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Abstract—Discovering anomalies at sea is one of the critical
tasks of Maritime Situational Awareness (MSA) activities and
an important enabler for maritime security operations. This
paper proposes a data-driven approach to anomaly detection,
highlighting challenges specific to the maritime domain. This
work builds on unsupervised learning techniques which provide
models for normal traffic behaviour. A methodology to associate
tracks to the derived traffic model is then presented. This is done
by the pre-extraction of contextual information as the baseline
patterns of life (i.e., routes) in the area under investigation. In
addition to a brief description of the approach to derive the
routes, their characterization and representation is presented
in support of exploitable knowledge to classify anomalies. A
hierarchical reasoning is proposed where new tracks are first
associated to existing routes based on their positional information
only and “off-route” vessels” are detected. Then, for on-route
vessels further anomalies are detected such as “speed anomaly”
or “heading anomaly”. The algorithm is illustrated and assessed
on a real-world dataset supplemented with synthetic abnormal
tracks.

I. INTRODUCTION

The maritime domain is the most utilized environment

for transportation, making maritime safety and security an

important concern. Millions of vessels sail every day moving

passengers, containers, and consumer goods. Some vessels are

engaged in military operations, others carry out specific activ-

ities such as fishing. Some may be involved in illicit, illegal

or dangerous activities. As discussed in [1], anomaly detection

algorithms have many potential applications (e.g., countering

piracy and organized crime, prevent terrorism). A key aspect

of maritime safety and security is MSA, which is supported

by surveillance and tracking systems. Sensors networks are

ever increasing in order to complement and refine the picture

of vessel motions at sea. More specifically, the Automatic

Identification System (AIS) (Automated Identification System)

technology is a cooperative vessel self-reporting system able

to provide a vast amount of near real time information about

vessel static and kinematic features [2]. These traffic spatio-

temporal data streams can be collected from both coastal and

satellite AIS receivers, requiring an ever increasing degree of

automation and efficiency in order to detect and character-

ize ambiguities, redundancies, inconsistencies and ultimately

transform data in actionable knowledge.

Previous work for the automated learning of vessel traffic

routes from AIS data has shown that valuable knowledge

about the behaviour of maritime traffic can be extracted

through the analysis of historical data. The present paper

starts from and expands the work on route classification

and anomaly detection discussed in [3], [4]. starting from

these papers, we here provide an example of exploitation of

this contextual information for anomaly detection in case of

short/incomplete tracks. A heuristic track to route association

method is presented, whose parameters and decision thresholds

are estimated from historical AIS data, previously mined into

normal patterns of life categorized into routes and stationary

areas. The parameters are essential characteristics of recurrent

routes (e.g., physical extent, speed profiles, vessel type). It is

demonstrated that the use of routes can provide a short-list of

anomalous tracks (either incomplete or entire trajectories) via

a hierarchical approach which incrementally triggers different

anomaly detectors on specific features.

The advantage of the technique presented here is the relative

ease of the modelling and parameterization of individual traffic

routes which is key to the potential operationalization of track

classification on real time and on a larger scale aiming at

monitoring numerous different targets simultaneously.

The remainder of the paper is organized as follows. Section

II reviews related and previous work in the field of maritime

traffic analysis and classification while Section III gives an

overview of the proposed approach. The context extraction and

route representation is reviewed in Section IV and the route

classifier and anomaly detector are presented in Sections V and

VI. Section VII applies the methodology to a real world data

set and discusses results. Conclusions are reported in Section

VIII together with directions for future works.

II. RELATED WORK AND STATE-OF-THE-ART

The typical approach to both vessel behaviour analysis

and anomaly detection involves the extraction of a normalcy

model from a set of features in vessel track data [5], [6]. The

general aim of this approach is to cluster the data in a multi-

dimensional feature space, where the features of the track are

attributes such as longitude and latitude, speed and course.

Generally, the process follows the three steps [7]:

• Labelling: vessel tracks are clustered into a number of

routes, by compressing the input data into a compact

object structure.

• Prediction: the information can be used to predict forward

vessel tracks, based on the current location and direction.

