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Abstract—This paper introduces a novel approach to robust
tracking that combines Particle Filters (PFs) and estimation
of physical constraints using Bayesian Networks (BNs). Het-
erogeneous Context Data (CD) describing the environment in
which tracked objects move, is fused with the help of BNs. The
resulting uncertain constraints are incorporated into the filtering
process through a modification of the importance weights. Causal
probabilistic models representing relations between the tracked
objects and their environment are used to derive an updating
rule that allows theoretically sound incorporation of uncertain
constraints into PF. The approach allows incorporation of new
types of CD without requiring any adaptation of the PF algorithm
itself. The experimental results confirm that the presented method
significantly improves the tracking accuracy in a relevant class
of problems characterized by partial sensor coverage and low
updating frequencies.

I. INTRODUCTION

Tracking of objects of interest (i.e. targets) is an impor-

tant element of increasingly complex security applications.

Example applications include wildlife preservation, search &

rescue, patrol missions and surveillance in littoral and urban

environments. However, accurate target tracking in these types

of domains is challenging because the data is noisy and the

observation frequencies are low compared to more traditional

tracking applications using radars in maritime and aviation

domains. In addition, reasoning about an object’s whereabouts

requires the use of heterogeneous data types stemming from

disparate sources and, the knowledge about the dynamics of

the targets is uncertain to a great extent.

The approach presented in this paper addresses these

challenges by combining a basic PF tracking algorithm [1], [2],

[3] and estimation of physical constraints based on the fusion

of heterogeneous CD. Examples of relevant CD in case of

vehicle tracking are road maps and intelligence about mobility,

such as reports on flooding, obstacles, traffic jams, etc.

Physical constraints are estimated in a separate process,

outside of the tracking process. Consequently, the presented

approach allows incorporation of different types of uncertain

CD without requiring any adaptation of the PF algorithm. A

key challenge tackled by the presented paper is theoretically

sound interfacing between the systems fusing CD and the

tracking processes. The chosen interfacing approach depends

to a great extent on the used knowledge representations and

inference algorithms. Firstly, it is assumed that CD originates

from inherently noisy sources. Therefore the estimated con-

straints are also uncertain1. Secondly, given the representations

used for the observation and process models in a PF, it is

reasonable to formulate the uncertain constraints with the help

of probability distributions conditioned on CD. As non-trivial

correlations may exist between the different types of relevant

CD, the uncertain constraints are estimated with the help of

BNs [4], [5].

CD is introduced to the filtering process of PF at the

updating step, by multiplying the importance weights with the

outcomes of BNs. The multiplication of importance weights

is similar to the solution presented in [6], [7], although a

different derivation approach is taken. However, as exposed

in [7], naive use of such multiplication of importance weights

can result in significant inaccuracies if the constraints are

uncertain. By using causal probabilistic models, we i) show

why naive approaches to updating importance weights with

uncertain constraints fail and ii) derive an updating strategy

that allows correct use of Context Data. Causal models provide

a theoretically sound basis for the derivation of updating rules

that are straightforward and result in correct estimation using

uncertain constraints under realistic conditions.

Overall, the presented solution fuses heterogeneous CD and

runtime observations of a target by seamlessly combining two

related types of theoretically sound approaches to Bayesian

modelling and inference. Experimental results show that the

presented updating strategy in combination with modified

importance weights results in improved accuracy of the

tracking processes using uncertain constraints, estimated from

noisy CD.

The presented results are relevant for many real world

applications where the knowledge about the environment

is often not perfect. This aspect is usually not addressed

systematically in the related work on combining CD and PFs,

such as [8], [9], [10], [11].

The structure of the paper is as follows: Section II

introduces tracking enhanced with context data and discusses

an theoretically sound updating strategy. The experimental

validation of the proposed methods is reported in Section III,

followed by the conclusions and future work in Section IV.

1In this paper we assume uncertain “hard” constraints, i.e. physical
constraints that cannot be violated by the target. The uncertainty is introduced
through the lack of perfect knowledge about the presence of hard constraints
at a specific location.
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II. CONTEXT DRIVEN TRACKING

This section introduces an approach that supports a sound

incorporation of uncertain CD into tracking systems based on

Particle Filters. We first discuss the modelling and inference

approaches used for tracking and estimation of uncertain

constraints based on fusion of CD. This is followed by a

derivation of a method for sound integration of uncertain

constraints into a PF algorithm.

