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Abstract—The general focus of this paper is the improvement of
state-of-the-art Bayesian tracking filters specialized to the domain
of ground moving objects to obtain high-quality track informa-
tion, based on airborne ground moving target indication (GMTI)
radar measurements. To counteract the numerous challenges,
in particular, imprecise measurements and missed detections, a
strong false alarm background, closely-spaced targets, technical
and terrain obscuration as well as complex target motion, it
is highly advisable to exploit additional context information
in a tracking system. Three different classes of information
are considered and used as extensions of standard tracking
algorithms. These are the knowledge on range and Doppler
blind zones of the GMTI sensor, road network information and
signal strength measurements, where the latter is used to obtain
estimates of a target’s mean radar cross section (RCS). The
performance of differently augmented cardinalized probability
hypothesis density (CPHD) filter variants is assessed based on a
multi-target simulation scenario.

Keywords: Bayesian target tracking, ground moving target

indication (GMTI), context information, blind zone, road net-

work, signal strength, radar cross section (RCS).

I. INTRODUCTION

Tracks of moving objects serve as an essential building block

for the detailed situation picture production of a generally

complex and dynamically evolving scenario with a wide range

of applications. The present work focuses on ground moving

targets observed by airborne GMTI radar which is the sensor

of choice in this context due to its wide-area surveillance,

day & night operation and real-time processing capabilities.

The obtained track information then provides essential support

for human decision makers or decision making systems. The

further developments and enhancements discussed in this

paper aim at improving the quality of the track output in the

presence of the aforementioned challenges.

The incorporation of context knowledge into the Bayesian

filtering scheme has been studied by the authors in detail

for several sources of information. Relevant contributions on

signal strength information processing are discussed in [1]–

[3], where the mean RCS of a target is estimated based on

fluctuating signal strength measurements. Exploiting extended

knowledge on Doppler and range blind zones of the GMTI

sensor is treated in [4], [5] and roads and road networks are

focused on in [1], [6]. In comparison with these previous

publications, the novelty of the present work is the combined

processing of these sources of information within the CPHD

filter [7], yielding the integrated CPHD filter variant, and

its performance evaluation based on a challenging simulation

scenario.

The paper is organized as follows: Section II presents the

tracking algorithm exploiting context information. In the first

part, Section II-A, the standard CPHD filter is briefly reviewed.

After that, the three different sources of information used in

this paper are briefly discussed and relevant equations given in

Section II-B. And in the third part, Section II-C, the integrated

variant of the CPHD filter is presented. Section III contains the

performance analysis of the developed CPHD filter variants

based on a simulation scenario. Finally, concluding remarks

are given in Section IV.

II. TARGET TRACKING WITH CONTEXT INFORMATION

A. Standard CPHD Filter

The CPHD filter is a recursive Bayesian [8] multi-target

estimation scheme based on finite set statistics (FISST) [9]

and was first published in [7]. Its main idea is to represent

a multi-target state at time tk by a random finite set (RFS)

Ξk, where both the elements as well as the number of

elements of the set are random variables. In addition, also

the measurement sequence Zk = {Z1, Z2, ..., Zk} with Zk =
{zmk }mk

m=1 is represented as an RFS. The CPHD sequentially

estimates the first-order statistical moment of the full multi-

target probability density function (pdf), denoted by v(xk).
It is called probability hypothesis density (PHD) or intensity

function. Within a Gaussian framework [10] with linear motion

and measurement models, it is given by a weighted sum of

Gaussians as

v(xk) =

Nk∑

n=1

wn
k N (xk;x

n
k ,P

n
k ) , (1)

where wn
k , xn

k and P
n
k are the weight, mean and covariance

of the Gaussian component n. v(xk) corresponds to the
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probability of having a target in an elementary volume of the

state space. Thus, the integral of this function over the state

space yields the estimated number of targets. The CPHD filter

sequentially computes the cardinality distribution p(nk) along

with v(xk), so that the estimated number of targets can also be

obtained by n̂k =
∑∞

nk=1 nk p(nk). Based on estimates of the

intensity function at time step tk−1, the target motion model

is employed in the prediction step to obtain first estimates

for time step tk, vk|k−1(xk), based on the Kalman prediction

equations [8]. And the cardinality distribution is predicted

by making use of predefined survival and target appearance

probabilities, as described in [7], [11]. In the filtering step at

time instance tk, utilizing all measurements up to tk denoted

by subscript (k|k), the intensity function and the cardinality

distribution are updated by

vk|k(xk) =
[

Pd
L(Zk|D)