• Atypicality: accumulating tracks over a long time period

establishes a pattern of typical movements (e.g., patterns

of life) and this can support the recognition of atypical

or unusual (e.g., anomalous) movements.
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The key assumption is: tracks that are found to sit in or

close to one of these clusters may be considered normal tracks,

while those that sit at a larger distance from all the clusters

may indicate an anomaly.

As discussed in [8], when following this approach two key

decisions need to be made:

• The learning technique which will lead to the model

based on the training data;

• A suitable model representation to translate the learned

knowledge. Models of normal vessel behaviour can be

represented in many different forms, with varying degrees

of complexity, including Support Vector Machines, Gaus-

sian Mixture Models, Kernel Density Estimators, neural

networks and Bayesian Networks (see, e.g., [8]).

The problem of track classification in the maritime domain

is strictly linked to the anomaly detection. The anomaly

detection task can be actually performed in two different ways:

• estimating the degree of deviation of the test trajectories

from the learned normal trajectories;

• modelling directly the anomalies and develop specific

detectors to automatically recognize the corresponding

anomalous behavior.

The usability of the first approach seems easier to be applied

on a larger scale to gain efficient classification performances

and detect different type of anomalies. Most of the available

literature can be reconnected to this first approach, especially

in the maritime domain. However recently some examples

of direct definition and recognition methods of specific be-

haviours at sea have been proposed such as:

• anomalous time sequences (as in the case of vessel reports

received from different asynchronous sensors).

• specific trajectory evolution (e.g., fishing footprints [9],

loitering vessels [10], U-turns or multiple loops such as

to avoid an obstacle).

These latter approaches look promising for real time appli-

cations since they do not explicitly rely on historical informa-

tion, although the behavioural modelling is generally helped

by the analysis of the anomalous behaviours seen in the past.

Maritime anomaly detection methods using the historical

patterns of life as the reference can be distinguished into two

main classes, based on the format of input trajectories:

• point-based anomaly detection methods, which highlight

individual anomalous points (either AIS reports or single

anomalous points along a trajectory);

• trajectory-based anomaly detection methods, which re-

ceive as input entire trajectories and automatically clas-

sify them as anomalous or not.

Generally these anomaly detectors are informed by the way the

normalcy is constructed, being the former ones deriving from

point-based clustering methods (as K-means and DBSCAN),

the latter ones related to the clustering of entire trajectories

based on similarity measures, which include the shape of the

trajectory into the classification problem.

Off-line vs on-line anomaly detection

Most of the algorithms available in literature are designed

for off-line anomaly detection in trajectories. Hence, they are

based on the assumption that the anomaly classification is

performed after the entire trajectory has been observed.

This is an evident drawback for surveillance applications

since it delays the alert on anomalous events, thus delaying

the necessary actions to be taken. In contrast, algorithms for

sequential anomaly detection allow detection in incomplete or

partially observed trajectories (e.g., tracks, tracklets or trajec-

tories) [11], e.g., real-time detection of anomalous trajectories

as they evolve.

III. METHODOLOGY OVERVIEW AND PROPOSED

APPROACH

Previous work for the automated learning of traffic routes

from AIS data [12] [13] has shown that through the analysis

of historical data, valuable knowledge about the behaviour of

maritime traffic can be extracted. Specifically, some previous

work has discussed the development of the Centre for Mar-

itime Research and Experimentation (CMRE) tool called Traf-

fic Route Extraction for Anomaly Detection (TREAD) [3], [4]

which provides an unsupervised learning approach to derive a

dictionary of the maritime traffic routes using spatio-temporal

data streams from terrestrial and/or satellite AIS receivers.

This dictionary will be the contextual information which we

exploit in the present work to perform track classification.

The proposed scheme addresses the following Maritime

Situational Indicators of interest for operators:

• “The vessel is off-route”;

• “The vessel is in reverse traffic on the route”;

• “The speed is not compatible with the route followed”.