A. Modelling Techniques

The presented approach combines Particle Filters and

Bayesian Networks, two related types of theoretically sound

approaches to Bayesian modelling and inference. A PF

approximates a probability density over a set of hypotheses

about the states of a tracked object by maintaining a set of

particles. Each particle represents a possible assignment of

the random variables that may include location, speed, target

type, etc. In this paper we assume PFs where the posterior over

the possible states, the so-called target distribution, is obtained

through sequences of Sampling Importance Resampling steps,

approximating sequential Bayesian updating shown in (1).

PFs are used when exact calculation of the target density

is intractable, as is usually the case with distributions in

continuous state spaces.

P (x1:t|z1:t) =
P (zt|xt)P (xt|xt−1)

P (zt|z1:t−1)
P (x1:t−1|z1:t−1) (1)

A PF algorithm uses a transition model p(xt|xt−1) to

sample the next state of each particle, given its previous state.

A sensor model p(zt|xt) assigns an importance weight to

a particle. The particle’s importance weight represents the

likelihood of the particle being a correct estimate given the

available evidence, i.e. observations of the target. When track-

ing a target, these steps can be considered as predicting the

target’s next location and checking how likely the estimated

target’s state is, given the incoming observations, respectively.

CD, on the other hand, is used to compute probability

distributions P (mk,t|ǫk,t), where mk,t = true means that a

specific type of a target can move at a specific location Ak

while mk,t = false means that an object cannot move at

the location. ǫk,t denotes the entire data about the mobility

collected at this location up to time t (i.e. CD). In this

paper P (mk,t|ǫk,t) is called a Corrective Factor (CF) for all

particles located at Ak. Thus, each particle is assigned a CF

corresponding to the location Ak the particle is currently in,

after the prediction step. In Section II-B, we show that the

CD can influence the filtering process in a theoretically sound

way by a simple modification of the importance weights: CF

P (mk,t|ǫk,t) influences the re-sampling step in PF by using

P (zt|xt)P (mk,t|ǫk,t) as importance weights.

In the targeted domains the CFs can be inferred by fusing

different types of correlated CD. BNs allow efficient handling

of correlations between such diverse CD and computation of

P (mk,t|ǫk,t). Figure 1 shows the qualitative part of an example

BN. The model captures relations between the mobility mk,t

and other types of CD represented by the following discrete

random variables:

• sk,t is a multi-state variable that represents the type of

ground surface in area Ak at time t. The states of the

variable can represent a road, flat hard surface, swamp,

forest, water, etc. The prior distribution over the states of

this variable can be obtained from a GIS map.

• sik,t is a multi-state variable representing any available

intelligence about the surface, such as roadblocks, floods,

etc.

• v is a multi-state variable that represents the type of the

target vehicle, such as cars, boats, etc.

mk,t

sik,t

sk,t

v

Fig. 1: A causal model describing a BN used for computing

CFs. Variables s, si and v represent surface, surface intel

and vehicle type respectively and constitute the context data

variables (colored in grey) in area Ak at time t. The variable

m represent the derived mobility.

Moreover, the CFs are organized in the Context Grid

(CG), a framework that supports continuous updating of CFs

and simplifies their use in the PF process. The framework

implements a discrete, grid-like data structure. Each cell in

the Context Grid has correspondence in the physical world.

It represents an area Ak (or a part of it) associated with

specific mobility conditions. Each area Ak represents a set

of geographical locations at which the mobility conditions are

constant, i.e. Ak is defined in such a way that the collection

of CD at any point in Ak would yield the same values for all

variables representing the CD. In general, however, such areas

have irregular shapes which can be captured in the grid in two

different ways:

1) Each grid cell has an irregular shape that encloses the

actual surface of the modelled area Ak.

2) Area Ak is represented by a cluster of fine grained cells

with identical shape and size. Each cell in such a cluster

is associated with identical CF, as they all represent the

same area Ak.

Overall, the CG associates each particle at location Ak with

a CF, derived from all available CD collected within Ak. A

new piece of CD about mobility results in an instantaneous

recalculation of the corresponding CF, that can be used by the

PF algorithm at the next resampling step. In this way, new CD

immediately influences the tracking process.

B. Corrective Factors in Filtering Processes

This section discusses incorporation of Corrective Factors

of the form P (mk,t|ǫk,t) into the PF process. We show that
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this type of derived CD can easily be incorporated into the

PF process and supports sound approximation of posterior

distributions, which converge to the correct posteriors in the

limit as the number of particles approaches infinity.