L(Zk)
+ (1− Pd)

L(Zk|¬D)

L(Zk)

]

vk|k−1(xk) (2)

pk|k(nk) =
L(Zk|nk)

L(Zk)
pk|k−1(nk) , (3)

where Pd denotes the detection probability and the expressions

L(·) are likelihood ratios as given in, e.g., [11], [12]. All like-

lihood ratios depend on the weighted single-target detection

likelihood Lm
k determined by

Lm
k =

1

nk|k−1

∫

Pd vk|k−1(xk) l(z
m
k |xk) dxk . (4)

Under the linear Gaussian measurement model assumption,

i.e., z
m
k = Hkxk + w

m
k with measurement matrix Hk,

Gaussian measurement error w
m
k and covariance R

m
k , the

single-target detection likelihood l(zmk |xk) can be written as a

Gaussian with N (zmk ;Hk xk,R
m
k ) and the Gaussian mixture

framework is conserved under the measurement update.

B. Tracking Filter Extensions

In the following, the considered classes of context information

are briefly summarized, stating the main ideas and relevant

equations based on a general Bayesian filtering scheme.

1) Doppler and Range Blind Zones: The radial velocity com-

ponent of a moving object induces a measurable phase shift

from pulse to pulse in the back-scattered signal. Whenever

this range-rate equals a multiple of the sensor’s blind speed

ṙB = λ/2 fPRF , i.e., ±i ṙB with j = 0, 1, 2, . . . and the radar

center wavelength λ, then the associated reflection is treated as

clutter echo and is therefore suppressed. In that way, multiple

Doppler blind zones arise where the width is determined by

the width of the space-time adaptive processing (STAP) clutter

filter [13], [14]. In addition, as a monostatic radar system

permanently switches between transmit and receive mode,

dead zones in time occur during which the radar is blind, i.e.,

no reflections can be received. These time intervals correspond

to certain distances, namely multiples of the unambiguous

range Ru = c/(2 fPRF ), i.e., j Ru with j = 1, 2, . . . and the

speed of light c, causing multiple blind zones in the range

domain.

The knowledge on these GMTI sensor blind zones can be in-

corporated into a Bayesian tracking filter. This is accomplished

by resembling the blind zone’s influence on the detection prob-

ability [15]–[17]. First of all, notch functions are introduced

which measure the distance between the target state and the

blind zone center. These are in Cartesian coordinates given for

the range-rate domain by

n±iD (xk, r
S
k , ṙB) =

rk − r
S
k

||rk − rSk ||
ṙk ± i ṙB , i = 0, 1, 2, ... (5)

and for the range domain by

nj
R(xk, r

S
k , Ru) = ||rk − r

S
k || − j Ru , j = 1, 2, 3, ... , (6)

where r
S
k is the sensor position vector at time step tk.

Following the argument in [15] and changing the order index

of the Doppler blind zone to l = i + 1, the target state

dependent detection probability is given by

Pd(xk, r
S
k , ṙB , Ru) = pd(rk, ϕk, θk) ×

×
[

1− qD

∞∑

l=1

e
− log 2

(
n±l
D

(xk,r
S
k ,ṙB)

MDV

)2
]

×

×



1− qR

∞∑

j=1

e
− log 2

(
nj
R
(xk,r

S
k ,Ru)

σR

)2


 , (7)

where the influence of the Doppler and range blind zones are

modeled by Gaussian-type functions. The factors qD and qR
are for normalization and MDV is the minimum detectable

velocity of the GMTI sensor. The latter is also a measure

for the width of the Doppler blind zones. The width of each

range blind zone, denoted by σR, is determined by the pulse

length τ of the chosen signal waveform and is approximately

given by σR = 2 τ c. To retain the Gaussian framework of the

tracking filter, the nonlinear notch functions n±lD (xk, r
S
k , ṙB)

and nj
R(xk, r

S
k , Ru) are linearized around the predicted target

state xk|k−1 at time step tk before the detection probability

(7) can be substituted into the general likelihood function. The

Doppler notch function is approximated by

n±lD (xk, r
S
k , ṙB) ≈ ∼z

±l

D,k −
∼
H

±l

D,k xk (8)

with

∼
z
±l

D,k = n±lD (xk|k−1, r
S
k , ṙB)+

∼
H

±l

D,k xk|k−1 (9)

∼
H

±l

D,k = − ∂

∂xk
n±lD (xk, r

S
k , ṙB)