The flowchart of the proposed methodology is summarized

in Fig. 1. As part of contextual information, the picture of

the maritime traffic is first derived from this historical AIS

data of the area of interest. The underlying assumption is

that the feature values of the AIS data points come from

a stationary distribution of normal traffic, estimated using

training data. The route objects are extracted as labelled

motion prototypes which can then be compared with newly

observed tracks of vessels at sea in the same area. The new

tracks are first associated to the derived routes based on the

positional information only and labelled with the route label.

“Off-route vessels are detected at this step as vessels not

following an existing route. Then, further compatibility tests

between the track and its associated route are performed on the

kinematic information such as speed and heading. Anomalies

about speed such as “speed incompatible with the route (too

high or too slow), or “vessel in opposite direction are then

possibly identified.

The originality of this work is the concrete association of

a track to a route to be used as a basis for further reasoning.

Most of the works of the literature [5], [14], [12] directly

detect anomalies skipping this step of route association. The

operational advantage is twofold:

• Once assigned to a specific route1 , future vessel position

and speed can be predicted, missing information type of

vessel can be estimated, etc. Also, additional predictions

1In the presented approach, a different association method is used in the
route extraction process (clustering) compared to the classification phase.
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Fig. 1. The general flowchart of the Track-to-Route classification.

and compatibility tests can be performed. For instance,

the vessel destination can be predicted or validated with

the vessel declared Next Port of Call (NPOC) (Next Port

Of Call) in AIS messages. To this aim, the use of the

learned routes can provide more accurate predictions on a

longer time scale, compared to conventional models (e.g.

particle filtering). As an example, the beneficial inclusion

of route average speed as prior contextual information

into vessel prediction models has been discussed in [15].

• If the vessel is not assigned to any existing route, it en-

hances the detection of potentially anomalous behaviours,

commonly defined as behaviours deviating from or not

compliant to the learned traffic normality, and further

actions at different levels (e.g., sensor managements, asset

allocation) can be decided.

A distinctive feature of the methodology is the possibility

to classify tracks which are incomplete (e.g., they have gaps

in the data sequences or their reports are incomplete in some

of their fields as in the case of Course over Ground (COG)

and/or Speed over Ground (SOG) is missing or inconsistent).

Compared to other trajectory-based classification methods

where input trajectories need to be uniformly sampled over

time (either directly or after re-sampling techniques), our

approach takes as input a partial track from that vessel with

a variable time rate. Moreover, being the proposed approach

hierarchical in the feature domain, the classification does

not assume complete trajectories, since it is based on an

incremental handling of the track, updating the classification

as soon as a new contact from the same vessel is received.

Consequently, the longer the track duration and/or the larger

the number of feature measurements available, the better the

track classification performance is expected. Also, the explicit

association of a vessel (or track) to an existing route is original

to this work.

IV. CONTEXT EXTRACTION VIA TREAD

As discussed in Section II, the way in which the classifi-

cation is performed is very much influenced by the represen-

tation of the patterns of life extracted in the labelling phase.

This means that, depending on the specific final aim of the

classification, different levels of complexity can be reached in

the way normal patterns are represented.

A. Routes construction by clustering

The increasing quantity of historic AIS reports poses new

challenges in the related fields of data mining and machine

learning techniques when applied within the context of big

data and MSA. The large amount of vessel movement data

collected by terrestrial networks and satellite constellations

of AIS receivers requires the aid of automatic processing

techniques to fully exploit this data, since the initial amount of

raw information can overwhelm human operators. A compre-

hensive knowledge of recurrent vessel patterns in an area under

investigation is valuable contextual information to support

accurate vessel prediction and track classification. The motion

patterns are here learned using TREAD tool. More details

about the learning methodology behind TREAD can be found

in [3], [4], where the way the contextual information is derived

is discussed with examples. We here exploit this contex-

tual information to perform track association for anomaly

detection. In the learning-labelling phase TREAD uses an

incremental Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) procedure (see [16]) adapted to the

maritime domain by a spatio-temporal clustering which detects

the following events in vessel motion AIS data streams:

• “the vessel enters the area”

• “the vessel exits the area”

• “the vessel is steady”

• “the vessel is sailing”

These discrete events are then incrementally clustered to

create, update and merge the labelled clusters, being of three

different types: “route Rk”, “entry/exit gate”,“stationary area”.

