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Abstract—This paper provides a solution for anomaly de-
tection in maritime traffic domain based on the clustering
results presented in a previous work. That work created
clusters for vessels moving close to shores by associating vessel
movements with International Maritime Organization Rules
(especially Traffic Separation Scheme Boundaries). In this
paper, we show how three division distances with the clusters
can detect anomalous navigational behaviors. The proposed
method decides for each trajectory point if the vessel is
anomalous, considering longitude, latitude, speed and direction.
Although the approach is point-based, which is applicable for
real-time AIS surveillance, it is also flexible enough for analysts
to set their own threshold for labeling whole trajectories.
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I. INTRODUCTION

In [1], a method was presented to cluster Automatic

Identification System (AIS) data, with the objective to use

the clusters to identify possible anomalous behavior. This

work continues the work presented in [1], by creating a

method to generate an anomaly score, which can be used

by a human analyst to decide whether a certain track is

anomalous or not. This work considers that anomalies are

all the GPS (Geographic Positioning System) points in a

track that deviate from normal speed or direction, or are

relatively distant from a cluster. After applying the model

to the real AIS data, the experiment results not only prove

the effectiveness of the model, but also validate our previous

work done in [1].

Maritime Anomaly Detection techniques primarily fall

into two categories: statistical modelling [2][3][4] and pre-

dictive modelling [5][6][7]. The general idea of using statis-

tical techniques for anomaly detection is to fit a statistical

model for normal behaviors with the given data set and then

apply a statistical inference test to determine if an unseen

instance belongs to the model [8]. Approaches based on

predictive models usually predict future status information

(e.g. position, speed and course) of a particular vessel and

then compare the real data with the prediction to decide the

abnormality.

In the maritime domain, the majority of statistical models

are built upon the momentary kinematical features (position,

course, speed and acceleration rate) of individual vessels.

Laxhammar [2] used a Gaussian Mixture Model (GMM)

and a greedy version of Expectation-Maximization (EM)

for clustering. A GMM can be regarded as an ensemble

model of K multivariate Gaussian distributions (mixture

components). The greedy EM algorithm is employed to

determine the parameter set for all the K distributions. In

[3], the authors propose to use adaptive Kernel Density Es-

timator (KDE) for estimating unknown probability densities

and modelling arbitrary sea lanes. In the anomaly detection

phase, the anomaly detector is sequentially applied to the

incoming data. The value of new incoming point’s density is

calculated under the null hypothesis (no anomaly) and this

value is then compared with a detector parameter related

to false alarms for deciding the new point’s abnormality.

A comparison between the two approaches above is given

in [9], demonstrating that the anomaly detection results

from both models are not satisfactory. As the two models

detect the anomalous segments at a significant distance from

the point where anomaly behavior happens (three kilometer

and four kilometer respectively) while an expected effective

anomaly detector should detect such behaviors at a shorter

distance [9]. In [4], Gerben et al. propose a technique

based on Machine Learning models. In their work, different

trajectory alignment kernels (Dynamic Time Warping and

Edit Distance) are applied with one-class SVMs (Support

Vector Machine) for detecting the outlying trajectories. This

trajectory-based method, however, is not applicable for real-

time AIS surveillance, unlike our proposed point-based

method.

Pallotta et al. [5] suggest the use of rule-based and low-

likelihood models for anomaly detection. The rules defined

in this approach are similar to those in other knowledge-

based work, which require maritime domain experts’ knowl-

edge. As an example, the maximum speed pre-defined in a

port area can only be accurately estimated by a specialist

knowledgeable about the area. For low-likelihood detection,

a Weibull model was employed (a parametric exponential-

like model), along with a sliding time window technique to

avoid problems with incomplete and intermittent tracks.

Similar to the work done in [5], Nevell [6] proposes to

use a Bayesian approach to predict the future route of a

particular vessel for comparison. This methodology is based

on a node-sparse network, built from different kinds of

coastal nodes. In [7], the authors insist that an overall threat
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is indicated by a sequence of the individual behaviours.

Therefore, five specific anomalies are introduced to extend

Nevell’s work [6] to assess the probability of a higher-level

threat based on a constructed Bayesian Network.

One issue with the work described in [6][7] is that it

cannot incorporate speed into deciding if a trajectory is

anomalous; instead the judgement is based only on position.

Another problem is that a pre-defined network may not

be applicable in many near-port regions due to the nature

of port traffic. Traffic in near-port areas is usually highly

variable and the vessels are not always following straight

lanes (optimal routes in [6][7]). Both of these problems are

handled with our approach.