∣
∣
∣
xk=xk|k−1

, (10)

and the range notch function is approximated by

nj
R(xk, r

S
k , Ru) ≈ ∼z

j

R,k −
∼
H

j

R,k xk (11)

with

∼
z
j

R,k = nj
R(xk|k−1, r

S
k , Ru)+

∼
H

j

R,k xk|k−1 (12)

∼
H

j

R,k = − ∂

∂xk
nj
R(xk, r

S
k , Ru)

∣
∣
∣
xk=xk|k−1

. (13)
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In that way, the exponentials in (7) can be rewritten as real

Gaussians, yielding

Pd(xk, r
S
k , ṙB , Ru) = pd(rk, ϕk, θk)×

×
[

1− qD

∞∑

l=1

cD N (
∼
z
±l

D,k;
∼
H

±l

D,k xk, vD)

]

×

×



1− qR

∞∑

j=1

cR N (
∼
z
j

R,k;
∼
H

j

R,k xk, vR)



 (14)

with cD = MDV/
√

log(2)/π, vD = MDV2/(2 log 2), cR =
σR√

log(2)/π
and vR =

σ2
R

2 log(2) .

2) Road Network Information: This section briefly summa-

rizes the tracking scheme utilizing road information. More

details can be found in, e.g., [1], [6].

A road is mathematically described by a continuous 3-D

curve in Cartesian coordinates and is parametrized by the

corresponding arc length l. This continuous curve can be

approximated by a polygonal curve consisting of nr piecewise

linear segments. Each segment s with s = 1, ..., nr of the

polygonal road is fully determined by the node vector rs, the

arc length λs = ls+1−ls, and the normalized tangential vector

ts. In addition, the accuracy of the road can be described

by a covariance matrix R
r
s which also accounts for the

discretization error. Details on how to compute these quantities

can be found in, e.g., [1], [6], [18].

In case of targets moving on a road, it seems reasonable to

describe the kinematic state vector xr
k of road targets at time tk

by its position on the road lk, i.e., the arc length of the curve,

and its scalar speed l̇k: xr
k = (lk, l̇k)

⊤. By making use of the

related transition density p(xr
k|xr

k−1), the predicted density in

road coordinates is given by

p(xr
k|Zk−1) =

∫

p(xr
k|xr

k−1) p(x
r
k−1|Zk−1) dxr

k−1 . (15)

The problem is that the target dynamics is given in road

coordinates while the measurements and, hence, the filter

update is performed in Cartesian ground coordinates. In

principle, the Bayesian formalism can be applied to road

targets, if there exists a transformation operator Tg←r which

transforms the predicted density p(xr
k|Zk−1) from road to

ground coordinates:

p(xr
k|Zk−1)

︸ ︷︷ ︸

in road coordinates

road-map−−−−−−−−→
road-map error

p(xg
k|Zk−1)

︸ ︷︷ ︸

in ground coordinates

(16)

In general such a transformation is highly nonlinear, and

the structure of probability densities in terms of Gaussian

sums cannot be preserved. Linearity is, however, conserved

by employing the linearized road segments for the mapping

between road and ground coordinates. In this case, the density

in ground coordinates, p(xg
k|Zk−1), can be written as a sum

over the road segments considered:

p(xg
k|Zk−1) =

nr∑

s=1

p(xg
k|s,Zk−1) p(s|Zk−1) . (17)

Here, p(s|Zk−1) denotes the probability that the target moves

on segment s given the accumulated sensor data Zk−1. Its

explicit form is given in [6]. The densities p(xg
k|s,Zk−1) can

be calculated from the probability density in road coordinates

and are approximately given by Gaussians. The filtering step

then recalculates the weight of each road segment and can,

hence, also reweight the total road probabilities. After the

filtering step, the inverse transform from Cartesian to road

coordinates is simply provided by individually projecting the

densities p(xg
k|s,Zk) onto the associated road segments:

p(xg
k|s,Zk)

︸ ︷︷ ︸

in ground coordinates

road-map−−−−−→ p(xr
k|s,Zk)

︸ ︷︷ ︸

in road coordinates

(18)

Before the subsequent prediction of the next iterative cycle is

performed, the mixture densities are approximated by second-

order moment matching [8]:

p(xr
k|Zk) =

nr∑

s=1

p(s|Zk) p(xr
k|s,Zk) ≈ N

(
x
r
k; x

r
k|k, P

r
k|k

)
.