The clustering parameters are dependent on the specific

scale and traffic intensity/density of the selected area and are

affected by other contextual factors such as weather condi-

tions, seasonality, etc. Traffic knowledge for human operators,

providing an up-to-date situation assessment information (e.g.,

level 2 processing in the Joint Directors of Laboratories (JDL)

model [17]). The way routes and traffic change with time

and season can help operators in enhancing the knowledge of

vessel pattern of life activity and analysts in predicting vessel

movement and the impact on traffic when the routing systems

are modified. Information from the derived routes, such as

the vessel type, mean velocity or the series of route points

provided by previous transits, represent a set of contextual

constraints that can be used to characterize the behaviour of

specific classes of vessels along the route. The functional

architecture of the proposed methodology is summarized in

Fig. 2. In Section V, we will illustrate how these contextual

feeds can be used into the proposed context-based classifica-

tion model, following a hierarchical data-driven approach.

B. Representation of maritime routes

The design of an anomaly detector is strictly linked to the

representation of the data in which we search for anomalies

(see, e.g., [6]). Some anomaly detection methods assume that
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Fig. 2. The general overview of TREAD Knowledge Discovery Process:
the raw AIS data stream is processed. Vessel movements are clustered. The
discovered traffic route system is organized as a dictionary of motion models.

data, in our case trajectories, are represented as points in

a fixed-dimensional feature space. This implies that a fixed

number of features, e.g., the position at a fixed number of

points in time, has to be extracted from each trajectory or

trajectory segment. Other methods only assume that a similar-

ity or dissimilarity measure is defined for pairs of trajectories

or trajectory segments. The choice of features or similarity

or dissimilarity measure essentially determines the type of

anomalies that can be detected and is therefore very important.

We propose a spatial model for representing routes on the sea,

similarly to [7].

Let us denote by R = {R1, . . . , RK} the finite set of

extracted routes for a given region. As described above,a route

Rk is built from a cluster of vessel AIS reports following the

same itinerary. The concept of itinerary can be defined as an

ordered sequence of positions (i.e.,, directed path). A route

describes the entire trajectory of an object from the time it

enters one waypoint to when it exits another waypoint and

can be described as a curve with specific start and end points.

Each route is associated with a route prototype representing

an “average route” or be interpreted as a representative trajec-

tory. A route prototype is represented by a set of intermediate

estimated waypoints that form a poly-line bounded by two

extrema on the variation in trajectories sampled for the route

(see Figure 3). Vessels move in an open area, some of them can

move away from the “average route” as noted in [18], but these

deviations can still be normal when they fall within a certain

interval. For each route we define a route spatial extent (e.g.,

area of influence) which can be probabilistically represented

using a Kernel Density Estimation (KDE) method of the

random variable “vessel position” adopting a Gaussian kernel

Fig. 3. A route cluster with the “average route” and boundaries superimposed.

with an optimized bandwidth. KDE has shown a superior

ability to accurately model traffic routes, even in the case of

skewed distribution of vessel positions across the main route

longitudinal axis as shown in [3].

More specifically, the route Rk can be represented by:

• an origin point Ok, which is the centroid of the entry

gate;

• a destination point Dk, which is the centroid of the exit

gate; this is a relevant information mostly when the exit

gate area corresponds to a port;

• an “average route” R̄k, e.g., a sequence of waypoints

WP j represented by a 2-D position vector. A median

COG and SOG is associated to each waypoint; each

waypoint can be expressed as follows:

WPj = [xWPj
, yWPj

, ẋWPj
, ẏWPj

] (1)

where xWPj
and yWPj

, are related to the coordinates

of an ideal vessel moving along the “average route” and

passing by that specific WP j ; the velocity components,

ẋWPj
and ẏWPj

are derived by combining median SOG,
¯SOGWPj

and COG, ¯COGWPj
information, based on

the conditions: ¯SOG
∗

j =
√

(ẋWPj
)2 + (ẏWPj

)2 and

¯COGWPj
= tan−1

(

ẏWPj

ẋWPj

)

.