First, we formulate a motion model in area Ak conditioned

on the entire set of context data ǫk,t (i.e. CD collected in

Ak up to time t). Such context data is relevant for the

estimation of the mobility mk,t in this area. For the sake of

clarity, we simplify the notation as follows: ǫk,t and mk,t are

replaced by mt and ǫt, respectively. In the following text it

is implicitly assumed that these variables correspond to the

data associated with the Ak in which the target is assumed to

be located. Accordingly, we rewrite P (mk,t|ǫk,t) as P (mt|ǫt)
and formulate the motion model:

P (xt|xt−1, ǫt) =
∑

mt

P (xt|xt−1,mt)P (mt|ǫt), (2)

In the simplest case mt is a binary variable: mt = true

represents full mobility while mt = false represents zero

mobility. In such a case the motion model P (xt|xt−1,mt) is

equivalent to:

P (xt|xt−1,mt = true) = P (xt|xt−1)

P (xt|xt−1,mt = false) = 0,
(3)

where P (xt|xt−1) is the usual motion model assuming full

mobility. With this definition, the motion model from (2) is

reduced to:

P (xt|xt−1, ǫt)

= P (xt|xt−1,mt = true)P (mt = true|ǫt)

= P (xt|xt−1)P (mt = true|ǫt)

(4)

This factorized representation of P (xt|xt−1, ǫt) facilitates

the derivation of a simple extension for importance weights

that support theoretically sound approximation of the posterior

distributions in the PF process. The derivation is based on

the factorized representation of P (x1:t|z1:t, ǫ1:t), the posterior

probability of an entire state sequence x1:t conditioned on

all target observations z1:t and a CD set ǫ1:t collected up to

the tth timestep. This approach is based on the derivation of

a basic PF in [2]. Moreover, for the sake of clarity, at this

stage we assume that with each timestep, the target moves

to a different area Ak associated with a specific mobility mt

and evidence set ǫt. Later we will discuss a solution for more

general situations where a target can remain within the same

area Ak for a longer sequence of timesteps.

We first express the proposal distribution:

P (x1:t|z1:t−1, ǫ1:t−1)

= P (xt|xt−1)P (x1:t−1|z1:t−1, ǫ1:t−1)
(5)

Note that this distribution does not take into account the

mobility mt at time step t. It uses the normal motion model

P (xt|xt−1) and takes the state sequence estimate from step

t− 1. Furthermore, the target distribution P (x1:t|z1:t, ǫ1:t) of

a sequence of states can be expressed as follows:

P (x1:t|z1:t, ǫ1:t)

= ηP (zt|x1:t, z1:t−1, ǫ1:t)P (x1:t|z1:t−1, ǫ1:t),
(6)

where η is the normalizing constant. This expression can

be rewritten as a product of simpler terms if the domain is

Markovian. In such a case the following equalities hold for

the two terms in (6):

P (zt|x1:t, z1:t−1, ǫ1:t) = P (zt|xt) (7)

P (x1:t|z1:t−1, ǫ1:t) = P (xt|x1:t−1, z1:t−1, ǫ1:t−1, ǫt)

· P (x1:t−1|z1:t−1, ǫ1:t−1)
(8)

Decomposition in (8) is possible because of the following

identities:

P (x1:t−1|z1:t−1, ǫ1:t−1) = P (x1:t−1|z1:t−1, ǫ1:t−1, ǫt)

= P (x1:t−1|z1:t−1, ǫ1:t)
(9)

Namely, the mobility mt at the new location does not have

any influence on the sequence of target states up to the t−1th

step. In other words, we would not know more about the state

x1:t−1 if we obtained the evidence ǫt about the mobility at

the location that would be reached with the tth step. Moreover,

because of the Markovian assumptions the following equality

holds for the first term in (8):

P (xt|x1:t−1, z1:t−1, ǫ1:t−1, ǫt) = P (xt|xt−1, ǫt) (10)

This equality is justified, as the transition between the states

xt−1 and xt does not depend on the previous observations and

the mobility at previous steps. The last assumption is justified,

because the target could not reach xt−1 if mt−1 = false; i.e.

this is correct if the target cannot get stuck (e.g. a ship will

not run aground).

