from which a

Gaussian mixture model can be conveniently learned, but it

incurs information loss, since resampling provides only a dis-

cretized and stochastic approximation of the original ensemble.

To avoid unnecessary information loss, it is always preferable,

if possible, to learn a Gaussian mixture directly from weighted

samples. Based on the EM approach on unweighted samples,

we propose Algorithm 1 for Gaussian mixture learning on

weighted samples.

Algorithm 1 GM learning on weighted samples

1: procedure GMLEARN({xi, wi}
N
i=1, C)

2: initialize C (if not given) and {αc, µc, Σc}
C
c=1

3: repeat

4: for i = 1 to N do ⊲ E-step

5: for c = 1 to C do

6: pic = αc N (xi|µc,Σc)
7: end for

8: normalize {pic}
C
c=1

9: end for

10: for c = 1 to C do ⊲ M-step

11: αc =
∑N

i=1 picwi

12: µc =
1
αc

∑N

i=1 picwixi

13: Σc =
1
αc

∑N

i=1 picwi(xi − µc)(xi − µc)
T

14: end for

15: normalize {αc}
C
c=1

16: until convergence

17: return GM = {αc,µc,Σc}
C
c=1

18: end procedure

C. Fusion of Gaussian Mixtures

For posterior distributions approximated by Gaussian mix-

tures, the fusion of Gaussian mixtures has to be considered

for both the distributed fusion step (12) and the final recovery

step (14).

For convenience, we convert (12) from the current logarith-

mic form to its original form,

f(xn|y
(i+1)
n,k ,y1:n−1) ∝ f(xn|y

(i)
n,k,y1:n−1)

1−ǫ|Nk|

×
∏

j∈Nk

f(xn|y
(i)
n,j ,y1:n−1)

ǫ, (16)

which, similar to (14), involves products of powers of Gaussian

mixtures. Unfortunately, the fractional exponents in (16) and

the negative exponents in (14) make analytical computation

intractable, thus motivating us to consider sampling. Since it

is more efficient to sample from a distribution known to be

close to the distribution to be found, than to sample from a

generic distribution, e.g., the uniform distribution, we propose

to fuse Gaussian mixtures in both (16) and (14) via importance

sampling.

For (16), we generate samples {x
(m)
n }Mm=1 from a proposal

distribution, f(xn|y
(i)
n,k,y1:n−1), and assign them uniform

weights. Then, the fusion step (16) becomes equivalent to

updating weights {w
(m)
n }Mm=1 according to

w(m)∗
n ∝ w(m)

n ×
∏

j∈Nk

f(x(m)
n |y

(i)
n,j ,y1:n−1)

ǫ

×
f(x

(m)
n |y

(i)
n,k,y1:n−1)

1−ǫ|Nk|

f(x
(m)
n |y

(i)
n,k,y1:n−1)

, (17)

where the asterisk in w
(m)∗
n indicates that the weight has been

updated with the neighbors’ information, and the division by

the proposal distribution is a result from importance sampling.

(17) can be simplified to

w(m)∗
n ∝

∏

j∈Nk

f(x(m)
n |y

(i)
n,j ,y1:n−1)

ǫ

× f(x(m)
n |y

(i)
n,k,y1:n−1)

−ǫ|Nk|. (18)

After normalizing {w
(m)∗
n }Mm=1, a Gaussian mixture can be

learned from the weighted ensemble {x
(m)
n , w

(m)∗
n }Mm=1 using

Algorithm 1. The fusion step is summarized in Algorithm 2.

Algorithm 2 GM fusion

1: procedure GMFUSE(GMk, {GMj}j∈Nk
)

2: initialize M , ǫ
3: generate {x(m)}Mm=1 from GMk

4: for m = 1 to M do

5: w(m) = f(x(m)|GMk)
−ǫ|Nk|

∏

j∈Nk

f(x(m)|GMj)
ǫ

6: end for

7: normalize {w(m)}Mm=1

8: return GMLEARN({x(m), w(m)}Mm=1)
9: end procedure
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The recovery step (14) can be similarly implemented

through importance sampling, as shown in Algorithm 3, where

GMpk denotes the Gaussian mixture representation of the

prediction of the current state by Sk based on the network’s

past observations.