• a route spatial extent which is computed using the afore-

mentioned KDE;

• a route width wk, which is the maximum of the distances

of each route cluster point (vessel positions associated to

the route in the learning phase) to the closest waypoint

on the “average route”;

• a route global kinematic variability measure expressed

in terms of the overall standard deviations σCOGk
and

σSOGk
of the COG and SOG values of the vessels

associated to the route;

• a route “life span” which is computed as the average

duration of the transits of the vessels associated to the

route;

• a ship-type frequency distribution of the vessels which

transited along that route.
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It is advantageous to collect data for a long time period to

include variations in motion patterns over the day, the week

and the year in order to account for the temporal variability

of routes, depending on the specific time scale of the analysis.

The set of routes R = {Rk} with k = 1, ..K will be

used hereafter as the data-driven contextual information for

classification.

V. TRACK-TO-ROUTE (T2R) ASSOCIATION

We consider a Vessel of Interest (VOI) under observation

about which we receive a partial track with a variable time

rate. A vessel track, V, is a temporal sequence of T observed

state vectors, vt:

V = {v1, v2, . . . , vT } (2)

where we assume that the state vector observation, vt, is

extracted from AIS information. However, it could be provided

by any other source such as coastal radar with associated

tracker or a combination of other sources. In this study, it

includes both position and velocity information as extracted

by the vessel track properties.

vt = [xt, yt, ẋt, ẏt]
⊺ (3)

where xt and yt are related to the vessel coordinates and the

velocity components, ẋt and ẏt, are derived by combining

SOG and COG information, as defined above. vt can be further

expanded to include additional features such as the length, the

type, etc.

The classification problem of a set of vessel positioning

observations (forming a track) with respect to a labelled set

of routes can be formulated as building the mapping Ψ from

the set of tracks of interest T to R∗, where R∗ = R∪R∗ is

the extended set containing a rejection label corresponding to

off-route vessels:

Ψ(vt) = AR (4)

where AR is the set of routes compatible with vt. In the

general case, we consider a multi-label classification since

vessels can be compatible with several routes. The way routes

are defined and extracted, they may partially overlap and share

some physical regions with common directions of motion.

The proposed Track-to-Route (T2R) classification computes

the probability of a vessel track matching each route compati-

ble to the vessel features extracted from the partially observed

vessel track.

A. Definition of meaningful distances

The first task of the T2R classification algorithm is to infer

whether the vessel track, V deviates significantly from the

route model Rk, given the intrinsic variability of the vessels

within each route. An effective technique should be capable of

distinguish data point deviations that occur due to anomalous

events from outliers associated with the tails of the reference

route points. Then the distance of the track point from the

closest point on the synthetic route can be computed and

compared to it for each labelled route Rk.

In the following section some distances are defined, useful

for the classification process. Some similar definitions for

ground surveillance have been proposed in [7].

Distance of a point from a route waypoint: Let vi = (xi, yi)
be a measured vessels position. The distance from vi to a

waypoint is defined as:

d(vi,WPj) = ‖[xi, yi]− [xWPj
, yWPj

]‖; (5)

In order to take into account the approximated spherical

geometry of the Earth’s surface we calculate this distance

by using the Haversine formula. When the scale of the area

of interest is relatively limited, the curvature effect can be

neglected and the Euclidean distance formula can be used.

Distance of a track point from a route: The distance (5)

can be extended to compute the distance to a route as:

∆k
p(vi) = d(vi, Rk) =

J

min
j=1

d(vi,WPj) (6)

for all the WPj ∈ R̄k. An approximation of this can be the

minimum distance of the track point from all the waypoints of

the route. This is the distance of the point vi from the closest

waypoint WPj on the route R̄k.

Distance of a track from a route: The distance ∆k
p(vi) can

be extended to define the distance of the vessel track V (of

length T ) from the route Rk:

∆k
p = ∆p(V, k) =

T
max
i=1

d(vi, Rk) (7)

It is the maximum distance over all the distances of the

track points from the route. Itcan be considered a modified

directed Hausdorff distance for moving objects at sea. The

Hausdorff distance measures how far two subsets are from

each other [6]. It has been used as an objective measure of each

trajectory similarity and resulted to be useful for clustering

ship trajectories. This distance is not symmetrical, and can be

defined as a directed Hausdorff distance.