(19)

In case of a digitized road network comprised of several road

sections, each section consists of a certain number of linear

segments which are connected at specific nodes. This yields

a complex structure exhibiting crossings and junctions. The

main idea of the utilized tracking scheme with complex road-

map data is to introduce a local road for each road target

consisting of only a limited number of segments. Depending

on the specific motion of a target along the road network, this

local road is adjusted continuously.

The arising ambiguity in the vicinity of junctions and crossings

is resolved over time by utilizing a multiple model approach

with respect to the generated local roads: Every possible path

of the moving object at the junction or crossing leads to

different road hypotheses h with h = 1, ..., Nh, each having

a different continuation of the previous local road after the

junction, see Fig. 1. Whenever a target approaches a junction

or crossing, a road hypothesis h for every possible continuation

after the junction is generated and its probability conditioned

on the accumulated sensor data, Pk(h|Zk), is then calculated

at the end of the filter update based on the associated road

Fig. 1. Local roads generated for a target which moves from left to right and
approaches the junction.
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segment weights. The ambiguity is then resolved over time as

the target passes the junction or crossing and moves further

away so that the obtained target measurements facilitate the

discrimination among the different road hypotheses. In the end,

a single hypothesis will dominate and all others can be deleted.

3) Target RCS and Signal Strength Measurements: The fluc-

tuations of the target RCS which result in fluctuations of the

signal strength measurement are described by the Swerling

cases [19]. In particular, RCS fluctuations according to the

Swerling-I model are considered. This model assumes slow

and independent fluctuations from pulse to pulse and that no

fluctuations occur during a single illumination period. The

signal amplitude is Rayleigh distributed. It can easily be shown

[2], [3] that the pdf of the signal strength measurement ak,

conditioned on the mean signal strength ratio (SNR) at time

step tk, SNRk, is given by

p(ak|SNRk) =
1

SNRk
e−ak/SNRk . (20)

The functional relationship between the instantaneous target

RCS σt
k and mean signal strength SNRk is determined by the

radar range equation [20] which can be written as

SNRk = SNR0

(
σt
k

σ0

) (
ek
e0

) (
rk
e0

)−4

, (21)

where SNR0, σ0, e0 and r0 are the mean SNR, RCS, illumi-

nation energy and distance of a reference target, respectively.

Thus, ak can be regarded as a measurement of the relative

RCS σk = σt
k/σ0 and with αk = SNR0 (ek/e0) (rk/e0)

−4
,

the relationship can simply be expressed by SNRk = αkσk.

The detection probability factor pd in (14) depends on the

mean target signal strength and the detector threshold ξ.

Assuming strong target returns, i.e., 1 + SNRk ≈ SNRk, it

is given for Swerling-I fluctuations by

pId = e−ξ/SNRk . (22)

As detections are only available if ak > ξ, the signal

strength measurement pdf (20) has to be normalized with the

normalization factor being equal to pId.

Based on this RCS fluctuation and signal strength measure-

ment modeling, a recursive RCS update scheme can be derived

for the relative RCS σk. This was first performed for air

targets in a clutter-free environment [18] and then generalized

to targets in clutter [2], [3].

C. Integrated CPHD Filter

In order to incorporate the RCS estimation scheme [2], [3],

the first step is to augment the target state vector by the RCS

random variable, Xk = [xk, σk]. Likewise, the measurement

set at tk now consists of Zk = {zmk , amk }mk

m=1. In addition, each

component of the intensity function (1) needs to be augmented

by a probability density which describes the distribution of the

relative target RCS. Following the argument in [18], the class

of inverse Gamma densities is chosen as

IG(σ; σ̂, µ) = [(µ− 1)σ̂]
µ

Γ(µ)
σ−µ−1 e−

(µ−1)σ̂
σ (23)

with the expectation value σ̂ and variance σ̂2/(µ − 2). The

latter only exists if µ > 2.

Utilizing road network information yields an intensity function

which partially consists of components processed based on an

update scheme without utilizing road information and partially

based on the following scheme, also accounting for digitized

road network data: Without loss of generality, it is assumed

that component n of the PHD surface at time step tk−1 is

associated with a road target track related to road hypothesis

h, given by

vnk−1|k−1(X
r
k−1) = wn

k−1 IG(σk−1;σ
n
k−1|k−1, µ

n
k−1|k−1)×

×N (xr
k−1;x

(r)n
k−1|k−1,P

(r)n
k−1|k−1) . (24)

Following the proceeding presented in Section II-B2, in the

prediction step this single PHD component is decomposed

into a mixture over linear road segments of the associated

local road and transformed into the ground coordinate system,

yielding

vnk|k−1(X
g
k) =

nr(h)∑

s=1

Ph
k (s|n,Zk−1) IG(σk;σ

n
k|k−1(s), µ

n
k|k−1(s)) ×

×N (xg
k;x

(g)n
k|k−1(s),P

(g)n
k|k−1(s)) . (25)

In the filter update step, each of these segment-dependent

components is then used to derive vnk|k(X
g
k).