Algorithm 3 GM recovery

1: procedure GMRECOVER(GMk, GMpk)

2: initialize M
3: generate {x(m)}Mm=1 from GMpk

4: for m = 1 to M do

5: w(m) =
[
f(x(m)|GMk)/f(x

(m)|GMpk)
]K

6: end for

7: normalize {w(m)}Mm=1

8: return GMLEARN({x(m), w(m)}Mm=1)
9: end procedure

D. Summary

We summarize the proposed consensus-based distributed

particle filtering algorithm in Algorithm 4.

Algorithm 4 Distributed particle filtering

1: procedure DPF({x
(m)
n−1,k, w

(m)
n−1,k}

M,K
m=1,k=1, {yk}

K
k=1)

2: for k = 1 to K do ⊲ filtering

3: for m = 1 to M do

4: generate u
(m)
n,k from f(un)

5: x
(m)
n,k = g(x

(m)
n−1,k) + u

(m)
n,k

6: w
(m)
n,k = w

(m)
n−1,k × f(yk|x

(m)
n,k )

7: end for

8: normalize {w
(m)
n,k }

M
m=1

9: GMpk = GMLEARN({x
(m)
n,k , w

(m)
n−1,k}

M
m=1)

10: GMk = GMLEARN({x
(m)
n,k , w

(m)
n,k }

M
m=1)

11: end for

12: repeat ⊲ fusion

13: for k = 1 to K do

14: GMk = GMFUSE(GMk, {GMj}j∈Nk
)

15: end for

16: until convergence

17: for k = 1 to K do ⊲ recovery

18: GM∗
k = GMRECOVER(GMk, GMpk)

19: generate {x
(m)
n,k }

M
m=1 from GM∗

k

20: end for

21: return {x
(m)
n,k , 1/M}M,K

m=1,k=1

22: end procedure

V. CONVERGENCE

The convergence of an average consensus algorithm has

been proved in [4]. The proof, however, cannot be directly

applied to our problem, because our problem has a different

formulation. The distributed fusion step (12) involves an

additional constant term, which, together with the use of

Gaussian mixture models, necessitates an additional normal-

ization step at the end of each fusion step. Also, the central-

ized fusion equation (10) involves another density function

of xn, f(xn|y1:n−1), in addition to f(xn|y1:n), which we

seek consensus on. Although f(xn|y1:n−1) disappears in the

distributed fusion step (12), it comes back in the recovery

step (14). In summary, our problem poses a more complicated

formulation than an ordinary average consensus algorithm can

address. For rigorousness, we show the convergence of our

method in this section.

A. Proof of Convergence

Theorem 1. After iterations of distributed fusion (12) followed

by recovery (14), the estimate held by each sensor converges

to f(xn|y1:n).

Proof. First, we study intermediate results from distributed fu-

sion. For simplicity of notation, we denote f(xn|y
(i)
n,k,y1:n−1)

as z
(i)
k . Then, the exponential form of (12) can be written as

z
(i+1)
k = econst

(

z
(i)
k

)1−ǫ|Nk| ∏

j∈Nk

(

z
(i)
j

)ǫ

, (19)

where econst is a constant coefficient. Each consensus iteration

involves a constant coefficient, and the constant coefficient

accumulates across iterations. We denote the part of z
(i)
k

coming purely from the fusion of the original estimates from

separate particle filters (or z
(0)
k in other words) as p

(i)
k , and

the accumulated constant coefficient that z
(i)
k collects up to

the ith iteration as λ
(i)
k . Then, we have z

(i)
k = λ

(i)
k p

(i)
k . When

i = 0, we have λ
(0)
k = 1 and p

(0)
k = f(xn|yn,k,y1:n−1).

When i ≥ 1, we have

z
(i+1)
k =econst

(

z
(i)
k

)1−ǫ|Nk| ∏

j∈Nk

(

z
(i)
j

)ǫ

=econst
(

λ
(i)
k p

(i)
k

)1−ǫ|Nk| ∏

j∈Nk

(

λ
(i)
j p

(i)
j

)ǫ

= econst
(

λ
(i)
k

)1−ǫ|Nk| ∏

j∈Nk

(

λ
(i)
j

)ǫ

︸ ︷︷ ︸

λ
(i+1)
k

×
(

p
(i)
k

)1−ǫ|Nk| ∏

j∈Nk

(

p
(i)
j

)ǫ

︸ ︷︷ ︸

p
(i+1)
k

. (20)