This work uses the results of the clustering framework

presented in [1], which generates arbitrary shapes of moving

patterns and stopping areas. The proposed method is point

based but is capable of handling trajectory tracks. For each

track the algorithm will return an anomaly ratio. The ratio is

based on three types of distances to take position, direction

and speed into consideration.

The rest of this paper is organized as follows. Section 2

gives an overview of the framework and a brief introduction

to the normal traffic extraction model. Section 3 proposes

the anomaly detection model. Section 4 presents the results

of experimental evaluation. In the final section, we conclude

with a summary and discuss our method’s limitations and

the potential future work.

II. MODEL OVERVIEW

In this paper, we propose a clustering-based maritime

traffic anomaly detection model. The approach includes two

components: the normal traffic patterns extraction model

and the anomaly detection model. As shown in Figure

1, historical AIS data is first sent to the normal patterns

extraction model which generates, as output, a set of gravity

vectors (GV) and stopping sampling points (SSP) via its two

sub-components. Afterwards, when new ship trajectory data

is to be judged, the second component (anomaly detection

model) will be applied based on the normal traffic patterns

results to decide the new data’s abnormality.

The work for normal traffic patterns extraction is pre-

sented in [1]. Before proposing our second part of the

framework, a brief overview of the first phase is necessary.

The proposed clustering-based normal traffic patterns ex-

traction model first divides the AIS data into moving and

stopping parts respectively based on a stopping SOG (Speed

Over Ground) threshold of 0.5 knots.

For the case where SOG is not less than 0.5 knots, we

propose DBSCANSD as the basic algorithm to detect the

main traffic lanes within the data. DBSCANSD is based

on DBSCAN [10] algorithm, modified to consider that for

each point of a cluster, the neighborhood of a given radius

has to contain at least a minimum number of points with

similar SOGs (Speed Over Ground) and COGs (Course Over

Figure 1. The framework of Maritime Anomaly Detection Model. This
can be roughly regarded as a two-component procedure. First, the system
extracts the normal traffic patterns from the historical AIS data repository.
Then the extracted GVs and SSPs can be employed by the anomaly
detection model to decide the abnormality of the new given trajectory.

Ground). The algorithm’s output is a set of Gravity Vectors

(GV), which are vectors formed by 5 features: average

COG, average SOG, average Latitude, average Longitude

and Median Distance. Before calculating the GVs of one

cluster, the cluster area is first partitioned into a grid of

multiple cells. The partitioning is based on an experimentally

decided width to ensure that each cell contains a sufficient

number of trajectory points. So each cell has one particular

GV. The Median Distance of a GV is the median of all the

distances between the points in the cell and the cell’s average

geographical point. More details about the process can be

found in [1].

For the case where the SOG is less than 0.5 knots (stop

areas), the original DBSCAN algorithm is executed because

speed and direction are not important factors. Another type

of vector is created as output, labelled Sampled Stopping

Point (SSP), dependent only on the geographic shape of the

region.

III. ABNORMAL TRAJECTORY DETECTION

In this section, we present our anomaly detection model.

Similar to the normal traffic pattern extraction model, we

also treat stopping and moving separately. A ship trajectory

in a particular area, especially in the near-port areas, can

consist of both stopping points and moving points. Hence,

given one incoming trajectory dataset (one sequence of
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trajectory points with same identification), every point in

this trajectory should first be labeled as stopping or moving

according to the SOG threshold (0.5 knots) and then be

checked for abnormality. In the following part of the section,

three division distances are first presented and then our

abnormal detection model is introduced.

A. Three Division Distances

In order to label every data point, three division distances

are proposed in our approach, Absolute Division Distance

(ADD), Relative Division Distance (RDD) and Cosine

Division Distance (CDD). ADD is employed in the

stopping points abnormality detection phase while RDD
and CDD are used for the moving part. And the definitions

of the three division distances are given in the following.

Here we use target points to represent the points of a new

coming trajectory to be labeled.

The Absolute Division Distance between a target point Pt

and a Sampled Stopping Point Ps is defined as:

Dabsolute = Distance((Pt.Lat, Pt.Lon), (Ps.Lat, Ps.Lon))
(1)

As can be seen in Definition 1, ADD is actually the

Geographical Distance [11] between Latitude and Longitude

values of the target point(Pt) and the sampled stopping

point(Ps).