The processing of multiple blind zones is accomplished by

making use of the generalized detection probability from

Section II-B1,

Pd(X
g
k, r

S
k , ṙB , Ru) = pd(x

g
k, σk, r

S
k ) ×

×
[

1− qD

∞∑

l=1

cD N (
∼
z
±l

D,k;
∼
H

±l

D,k x
g
k, vD)

]

×

×



1− qR

∞∑

j=1

cR N (
∼
z
j

R,k;
∼
H

j

R,k x
g
k, vR)



 , (26)

where the prefactor pd(x
g
k, σk, r

S
k ) is determined by the

Swerling-I detection probability (22). In addition, the mean

signal strength is given by SNRk = α∗k σk with

α∗k = SNR0

(
ek
e0

) (
rk
r0

)−4

DS
k (ϕk) , (27)

thus also accounting for the directivity pattern of the sensor

in azimuth direction ϕk with DS
k (ϕk) = cos(ϕk)

3/2.

It should be pointed out that the RCS information depends on

the specific road hypothesis, see (24) and (25). This is due to

the fact that the filter update equations of σk|k depend on α∗k ∼
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1/r4k, as stated in (27), and thus implicitly on the kinematic

target state. In addition, each component of the PHD generated

by the blind zone hypotheses contains RCS contributions, see,

e.g., (31). Thus, RCS information is also combined with blind

zone knowledge within the filtering process.

Inserting the generalized probability of detection (26) into (2)

then yields for the detection part

Pd(X
g
k, r

S
k , ṙB , Ru)

L(Zk|D)

L(Zk)
vnk|k−1(X

g
k) =

∞∑

l=0

∞∑

j=0

mk∑

m=1

nr(h)∑

s=1

pljmn
k (s) IG(σk;σ

ljmn
k|k (s), µljmn

k|k (s)) ×

×N (xg
k;x

(g)ljmn
k|k (s),P

(g)ljmn
k|k (s)) (28)

and for the missed detection part

(1− Pd(X
g
k, r

S
k , ṙB , Ru))

L(Zk|¬D)

L(Zk)
vnk|k−1(X

g
k) =

∞∑

l=0

∞∑

j=0

nr(h)∑

s=1

plj0nk (s) IG(σk;σ
lj0n
k|k (s), µlj0n

k|k (s)) ×

×N (xg
k;x

(g)lj0n
k|k (s),P

(g)lj0n
k|k (s)) . (29)

The corresponding unnormalized weight factors for m > 0 are

given by1

pljmn
k = wn

k|k−1

L(Zk|m)

L(Zk)
×

×







l = 0 , j = 0 , m > 0 :

N (zmk ;Hkx
(g)n
k|k−1,S

00m
k )

µk|k−1

(µk|k−1−1)σk|k−1
×

×
[

(µk|k−1−1)σk|k−1

(µk|k−1−1)σk|k−1+am
k
/α∗

k

]µk|k−1+1

l > 0 , j = 0 , m > 0 :

− qD cD N (
∼
z
±l

D,k;
∼
H

±l

D,k x
(g)00m
k|k ,Sl0m

k )×
×N (zmk ;Hkx

(g)n
k|k−1,S

00m
k )×

× µk|k−1

(µk|k−1−1)σk|k−1

[
(µk|k−1−1)σk|k−1

(µk|k−1−1)σk|k−1+am
k
/α∗

k

]µk|k−1+1

l = 0 , j > 0 , m > 0 :