VI. MARITIME ANOMALY DETECTION

The observation sequence is used as a base for the T2R

classification. We assume there is no error in the measurement

system. The feature distances are defined for each route Rk

as follows and included in the observation sequence:

Ok
V = [∆k

p,∆
kheading,∆kspeed,∆kTseq,∆ktype] (8)

with the following contributions:

• Distance ∆k
p between the vessel track V and the route

Rk (here indicated as ∆p, for simplicity of notation);

• Distance in vessel heading (∆kheading). This could

indicate deviation from normal route vessel flow;

• Distance in vessel speed (∆kspeed). This could help in

identifying vessels showing a high-speed or low-speed

compared to the route average speed;

• probability of the temporal sequence ∆kTseq of the track

compared to the route which is practically null when the

vessel track is not associated to a route;

• Mismatch in vessel type (∆ktype). This could indicate

a misplaced vessel by ship type (e.g., a fishing vessel

transiting on a tanker route, and, to some extent, can
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be considered an off-route anomaly in a broader sense).

Distances in vessel type are not considered in the present

study.

A. Track classification and off-route vessel detection

The distance ∆k
p = ∆p(V, k) is used to test the spatial

proximity of the vessel track V from to all the routes Rk,

together with the route width wk. We consider sequentially

the received data points of the vessel track, starting from the

first received one.

Thresholding the distance of a track from a route: The route

width wk is defined as the maximum of the distances of each

route cluster point (vessel positions associated to the route in

the learning phase) to the closest waypoint on the “average

route” R̄k:

wk =
P

max
z=1

d(vz, Rk) (9)

where

d(vz, Rk) =
J

min
j=1

d(vz,WPj) (10)

This distance can be again considered an approximated di-

rected Hausdorff distance. In our tests we also comparatively

investigated the use of an average function, instead of the max-

imum value, but no significant differences in the classification

were observed.

The proximity test assigns a vessel track to a route Rk if

the track distance ∆k
p is below the route width wk:

Ψ(vt) = {Rk ∈ R|∆k
p ≤ wk} (11)

This means that more than one route can be compatible with

the observed track.

Once the vessel track V has been assigned to at least one

route, the related VOI is declared within-route (as shown in

Figure 1) and other features can be incrementally investigated

(i.e., heading and speed), being these features conditionally

independent (e.g., on a locally-based evaluation).

If the vessel track V cannot be assigned to any route, i.e.,

Ψ(vt) = ∅, the related VOI is declared off-route (as shown in

Figure 1) and external contextual information (e.g., weather

conditions, restricted areas, fishing areas, etc.) can help in

refining the classification of its behaviour.

B. Kinematic anomaly detection

If vessel track V is assigned to a route or a series of routes

(e.g., it is declared within-route), we can start investigating

its kinematic features in terms of the COG, SOG and time

intervals ∆t between subsequent observations.

Directional distance: The distance ∆heading is used to

test the angular alignment of the vessel track V from to the

compatible routes Ψ(vt). The track distance ∆heading is

computed as the mean of the observed ∆headingt for each

point of the track vt. ∆headingt is computed as the circular

distance of the track point COGt from ¯COG
∗

j associated to

the closest WP∗

j on the “average route” R̄k. ∆heading is

normalized with the maximum observed ∆headingt along the

track.

Speed difference: In the same way, to test the speed

compatibility; the distance ∆speed for the entire track is

computed as the mean of the observed ∆speedt for each point

of the track vt. ∆speedt is computed as the absolute value of

the difference between the track speed SOGt from ¯SOG
∗

j

associated to the closest WP∗

j on the “average route” R̄k.

∆speed is normalized with the maximum observed ∆speedt
along the track.

Track kinematic anomaly score: The final track kinematic

anomaly score ADV is computed as the average of the two

kinematic contributions. It has an upper bound at 1 and is

directly proportional to the likelihood P (V|Rk) of observing

a track, given the compatible route Rk.