The logarithmic form of the last term p
(i+1)
k is

log p
(i+1)
k = (1− ǫ|Nk|) log p

(i)
k + ǫ

∑

j∈Nk

log p
(i)
j , (21)

which coincides with the canonical form of an average consen-

sus algorithm. With the underlying graph G being connected

and balanced (because it is undirected), according to [4] we

have

lim
i→∞

log p
(i)
k =

1

K

K∑

k=1

log p
(0)
k , (22)
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or equivalently

lim
i→∞

p
(i)
k =

K∏

k=1

(

p
(0)
k

) 1
K

=
K∏

k=1

f(xn|yn,k,y1:n−1)
1
K . (23)

Hence,

lim
i→∞

f(xn|y
(i)
n,k,y1:n−1) = lim

i→∞
z
(i)
k

= lim
i→∞

λ
(i)
k p

(i)
k = lim

i→∞
λ
(i)
k lim

i→∞
p
(i)
k

=
(

lim
i→∞

λ
(i)
k

) K∏

k=1

f(xn|yn,k,y1:n−1)
1
K . (24)

Based on (24), the intermediate result from distribution

fusion, we show that the final result from recovery converges

to the desired posterior distribution f(xn|y1:n).
The right-hand side of the recovery equation (14) can be

rewritten as
(

limi→∞ f(xn|y
(i)
n,k,y1:n−1)

)K

f(xn|y1:n−1)K−1

=
(

lim
i→∞

λ
(i)
k

)K
∏K

k=1 f(xn|yn,k,y1:n−1)

f(xn|y1:n−1)K−1
, (25)

where
(

limi→∞ λ
(i)
k

)K

is a constant, and

∏K

k=1 f(xn|yn,k,y1:n−1)

f(xn|y1:n−1)K−1

=f(xn|y1:n−1)
K∏

k=1

f(xn|yn,k,y1:n−1)

f(xn|y1:n−1)

=f(xn|y1:n−1)

K∏

k=1

f(yn,k|xn,y1:n−1)

f(yn,k|y1:n−1)

=f(xn|y1:n−1)
K∏

k=1

f(yn,k|xn)× const

=f(xn|y1:n−1)f(yn|xn)× const

=f(xn|yn,y1:n−1)f(yn|y1:n−1)× const

=f(xn|y1:n)× const. (26)

Therefore, normalizing the right-hand side of (14) gives each

Sk the global posterior estimate f(xn|y1:n).

B. Errors in Convergence

The convergence shown in Section V-A is built on the basis

of three asymptotic assumptions: (i) the number of consensus

iterations is sufficiently large, (ii) the number of generated

samples is sufficiently large, and (iii) the approximation error

of a Gaussian mixture model is sufficiently small. In practice,

however, none of them can be perfectly satisfied without

a tremendous amount of communication and computation.

Hence, convergence errors always exist, although often small.

Errors in convergence result in errors in consensus. To man-

ually eliminate the consensus errors, we can run an addi-

tional average consensus algorithm on parameters of Gaussian

0 20 40 60 80 100
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20

40

60

80

100

120

x / m

y
 /
 m

 

 

Trajectory

Sensor

Link

Figure 1. A wireless sensor network with local communication links, and a
target trajectory to be estimated.

mixtures. To do so, we have to guarantee that the number

of Gaussian mixture components is in agreement among

different sensors in the network, by, for example, re-learning

from samples the Gaussian mixture models with a specified

number of components. As mentioned in the Introduction,

average consensus on parameters of Gaussian mixtures is

suboptimal, but the suboptimality is insignificant here, because

it is simply used to numerically fine-tune estimates that are

already considerably close to consensus.

VI. NUMERICAL EXAMPLES

In this section, we use numerical examples of target tracking

to demonstrate the performance of the proposed distributed

particle filtering algorithm in comparison with other posterior-

based algorithms.

We tested these algorithms on a wireless sensor network

consisting of 20 sensors that tried to track a moving target,

as shown in Fig. 1. The target followed a noisy constant

velocity kinematic model in a 2-dimensional space, with the

state transition function

g(xn) = D · xn, (27)

where

xn =







xn,1

xn,2

ẋn,1

ẋn,2






, D =







1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1






, (28)

and the transition noise

un ∼ N (0,R) , (29)

where

R = σ2
u







1
3 0 1

2 0
0 1

3 0 1
2

1
2 0 1 0
0 1

2 0 1






. (30)
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Figure 2. A comparison of the state estimation RMSE as a function of time.