− qR cR N (
∼
z
j

R,k;
∼
H

j

R,k x
(g)00m
k|k ,S0jm

k )×
×N (zmk ;Hkx

(g)n
k|k−1,S

00m
k )×

× µk|k−1

(µk|k−1−1)σk|k−1

[
(µk|k−1−1)σk|k−1

(µk|k−1−1)σk|k−1+am
k
/α∗

k

]µk|k−1+1

l > 0 , j > 0 , m > 0 :

qD cD N (
∼
z
±l

D,k;
∼
H

±l

D,k x
(g)0jm
k|k ,Sljm

k )×
× qR cR N (

∼
z
j

R,k;
∼
H

j

R,k x
(g)00m
k|k ,S0jm

k )×
×N (zmk ;Hk x

(g)n
k|k−1,S

00m
k )×

× µk|k−1

(µk|k−1−1)σk|k−1

[
(µk|k−1−1)σk|k−1

(µk|k−1−1)σk|k−1+am
k
/α∗

k

]µk|k−1+1

(30)

1The road segment index s is dropped in (30) and (31) for convenience.

and for m = 0 determined by

plj0nk = wn
k|k−1

L(Zk|¬D)

L(Zk)
×

×







l = 0 , j = 0 , m = 0 :

1−
[

σk|k−1

/(

σk|k−1 +
ξ/α∗

k

µk|k−1−1

)]µk|k−1

l > 0 , j = 0 , m = 0 :
[

σk|k−1

/(

σk|k−1 +
ξ/α∗

k

µk|k−1−1

)]µk|k−1 ×

× qD cD N (
∼
z
±l

D,k;
∼
H

±l

D,k x
(g)n
k|k−1,S

l00
k )

l = 0 , j > 0 , m = 0 :
[

σk|k−1

/(

σk|k−1 +
ξ/α∗

k

µk|k−1−1

)]µk|k−1 ×

× qR cR N (
∼
z
j

R,k;
∼
H

j

R,k x
(g)n
k|k−1,S

0j0
k )

l > 0 , j > 0 , m = 0 :

−
[

σk|k−1

/(

σk|k−1 +
ξ/α∗

k

µk|k−1−1

)]µk|k−1 ×

× qD cD N (
∼
z
±l

D,k;
∼
H

±l

D,k x
(g)0j0
k|k ,Slj0

k )×
× qR cR N (

∼
z
j

R,k;
∼
H

j

R,k x
(g)n
k|k−1,S

0j0
k ) ,

(31)

where the likelihood ratios above depend on the single-target

likelihood function for kinematic as well as signal strength

measurements, given by

Lm
k =

1

nk|k−1

∫

vk|k−1(xk) p(z
m
k |xk) p(a

m
k |SNRk) dxk (32)

=
1

nk|k−1

Nk|k−1
∑

n=1

wn
k|k−1 N (zmk ;Hk x

n
k|k−1,S

mn
k ) ×

×
µn
k|k−1

(µn
k|k−1 − 1)σn

k|k−1

×

×
[

(µn
k|k−1 − 1)σn

k|k−1

(µn
k|k−1 − 1)σn

k|k−1 + amk /α∗nk

]µn
k|k−1+1

. (33)

After evaluating all (ljmn) generated components on each

segment s of the associated local road, each component is

then projected back onto the corresponding road segment. The

moment matching technique is finally used for merging over

all segments of each (ljmn) index combination, yielding a

mixture in continuous road coordinates as

vnk|k(X
r
k) =

∞∑

l=0

∞∑

j=0

mk∑

m=0

wljmn
k|k IG(σk;σ

ljmn
k|k , µljmn

k|k ) ×

×N (xr
k;x

(r)ljmn
k|k ,P

(r)ljmn
k|k ) . (34)

Regarding the weight factors, one has to make sure that if

more than a single road hypothesis exists, then all PHD com-

ponent weights associated with either road hypothesis have

to be divided by the total number of road hypotheses. This

guarantees that the sum of weights still yields the estimated

number of targets.
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III. PERFORMANCE EVALUATION

The performance evaluation focuses on a scenario setup with

two ground targets moving along a simple road network

layout. The trajectories of the two targets and the airborne

monostatic GMTI radar platform are shown in Fig. 2. The

paths of the targets can be divided into three sections: During

the first part, the two targets are spatially separated most of

the time. In the second part, both targets move closely-spaced

along the same trajectory for a considerable period of time,

performing a simultaneous move-stop-move maneuver with a

stopping period of 20 s. And in the third part, the targets finally

move apart from each other again. The chosen scenario and

tracking parameters are listed in Tab. I.

The main challenges of this specific scenario become obvious

by looking at Fig. 3. The left plot shows the evolution of the

corresponding range-rates of the two targets and the main lobe

clutter and also indicates the locations of the multiple Doppler

blind zones. Due to the move-stop-move maneuver of both

targets, the range-rate values drop into the blind zone region

quickly and remain at the blind zone’s center until the target

radial velocities again exceed the MDV of the sensor system.