The Relative Division Distance between a target point Pt

and a Gravity Vector GV is defined as:

Drelative =
Distance((Pt.Lat,Pt.Lon),(GV.Lat,GV.Lon))

GV.MedianDistance
(2)

For moving trajectory points, we adopt RDD (Drelative)

rather than ADD (Dabsolute) because the normal moving

lanes could have different widths according to their sur-

rounding geographical environment. The routes in a narrow

strait can be more cramped than those in the open sea.

Relative distance, the ratio of a point’s distance from the

centroid to the median distance of all the points in one clus-

ter from the centroid, is one efficient metric in clustering-

based approaches for detecting outliers [12]. We replace the

centroid of each cluster with our Gravity Vectors, which

can be regarded as surrogates for a centroid when we only

consider Longitude and Latitude. As stated in [1], every

cluster can have more than one GV, in which case the

median distance of one GV can be used to measure the width

variance of a moving cluster. Another work that confirms

this approach is presented by Ethiene et al [13] in which

it is shown that the choice of the statistical decile used to

compute the spatio-temporal channel can give a tolerable

estimate of this channel’s width.

The next division distance is CDD, which is employed to

involve direction and speed of moving objects. The Cosine

Division Distance between a target point Pt and a Gravity

Vector GV is defined as:

Dcosine = cosα× min(Pt.SOG,GV.SOG)
max(Pt.SOG,GV.SOG) (3)

where:

α is the angle between the two directions, that is, the

difference between Pt’s COG and GV ’s COG.

The intuition behind CDD is to combine the angle (≤

180◦) between the two directions (angle α is defined by

COG differences between Pt and GV ) and the difference

between the two speeds. Figure 2 shows two abnormal cases

that consider COG and SOG. In Figure 2(a), we can see that

the speeds of the two vectors are in the same length L while

the angle a is too large. This could be explained as a ship

crossing a normal lane in a nearly opposite direction, which

may cause a collision. In Figure 2(b), the speed of the target

point Pt is much lower than GV ’s although they have similar

COG. In this case, the slowly sailing vessel may also be in

a high risk of collision in relation to other ships moving at

a normal rate of speed. As a consequence, Cosine Division

Distance (CDD) is proposed. It can be easily seen that cos
α accounts for the angles’ difference and the ratio between

two SOGs can reflect the speeds’ difference.

Figure 2. Two Abnormal Cases after considering COG and SOG

The Cosine Division Distance proposed in this work

combines both COG and SOG in its calculation. A possible

alternative is to calculate the distance of each component

separately and then check the normality, but this alternative

may increase the misclassification error. One example is

presented in Figure 3. In this scenario, it is assumed that

a certain point Pt is in the middle of two different grids

belonging to different clusters. If this approach of separately

calculating each component is employed, the target point,

Pt, will first be considered normal with respect to Gv’ on

the basis of direction, and also with respect to Gv on the

basis of length (value of speed). However, Pt is an abnormal

point because it is in the direction of Gv’, but with a much

faster speed.

B. Anomaly Detection Model

After having the three division distances defined, we can

present our anomaly detection model.

As shown in Algorithm 1, the anomaly detection process

is completed in two steps. Lines 3-6 employ ADD to label
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Figure 3. One case that there are two moving clusters in one specific area
or point.

the stopping points of the trajectory and Lines 7-14 use

RDD and CDD to decide the moving points’ labels. Lastly,

the ratio of abnormal points to the number of all points is

returned as the abnormality (Lines 15-18). The abnormality

can be interpreted as a confidence ratio and it is beneficial for

the end users to choose a level of confidence while retrieving

the abnormal results of the whole system.

Figure 4. The maximum CDD distribution in the area of Juan de Fuca
Strait.

Figure 5. The Cumulative Distribution Function of the maximum CDD
in the area of Juan de Fuca Strait.

This algorithm requires 3 thresholds as inputs, which can

be estimated through experiments. In this work, we first

take out one month of data in a specific area and calculate

all the division distances, then select specific values based

on distribution and quartile analysis. Figure 4 shows the

distribution of the maximum CDD of moving points in the

area of Juan de Fuca Strait. And Figure 5 illustrates the CDF

(Cumulative Distribution Function) of the maximum CDD

in the area. It is obvious that over 90% of the data points’

CDD are greater than 0.5. Thus, in this case, we can choose

0.5 or a smaller value as the CDD threshold for this area

and then when a new trajectory dataset is given, we can use

this value as the basis for anomaly detection.