By using (7), (8), (9) and (10), we can rewrite the target

distribution of (6) as:

P (x1:t|z1:t, ǫ1:t) = ηP (zt|xt)P (xt|x1:t−1, ǫt)

· P (x1:t−1|z1:t−1, ǫ1:t−1)
(11)

This equation expresses simple recursions between the

subsequent posterior probabilities. Given the formulation of

P (xt|x1:t−1, ǫt) in (2), we can further rewrite the target

distribution:

P (x1:t|z1:t, ǫ1:t)

= ηP (zt|xt)

[

∑

mt

P (xt|xt−1,mt)P (mt|ǫt)

]

· P (x1:t−1|z1:t−1, ǫ1:t−1)

(12)
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The marginalization step in this expression can further be

simplified as a consequence of (3), yielding:

P (x1:t|z1:t, ǫ1:t) = ηP (zi|xt)P (xt|xt−1)

· P (mt = true|ǫt)

· P (x1:t−1|z1:t−1, ǫ1:t−1)

(13)

This factorization introduces a CF P (mt = true|ǫt) in

the estimation process. By dividing (13) with (5), the terms

P (xt|xt−1) and P (x1:t−1|z1:t−1, ǫ1:t−1) in the nominator and

the denominator cancel out, yielding the following expression

for the importance weight:

wi = ηP (zi|xt)P (mt = true|ǫt). (14)

Thus, the CF P (mt = true|ǫt) computed with the Bayesian

mobility model is included directly into the posterior esti-

mation process in a straightforward way, as an additional

factor of the importance weights. If this estimate is correct,

then the overall solution correctly approximates the posterior

distribution over the state sequences P (x1:t|z1:t, ǫ1:t). Con-

sequently, the sample for xt is distributed according to the

correct P (xt|z1:t, ǫ1:t) (see [2]). Note, however, that updating

with a CF at each timestep is correct only if the target moves

to a new area Ak with different mobility at each timestep. The

following section discusses this issue in more detail.

C. Updating Strategies

In this section we take a closer look at the meaning of the

cells in the Context Grid and the associated CFs P (mt|ǫt) to

derive sound rules for updating with uncertain context data.

Key to such a derivation is understanding of the relations

between the states of a tracked object and the physical

phenomena that influence the states of such an object2. Such

relations are not deterministic, therefore we describe them with

the help of causal probabilistic models. The graph in Figure

2 is a qualitative representation of the causal dependencies

between the subsequent target states, observations of the target

and physical phenomena influencing the target’s states. For

the sake of clarity, the notation in Figure 2 is simplified

by replacing sk,t and sik,t with st and sit, respectively; it

is implicitly assumed that variables correspond to the data

associated with Ak that contains a specific state estimate xt.

The graph in Figure 2 corresponds to a scenario where the

target enters a different area Ak at each time step. Subscripts

of the variables in the graph explicitly indicate time slices

corresponding to discrete time intervals. The graph reflects

the fact that the physical constraints influence the state of

the tracked object via the mobility mi, that directly depends

on the surface si and the vehicle type v. Stochastic relations

between subsequent target states xi−1 and xi are given by (3)

while the observation models relating xi and zi are given by

(7). The BN shown in Figure 1 defines the relations between

the variables influencing mobility mi. The model captures a

2By fusing CD we can derive knowledge about such physical phenomena

factorized representation of the joint probability distribution

over all variables that represent phenomena relevant for the

inference about the dynamic process [12], [4]. By using

an exact inference algorithm, variables si and mi can be

marginalized out for all time-slices resulting in the following

factorized posterior of a target state sequence P (x1:t|z1:t, ǫ1:t):

P (x1:t|z1:t, ǫ1:t)

= ηP (m1 = true|ǫ1)P (x1|m1 = true)P (z1|x1)

· P (m2 = true|ǫ2)P (x2|x1)P (z2|x2)

· . . .

· P (mt = true|ǫt)P (xt|xt−1)P (zt|xt)

(15)

This equation reflects the fact that P (xt|xt−1,mt =
true) = P (xt|xt−1) and P (xt|xt−1,mt = false) = 0 (see

Section II-B), which means that in the marginalization over

the states of mt, all terms with P (mt = false|ǫt) cancel out.

In addition, we assume that each tracking process is carried

out for a specific type of vehicle, which means that the state

of variable v (the type of the target vehicle) in a particular

sampling process is known, i.e. it is part of the evidence

set ǫt. Therefore, variable v does not introduce additional

dependencies that would require marginalization steps in the

inference process.