The right plot shows the evolution of the slant range for the

corresponding positions of the two targets on the ground w.r.t.

the airborne GMTI radar and the location of the blind zones in

the range domain. Both targets are affected by the same range

blind zone, shortly before they move apart from each other in

the final part of the scenario. Thus, the challenges a tracking

filter has to face can be summarized as follows: As soon as the

two targets move closely-spaced along the same road segment,

the track identity, i.e., the correct target-track association will

be lost if only kinematic sensor information is exploited. And

as both targets exhibit roughly the same kinematic state vector

during this part of the scenario, it is likely that the PHD

components of the utilized CPHD filter, associated with the

two targets, are quickly merged, so that a single component

TABLE I
SIMULATION PARAMETERS

Total number of revisits N = 225
Revisit time ∆T = 1 s
Ground target speed vt = 20m/s
Sensor velocity vp = [90, 0, 0]m/s
Sensor altitude zp = 3 km
Range standard deviation σr = 10m
Azimuth standard deviation σϕ = 0.5◦

Elevation standard deviation σθ = 0.5◦

Range-rate standard deviation σṙ = 0.01m/s
Mean false alarm rate n̄fa = 1/FoV/Scan
False alarm probability Pfa = 10−2

Mean RCS values σt1/t2 = [1; 4]m2

RCS of reference target σ0 = 1m2

Slant range of reference target r0 = 24 km
SNR of reference target SNR0 = 13 dB
Mean SNR of false alarm CNR = 10 dB
Pulse-Doppler radar PRF fPRF = 8700Hz
Pulse-Doppler radar pulse width τ = 0.45× 10−6 s
Motion model process noise σp = 2.5m/s2

Weight of birth component wbirth = 0.001
Survival probability Ps = 0.99

with weight close to 2 substitutes the previous two single PHD

components, each with weight factors close to 1. The tracking

filter also has to deal with the long sequence of unobservability

caused by the simultaneous stop of the two targets and the

resulting masking by the Doppler blind zone of the sensor.

The range blind zone finally poses an additional challenge for

the employed tracking filter.

As multiple closely-spaced targets are present, this scenario

was analyzed based on different variants of the CPHD filter.

Due to the possible three classes of information to be incor-

porated into the tracking algorithm, a total of eight different

CPHD filter variants were considered in this analysis. In order

to assess the performance of each filter, the following measures

of performance were studied: a) the track continuity, i.e., the

capability of the filter to maintain a once extracted track for

each target until the final revisit, b) the probability of the

correct target-track association at the final revisit and c) the

mean optimal subpattern assignment (OSPA) value based on a

modified version of the OSPA metric with labeling errors [3].

The obtained simulation results based on 100 Monte Carlo

runs are listed in Tab. II. Exemplary multi-target tracking

results for each CPHD filter variant are presented in Fig. 4. For

the calculation of the OSPA value at each revisit, the maximum

cardinality penalty was set to 500m and the corresponding

penalty for labeling errors was set to 250m.

The standard CPHD filter reached a track continuity of zero,

i.e., it was not able to maintain the two tracks until the

final revisit in any Monte Carlo run. The exemplary tracking

performance, shown in the corresponding plot of Fig. 4, reveals

Fig. 3. Up: Evolution of the platform motion compensated bistatic range-rate
of targets and main lobe clutter. The gray bands indicate the Doppler blind
zones of order −1, 0 and +1 in the range-rate domain at each time step.
Bottom: Evolution of the slant range for the corresponding positions of the
two targets w.r.t. the airborne GMTI radar. The gray bands indicate the first
and second blind zones in the range domain at each time step.
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Fig. 2. Left: Scenario setup with trajectories of the two ground targets (red, blue) and of the monostatic GMTI radar platform (black). Right: Close-up view
of the target trajectories along the road network. Symbols � and © refer to the initial and final target positions, respectively.

that as soon as both targets started moving along the same

road segment, the two tracks were merged due to the strong

similarity of the two PHD components associated with each

target and the missing capability to discriminate both targets

based on attribute information, i.e., the mean RCS. After that,

also the survived track (red) was terminated due to the long

sequence of missed detections caused by the target stops. As

soon as new measurements became available, a new track

(green) was extracted which then described both targets, i.e.,

with a corresponding weight factor of 2. After the separation of

the two targets, the single track followed one branch and only

at for the last couple of revisits, the standard CPHD filter was

able to extract another track (purple), representing the second

target, so that the PHD component weights of each track were

finally again roughly 1.