If a vessel is in the proximity of at least one route and

the kinematic anomaly score ADV is greater than a given

threshold Th, the track V is declared anomalous, due to its

kinematic features and further investigations are needed. This

score will not be used in the results of section VII.

C. Track sequence anomaly score

Another contribution to the anomalous track detection is

provided by accounting for the likelihood of the temporal

sequence ∆Tseq of the track. This anomalous track sequence

detector assumes both the SOG and COG information are

available at each point of the track and can be triggered once

the track is associated to a route. The aim is to detect changes

in the track sequence, once it is associated to a route. If so, we

can compute the probability of transition from one observed

point of a track (i.e., state, following a Markov-like approach)

to another while the track is evolving over time indicated by

∆Tseq. This probability can be computed only if the track

has been associated to at least one route and aims at detecting

on-line deviations from the assigned route. The probability,

P (∆Tseq|Rk) = P (V|Rk), of the observation sequence, V,

for the state sequence, S̄, given the route, Rk, can be then

expressed as follows:

P (∆Tseq|Rk) = P (V|Rk) =

T
∏

t=1

P (vt|Rk). (12)

where:

P (vt|Rk) = exp

[

−

(

∆∗

p

αk

)βk

]

. (13)

The αk and βk estimates are obtained of each route Rk using

the sampled distances ∆∗

p between the predicted points [x̂t, ŷt],
and the actual observed points, [xt, yt], in the specified route,

Rk, for each given time lag, ∆t, using Maximum Likelihood

methods. These results have been fully detailed and discussed

in [3]. The concept is here framed into the more general

scenario of track classification. This allows to compute the

corresponding ∆∗

p as a function of the specific time lag ∆t

along the track, without requiring re-sampling techniques to

be able to process the track sequence. The distance, ∆∗

p, can

be used to estimate the likelihood of observing the track state

at time t, given the previous state at time t − 1, along the

route, Rk. In this way, a consistent transition probability for

the considered likelihood estimation problem is obtained, as
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discussed in [3] and this can be used to set up an on-line

anomaly test of the time sequence.

Anomaly test of the time sequence: The detection of an

anomaly, H1, at time, t, can be thought of as deviation from

the normality, H0, learned using historical data and can be

approached by setting a minimum threshold in Equation (14),

according to the detection and false alarm rates required by

the specific surveillance application:

argmax
k

P (V|Rk)
H1

⋚
H0

Th (14)

where V is the observed track for the Vessel Of Interest (VOI).

In order to perform the anomaly detection on-line a sliding

time window, which captures only the most recent points of

the partially observed track, can be used.

VII. ILLUSTRATIONS AND RESULTS ON REAL DATA

The proposed T2R classification method was tested on a

reference data set of AIS data recently published by CMRE

[19].

A. Case study: Castellana reference data set

The Area of Interest (AOI) covers an area of 46 x 60 nautical

miles in the Ligurian Sea in front of La Spezia Harbour. 904

vessels transited in total in the considered scenario from Jan-

uary 1st to February 20th 2013, over the considered AOI. The

area includes La Spezia Harbour, where different typologies

of ship traffic are observed. From each AIS report the vessel’s

Maritime Mobile Service Identity (MMSI), the timestamp, the

latitude and longitude of the vessel (in decimal degrees), the

vessel speed over ground (in knots), the course over ground (in

degrees, North referenced) and the ship type (coded according

the AIS standards, e.g., 30 stands for fishing vessel) were

processed. The route extraction via TREAD provides the atlas

of the main routes prototypes. We selected 18 route prototypes

to set up our validation method, as shown in Fig. 4.

Fig. 4. Historical route prototypes extracted via the TREAD model in the
area from AIS data (Jan 1- Feb20 2013).

B. Some results

For each extracted route Rk with k = 1, ...18, a route model

has been computed, as discussed in Section IV-B. Each route

was then decomposed into a set of the elementary trajectories

of the vessels which transited along that route in the given

time window. These trajectory data were then further split into

tracks (i.e., partial segments of trajectories) and they were

ingested into the T2R algorithm in order to test the T2R

association algorithm on incomplete tracks. Each extracted

track contains 10 data points (corresponding to an average

track duration of about 20 minutes, given the average AIS

time rate in the area).