Sk was located at lk = (lk,1, lk,2) with the observation

function

hk(xn) =

[ √

(xn,1 − lk,1)2 + (xn,2 − lk,2)2

arctan [(xn,2 − lk,2)/(xn,1 − lk,1)]

]

(31)

and the observation noise

vn,k ∼

[
0.5N (µv,1, σ

2
v,1) + 0.5N (−µv,1, σ

2
v,1)

0.5N (µv,2, σ
2
v,2) + 0.5N (−µv,2, σ

2
v,2)

]

. (32)

In the examples, we assumed σu = 0.71, µv,1 = µv,2 =
0.7, and σv,1 = σv,2 = 0.55. Also, we assumed x0 ∼
N
(
[0m, 0m, 1m/s, 1m/s]T ,R

)
as the prior information. More-

over, we used ǫ = 1/6 for average consensus, 4 components

for Gaussian mixtures, 8000 samples for fusion of Gaussian

mixtures, and 10000 particles for filtering, unless otherwise

stated.

In Fig. 2 we show the state estimation root-mean-square

errors (RMSE) of three posterior-based distributed particle

filtering algorithms as a function of time. According to the

figure, at almost every time point our method (“optimal GM”)

yielded a significantly lower RMSE than Bayesian fusion of

Gaussian approximations (“Bayesian Gauss”) and linear fusion

of Gaussian mixtures (“linear GM”) did.

Fig. 3 compares the trajectory estimation RMSEs of the

three methods with that of centralized particle filtering, using

different numbers of particles. As shown in the figure, the

RMSEs of our method, more than 50% lower than those of the

other two methods, were very close to those of the centralized

method. Also, we notice that all the methods, except for the

Bayesian Gauss method, tended to have higher estimation ac-

curacy with a larger number of particles used, which coincides

with the common sense that more particles generally bring

more accurate approximations. The Bayesian Gauss method

was almost insensitive to the number of particles, because all

it needs from an ensemble of particles is its mean and variance

(covariance matrix), neither of which varies much with the

size of the ensemble, as long as the size is not too small.
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Figure 3. A comparison of the trajectory estimation RMSE as a function of
the number of particles

Our method also showed a certain degree of robustness to the

number of particles.

Fig. 4 shows the process of consensus within a randomly

picked particle filtering iteration. As shown in the figure, the

average Kullback–Leibler (KL) distance between estimates

of neighboring sensors dropped, and the average RMSE of

local estimates decreased, across iterations of the consensus

algorithm. Both of them converged while fluctuating because

of the randomness involved in the Monte Carlo method. As

we can see, the final average KL distance was very close to

zero, i.e., exact consensus, but not able to reach it because of

the errors discussed in Section V-B. The final average RMSE

was also very close to that of the centralized method, which,

again, verifies the effectiveness of the proposed method to

approximate the centralized approach in a distributed fashion.
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Figure 4. Average KL distance and RMSE across iterations of consensus
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VII. CONCLUSION

In this paper, we proposed a distributed particle filtering

algorithm based on optimal fusion of local posterior estimates

approximated as Gaussian mixtures. Since a local posterior

estimate exists as an ensemble of weighted particles in particle

filtering, we proposed to learn a Gaussian mixture directly

from weighted samples. We implemented the optimal fusion

rule in a distributed fashion, using an average consensus algo-

rithm. We derived a distributed fusion rule for the consensus

algorithm, and performed the fusion of Gaussian mixtures via

importance sampling. As we can see, the posterior-based con-

sensus process involves no observation functions, thus allow-

ing diverse sensing modalities in the network. With the extra

variables and constants involved in consensus, convergence of

the proposed distributed particle filtering algorithm does not

directly follow from that of an average consensus algorithm

in its canonical form. We therefore proved the convergence

of the proposed algorithm, which was then validated by nu-

merical examples. It was also demonstrated that the proposed

algorithm yields significantly higher estimation accuracy than

other posterior-based distributed particle filtering algorithms.

The Gaussian mixture model used in the proposed algorithm

has a compact parametric representation, which is intended

for low communication overhead. The overhead is, however,

roughly proportional to the number of components in a Gaus-

sian mixture. Hence, the optimal number of components is

one that balances approximation accuracy and communication

overhead, and often varies for different sensors. The proposed

algorithm gives each sensor the flexibility of choosing its

own optimal number of components, because the fusion of

Gaussian mixtures does not put any constraints on their num-

bers of components. In future work, we will explore efficient

methods to learn a Gaussian mixture with an optimal number

of components from weighted samples. Also, we will study

analytical approaches to fusion of Gaussian mixtures.
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