Equation (15) is obtained also by expanding (13) imple-

mented by the modified PF process, where CF P (mt =
true|ǫt) is used at each updating step. Each line in this

equation corresponds to a new iteration based on an update

step using the modified weight from (14) in the PF. The

PF algorithm supports inference over variables xi, zi and mi

while the distribution P (mi = true|ǫi) is obtained by running

exact inference algorithm on the BN relating basic CD and

the mobility mi for each Ak. In other words, the modified PF

algorithm in combination with BNs correctly considers the

dependencies between physical phenomena relevant for the

state of the target if it moves to a new area Ak at each time

step.

m1 m2 · · · mt

v

s1

si1

x1

z1

s2

si2

x2

z2

· · ·

st

sit

xt

zt

Fig. 2: A discrete causal model describing a dynamical

stochastic process where the tracked object enters an area Ai

with a different mobility at each timestep.

Clearly, the assumption that the tracked object enters a new

area Ak at each timestep (i.e. sampling iteration) is not realistic

in many cases as Ak can have significant dimensions. Then it
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is likely that the target will remain in the same area Ak over

a number of subsequent steps. Such a situation corresponds

to dependencies between the target states and the physical

conditions influencing the target’s mobility that are different

than the dependencies assumed by the factorization in (15).

Namely, at each timestep within the same Ak, the transitions

are influenced by the same mobility conditions. While we do

not know whether the mobility in this area is mt = true or

mt = false, we know that if the actual mt = true at the

entry into area Ak, then the object can move anywhere in this

area; i.e. mt = mt+1 = . . . = mt+n = true as long as the

object remains in Ak. The qualitative representation of such

physical dependencies is captured by the directed graph in

Figure 3, which represents a process spanning two areas Aq

and Ar, respectively. The tracked object entered area Aq at

time step 1 and transitioned to Ar at time step n. To simplify

the discussion we rename sq,1, siq,1, mq,1, ǫq,1 to s1, si1,

m1, ǫ1, respectively. Likewise, we rename sr,1, sir,1, mr,1,

ǫr,1 to sn, sin, mn, ǫn, respectively. Given this notation, we

can write the factorization of the posterior P (x1:t|z1:t, ǫ1:t)
corresponding to the graph in Figure 3 as follows:

P (x1:t|z1:t, ǫ1:t)

= ηP (m1 = true|ǫ1)P (x1|m1 = true)P (z1|x1)

· P (x2|x1)P (z2|x2)

· . . .

· P (xn−1|xn−2)P (zn−1|xn−1)

· P (mn = true|ǫn)P (xn|xn−1)P (zn|xn)

· P (xn+1|xn)P (zn+1|xn+1)

· . . .

· P (xt|xt−1)P (zt|xt)

(16)

Note that this equation contains only two CFs, P (m1 =
true|ǫ1) and P (mn = true|ǫn) corresponding to the time

steps when the target entered new areas, at the first and the nth

step, respectively. Namely, between steps 1 and n−1 all states

are conditioned on the same context (i.e. mobility in Aq) and

the same is true for the iterations between steps n and t, when

the target would move in area Ar. Consequently, for 2 ≤ t < n

and for t > n, P (xt|xt−1,mt = true) = P (xt|xt−1).
The factorization in (16) provides a guidance for the use

of CFs in a PF approximating this posterior. In this example,

the correct factorization is approximated by the PF if CF is

used for the modification of importance weights according to

(14) only twice, at the first and the nth step. In any other

iteration step the importance weights should be identical to

the observation model, i.e. wi = ηP (zi|xt).
This can be generalized in the following CD updating rule

for the PF process.

CD update rule: the updating step uses importance

weights as defined in (14) if a particle enters a new area Ak
3

and a new observation was made at that time step. Otherwise,

wi = ηP (zi|xt) is used as importance weight. If a particle

enters a new area and no observation is obtained in the same

time step, then the particle is resampled by using the CF-value.

As it is demonstrated by the experimental results, a

sound strategy for using importance weights defined in

(14) is indispensable. The naive updating approach using

importance weight defined in (14) at each updating step can

result in severe estimation errors, as the processing does

not correspond to the underlying dependencies between the

physical phenomena. Namely, the usage of CF at each time

step without moving to a different Ak corresponds to reusing

the same knowledge (i.e. data) about the physical constraints

multiple times. Thus, naive use of CD can have similar effects

as data-incest.

It should be emphasized that the presented causal graphical

models relating different environmental phenomena with the

target states are not directly used in the estimation process.