We provide here some results about the proposed methods.

The T2R association percentages are reported in Table I.

First, we analyzed the association performance in terms of

the percentage of tracks associated to the extracted system of

routes and the total number of processed tracks. In particular,

94 is the percentage of the tracks, originated from the extracted

system of routes, which were associated to the extracted

system of routes (and classified as “on-route”).

Secondly, we estimated the accuracy of the anomaly de-

tectors, which is equivalent to the overall rate of correctly

classified anomalous tracks, as discussed in [6]. We generated

synthetic tracks, in order to counterbalance for the lack of

ground truth which is one of the main issues when assessing

the performance of anomaly detectors. To this aim, we started

from the “on-route” tracks and altered their features (e.g., posi-

tion, heading and speed) independently, in such a way they can

reflect the Maritime Situational Indicators discussed in Section

III. An aggregated percentage of 87.3 tracks were correctly

detected as anomalous. One result from the analysis is that the

level of traffic variability of the originating routes affects the

association performance of both normal and abnormal tracks

and is a direct consequence of the data-driven approach, even

in dense traffic areas.

TABLE I
TRACK-TO-ROUTE ASSOCIATION RATES

Detector output

Ground truth Normal Anomalous

Normal on-route 94 6

Anomalous

off-route 11 89
on-route but high speed 12 88
on-route but opposite heading 15 85

Total 12.6 87.3

Figure 5 reports an example of a measurement of a track

sequence, using the method presented in Section VI-C. This

method suites the on-line classification of a track, once it is

associated to a route, by computing the transition probability

using jointly the COG and SOG information. This can help

highlighting unexpected evolutions of the vessel motion along

the route.

VIII. CONCLUSIONS AND FUTURE WORK

A method has been presented for associating and classifying

tracks (i.e., partial trajectories) enhanced by the traffic routes

derived via TREAD model for route extraction. The method

is data-driven: routes are learned from the historical data for
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Fig. 5. Route represented via KDE-computed extent (left); Example of a
low-likelihood track classified using the sequential scoring method discussed
in Section VI-C. (right)

the area of interest to get performance results suitable to the

users needs and proper thresholds must be selected.

The proposed approach has been tested on a real data set

supplemented with simulations of abnormal tracks. In the light

of these preliminary results, we observed that the association

accuracy is affected by the level of traffic variability in the

area. In [4] the route cluster quality has been discussed. As a

consequence, the detection of anomalies can be linked to the

traffic entropy: the capability to successfully recognize low-

likelihood behaviors is enhanced in areas where the traffic

patterns are highly regular and therefore, the associated level

of disorder is low. The effect of entropy on association

performance will be further investigated as part of future

research.

The spatial proximity is the primary factor affecting the

track association. The algorithm assigns to multiple routes a

track when this falls in the proximity of overlapping motion

patterns with similar flow directions (i.e., kinematic features).

Due to the complex nature of the maritime surveillance and

anomaly detection, the presented algorithm is meant be one

component of a larger integrated system of maritime anomaly

detection to improve automated processing techniques. Indeed,

the risk of high false alarm rates when using automatic systems

can be mitigated using multiple sensors and sources, in order

to get a confirmation from complementary sources.

The choice of thresholds is a critical task in the design of

an anomaly detection strategy. As part of the future work, a

sensitivity study is planned in comparison with other available

methodologies (such as [20]), in order to assess the impact of

the thresholds on the anomaly detector performance. Operators

can provide guidelines about the the deviations of interest

in the kinematic features of the vessel tracks. To this aim,

a support in the threshold selection can be provided by the

context, represented via routes (as discussed in the present

paper) and via “external” contextual constraints if available

(e.g., direction/speed indications from the traffic separation

schemes in proximity of ports or in highly dense areas). A

planned extension of the present work will consider the evo-

lution of route representation using semantic regions (common

sub-paths shared by different routes) similar to the approach

presented in [21]. Also, the differentiation of route layers

filtered by ship-type will be considered, in order to enhance

the detection of the anomaly “The type of the vessel is not

compatible with the route followed” as discussed in [12].
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