The CPHD variants incorporating one particular source of

information reached a slightly better performance: If only

the knowledge on the Doppler and range blind zones was

exploited, the corresponding tracking filter (CPHD + DRBZ)

was able to maintain at least one of the two tracks until the

final revisit. As in the case of the standard CPHD filter, the

second track was merged as soon as the statistical distance

between both tracks became small enough. The second track

was represented by an additional track only during the last

revisits of the scenario. The CPHD variant exploiting road

network information (CPHD + Road) suffered from almost

the same difficulties as the standard CPHD filter with the only

differences that the extracted tracks were located on the road

segments for most of the time and that in this case an individ-

ual track could not be extracted as representation of the second

target during the final section of the scenario in many Monte

Carlo runs. Finally, the tracking filter utilizing signal strength

information (CPHD + RCS) was able to discriminate the two

tracks in the first half of the scenario, but suffered from track

terminations due to the lacking capability of handling missed

detection sequences caused by blind zone masking. Comparing

these three single-information filters, the best performance in

terms of the lowest mean OSPA value was achieved by the

CPHD filter variant exploiting blind zone information, because

this knowledge helped maintaining at least one track until the

final revisit so that the overall cardinality error was smaller

compared to the other two variants. Nevertheless, no CPHD

filter exploiting only a single source of information was able to

maintain both tracks in any Monte Carlo run, yielding a track

continuity of zero for all three tracking filters. The CPHD

Fig. 4. Exemplary multi-target tracking results of the different CPHD filter variants based on monostatic GMTI measurements for a single Monte Carlo run.
Symbols � and © refer to locations of track extraction and deletion, respectively. Positions at final time instance are also indicated by ©.
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TABLE II
SIMULATION RESULTS OF THE MULTI-TARGET SCENARIO BASED ON 100 MONTE CARLO RUNS FOR DIFFERENT CPHD FILTER VARIANTS.

CPHD Filter Doppler & Range Road Network Signal Strength Track Correct Association Mean

Variant Blind Zones Information Measurements Continuity Probability OSPA

Standard CPHD − − − 0% − 308.6 m
CPHD + DRBZ X − − 0% − 234.7 m
CPHD + Road − X − 0% − 299.8 m
CPHD + RCS − − X 0% − 307.7 m

CPHD + DRBZ + Road X X − 0% − 243.8 m
CPHD + DRBZ + RCS X − X 96% (100± 0)% 122.1 m
CPHD + Road + RCS − X X 0% − 282.7 m

Integrated CPHD X X X 95% (99± 1)% 76.4 m

filter variants exploiting two sources of information reached a

mixed performance compared to the previous CPHD filters: By

incorporating both road and blind zone information (CPHD +

Road + DRBZ), a single track could be maintained throughout

the scenario with the other track being merged with the first

one as soon as both tracks moved closely-spaced. But in

many Monte Carlo runs, the surviving track represented both

targets until the end of the scenario, thus without extracting

another track for the second target as soon as both targets

moved apart again. With signal strength instead of blind

zone information, the resulting CPHD filter variant (CPHD

+ Road + RCS) yielded the same performance as the filter

without exploiting road network information, with the only

major difference of more precise tracks, leading to a slightly

lower mean OSPA value in comparison. But the only tracking

filter which was able to maintain both tracks throughout the

scenario in most Monte Carlo runs (96%), based on exploiting

two sources of information, was the tracking filter CPHD +

DRBZ + RCS. Incorporating both blind zone as well as signal

strength information yielded a correct association probability

of 100%. The integrated CPHD filter variant finally reached

the best overall performance of all examined filters by further

improving the results of the tracking filter exploiting blind

zone and signal strength information (CPHD + DRBZ + RCS)

in terms of track precision due to the additionally exploited

road network information. This yielded the lowest mean OSPA

value of 76.4m.

IV. CONCLUSION

In this paper, the standard CPHD filter was augmented by

extended blind zone knowledge, road network information and

signal strength measurement processing to overcome the im-

minent performance degradation due to the general challenges

in the ground target tracking domain. Based on a systematic

analysis of a challenging multi-target scenario comprising

stopping and closely-spaced targets, it was demonstrated that

a sophisticated combination of the chosen complementary

sources of information delivered the best tracking performance

in terms of track precision, track stability and track identity

compared to standard or less augmented CPHD filter variants.
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