They are used merely for the analysis of dependencies and the

derivation of the updating rules for uncertain constraints. How-

ever, the presented combination of PF and BNs implements

inference that is equivalent to approximate reasoning with such

graphical models. A PF implements approximate probabilistic

spatio-temporal inference about target states while BNs ef-

ficiently exploit the knowledge of the correlations between

heterogeneous CD for the exact estimation of uncertain con-

straints.

x1 x2 · · · xn−1 xn xn+1 · · · xt

m1 mn

v

s1

si1

sn

sin

z1 z2 zn−1 zn zn+1 zt

Fig. 3: A model of a dynamical stochastic process where

the tracked object remains in the same area with a constant

mobility over a number of timesteps.

III. EXPERIMENTS

The performance of the tracking algorithm with and without

context data was investigated in a series of experiments making

use of simulated targets and sensors. In all experiments, a

synthetic map was used as a basis for the derivation of a

Context Grid to a PF process. In each experiment the target

3This is equivalent to a particle transitioning between two cells in the CG,
each representing a different Ak , and consequently associated with a different
CF.
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starts around the coordinates (5,75), follows a path through a

terrain with different levels of certainty about the mobility and

ends in the north-western part of the map, around coordinates

(2,12). The results are shown in two plots for each experiment.

The first plot shows the CF values (1 - white, 0.5 - light-gray,

0 - dark-gray), the target’s true track, all observations and the

estimated tracks. In the second plot, the root-mean-square error

(RMSE) of the experiment is shown, which is calculated as:

RMSE =

√∑
i
(xi

t
−x∗

t
)2

N
, where x∗

t is the true location of the

target and xi
t the location of particle i.

In the first two experiments, there is a radar-like sensor that

can observe the whole area. The timespan of the experiment is

3000 timesteps and the sensors provide a measurement every

50 timesteps. The measurement model assumes a Gaussian

function with the noise defined by σ = 10.

A. CD at every timestep

In the first experiment (Figure 4) we compare a standard PF

tracking algorithm with a tracking algorithm applying CD in

each updating step. This was a naive updating strategy where

at each update the PF process used the corresponding CF.

Consequently, the inference process violated the dependencies

in the underlying simulated physical world, as the target moved

through significant areas associated with constant, smaller

likelihood of mobility (i.e. constant CF).

(a)

(b)

Fig. 4: The results of the experiment showing the impact of

the CD update strategy where the CF is used at every timestep.

The resulting tracks show clearly that when using CD, the

algorithm is able to compensate for overshoots that occur if

no CD is used and the target makes sharp turns that are not

adequately captured by the transition models. This also results

in an overall lower RMSE throughout the experiment if CD is

used. However, a naive approach to updating resulted in severe

estimation errors in the south-western part of the map, where

the target moved through an area with lower CF values (this

corresponds to an area the mobility constraints are uncertain

at this moment in time). The derived context data in form

of CF values was used too often and biased the PF. In this

case, the PF algorithm implemented computation based on

posterior factorization (15) while the underlying dependencies

in the simulated physical world corresponded to a factorization

similar to (16). The estimation errors due to this violation are

also very visible in the RMSE, between steps 0 and 700. This

experiment illustrates the impact of the modeling violation

introduced through naive use of CF discussed in section II-C.

B. CD at mobility change

In the next experiment, we compare the standard PF

tracking algorithm with the improved updating rules correctly

considering the underlying dependencies (see Section II-C).

A particle’s CF was only used for the modification of the

importance weight if the particle moved into a new area in

which the CF value is different than at the previous location. In

contrast to the naive updating with CD shown in the previous

experiment, tracking in areas of lower mobility likelihood is

significantly more accurate (see the South-Western part of the

map in (Figure 5). For the remainder of the target’s route,

a similar performance as in the first experiment is observed.

When using available CD, the target’s estimated location has

a lower RMSE in general than the algorithm that is not using

CD at all.

C. Partial sensor coverage

In this experiment, we show the impact of using CD in

a tracking algorithm when the sensors provide only partial

coverage of the area. In this experiment, there are three

sensors, each providing a measurement every 50 timesteps.

The range of each sensor is shown in Figure 6a as yellow

dotted circles.

Compared to tracking without CD, we observe a significant

increase in performance when a target is outside of the range of

available sensors, visible in the RMSE curves. The estimated

track is much closer to the true track than in the case when

no CD is used. Especially interesting parts of this experiment

are those where the target changes direction outside of the

area in range of one of the sensors. Similarly, the uncertainty

about the target’s locations are smaller. The resulting particle

cloud is more focused (see Figure 7), as impossible locations

are ruled out from the set of hypotheses through resampling.

The use of context data compensates the lack of observations

and the lack of knowledge about the dynamic properties of

the target.

IV. DISCUSSION

We present a novel approach to incorporating Context Data

in a PF-based tracking algorithm. The overall solution imple-
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(a)

(b)

Fig. 5: The results of the experiment showing the impact of

the CD update strategy where the CF is used when the particle

enters a new cell.

ments inference about complex dynamical systems (see, for

example, Figure 3) by seamlessly combining two related types

of theoretically sound approaches to exact and approximate

Bayesian inference. By using the theory of Particle Filters

and Bayesian Networks, we show that uncertain CD can

be introduced into a PF process through a straightforward

modification of importance weights used in the updating step.

The resulting approach allows incorporation of different

types of CD without requiring any special adaptation of

the PF algorithm. The CD is integrated into the PF with

the help of Bayesian Networks that systematically capture

causal relations between heterogeneous types of CD and

the possible target states. Bayesian Networks describe how

the environment affects the mobility of the target in some

area of interest. Bayesian Networks compute the probability

distribution that a certain type of targets is mobile at different

locations/areas. This probability distribution is called the

Corrective Factor, representing uncertain constraints. The CF

values are organized and maintained in a Context Grid, a data

structure that associates different locations with specific CFs.

Different CFs are updated with BNs dedicated to different

locations, as soon as new CD becomes available for a specific

location (e.g. an intelligence report about a roadblock) and

the results are instantaneously made available to the PF via

updated CFs.

By using the theory of graphical causal models, we show

(a)

(b)

Fig. 6: The results of the experiment showing the impact of

using CD with only partial sensor coverage of the area in

which the target is moving in.

(a) No CD (b) CD on change

Fig. 7: Two snapshots from the partial sensor coverage

experiment showing the spread of the particles (in red), the

true track (dark blue line), the estimated track (in green) and

the sensors and their range (in yellow).

that naive use of uncertain CD in the updating process in PF

can result in significant estimation errors. With the help of

graphical models we make the factorization of the posterior

probability distribution over the target’s states explicit. We

show that the tracking process using uncertain CD in a naive

way corresponds to different factorizations of the estimated

posterior than the factorization associated with the physical

processes. Moreover, by using the analysis of the factorized

posterior, we derive simple updating rules, that alleviate the

problems of the naive updating method while the CD is fully

considered in the reduction of uncertainties. Note that the
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graphical models relating different environmental phenomena

with the target states are not used in the tracking process

itself. They are merely used to derive the updating strategy,

to facilitate the analysis of the dependencies between the

phenomena considered by the presented solution.

The experimental results clearly support the theoretical

discussion on the rules for uncertain constraints derived

from CD. The proposed updating rules improve the tracking

accuracy significantly.

The theoretically predicted and experimentally confirmed

properties of the proposed method have important practical

implications. Namely, a robust approach to using CD enables

tracking and the estimation of whereabouts in a relevant class

of problems characterized through partial observability4 and

low updating frequencies. Examples of such applications are

tracking in urban or littoral environments, wildlife protection

etc. The final experiment illustrates the effects of using CD in

such environments.

Another important property of the presented method is that

the computation of CFs in the Context Grid is carried out in a

system that is separated from the PF processes. The BNs used

to compute CFs can be updated any time, without requiring

any changes to the PF algorithm, as the fusion is reduced

to the computation of CFs, a uniform representation of the

knowledge about the mobility of a target.

The main limitation of the current approach is discretization

of the space. Currently, the CG supports uniform cells.

While this already proved to be effective, more advanced

representations for the CG are being investigated, such as

hierarchical grid representations and vector-based approaches

that avoid discretization altogether. In this manner the CG

will be more scalable and will allow a better resolution.

Moreover, in the future work we will look into combining

CD with more advanced PF approaches. A special focus will

be on extending the proposed method to blending fusion of

CD with PF approaches that also support target classification

and estimation of motion modes, such as for example [11].

Furthermore, in the future research, we will investigate the

extension of the CD fusion to concepts that go beyond

mere mobility. For example, we will incorporate models of

intentions, the most likely behaviour, etc.
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