Algorithm 1 Detect abnormality of the target trajectory

Input: (1) The target trajectory dataset, D; (2) The lists of

Sampled Stopping Points and Gravity Vectors from the

previous model, SSP and GV ; (3) Three thresholds,

add threshold, rdd threshold and cdd threshold
Output: The abnormality rate, abnormality

1: Separate D into two sub-datasets based on the speed

threshold, moving dataset D m and stopping dataset

D s
2: Initialize all labels of points in D m and D s as Normal

⊲ label stopping points of the target trajectory

3: for each data point S in D s do

4: ADD s ← minimum(ADD(S,SSP ))

5: if ADD s > add threshold then

6: S.label ← Abnormal

⊲ label moving points of the target trajectory

7: for each data point M in D m do

8: RDD m← minimum(RDD(M ,GV ))

9: if RDD m > rdd threshold then

10: M.label← Abnormal

11: else

12: CDD m← maximum(CDD(M ,GV ))

13: if CDD m < cdd threshold then

14: M.label← Abnormal

15: count ab ← the number of the abnormal points in D
16: count all← the total number of all points in D
17: abnormality ← count ab/count all
18: return abnormality

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of our

maritime anomaly detection model in the region of Juan de

Fuca Strait. The evaluation work contains two parts, the first

one is conducted with the non-labeled data while the second

one is done after labelling the data. The results of the first

experiment are shown visually and the second experiment

compares our model’s results with the labels by the expert.

The data set which was prepared for normal traffic pat-

terns extraction phase comprises two months of trajectory
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data from November 1 to December 31 in 2012 and contains

67,850 trajectory points. The whole data set is not used for

extracting normal patterns, instead 46,000 records (40,000

moving points and 6,000 stopping points distinguished by

the SOG threshold 0.5 knots) are selected and then the rest

of the data set are used for estimating the 3 thresholds for

the anomaly detection phase.

Afterwards, to evaluate our anomaly detection model in

both experiments, we chose the first half of January (January

1st to January 15th) in 2013, as our target trajectory data set.

This second dataset consists of 284 different trajectories with

17,431 points.

A. Experiment On Unlabeled Data Set

After applying the normal traffic extraction model, 16 dif-

ferent clusters, including 15 moving clusters and 1 stopping

cluster are identified. Figure 6 shows the gravity vectors of

the moving clusters and the sampled stopping point of the

stopping cluster. After this extraction phase, only 388 points

are generated which include 388 GVs and only one SSP.
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Figure 6. The Gravity Vectors (open circles) and Sampled Stopping Points
(filled circles) extracted from the clusters in JUAN DE FUCA STRAIT area.

The next step before detecting anomalous trajectories is

to estimate the 3 thresholds used in Algorithm 1. As stated

before, the remaining 23,850 trajectory records are chosen

for this phase. There are 10,825 stopping points and 11,025

moving points in this subset.

The quartile values of ADD and RDD of the subset are

shown in Table I. Authors tested different thresholds to

be used as anomaly detector. After various tests, for the

area of Strait of Juan de Fuca, the best threshold value

was to consider 95% of the data as normal in relation to

distance, and from this sub-set another 95% of the data

to be considered normal in relation to speed and direction.

The main objective is to reduce the number of false alarms

(vessels considered abnormal, while they are normal), and

Table I
QUARTILE STATISTICS OF THE 3 DIVISION DISTANCES

Statistic ADD RDD CDD

Min 0.13 0.00537 -0.9937
1st Quartile 3.00 0.70300 0.7642
Median 4.46 1.04000 0.8876
Mean 36.97 1.81500 0.8104
3rd Quartile 6.89 1.58400 0.9612
Max 44250.00 52.86000 0.9999

this filtered data will later be evaluated by a human expert

that will give the final decision. The model is flexible

to allow changing this threshold value depending on the

geographical area under evaluation.

So we choose the sample quantiles of 0.95 for both ADD

and RDD. The corresponding thresholds of ADD and RDD

in this case are 97.290 and 5.938. After calculating the RDD

threshold, the statistic for CDD is obtained (shown in the 3rd

column in Table I). Then we select 0.05 as the possibility to

decide the third threshold (0.485) which can be employed

as our CDD threshold.

With the extracted normal patterns and the thresholds

estimated, we start to evaluate the capacity of detecting

abnormal trajectories.

Figure 7. The anomaly labeling results of the trajectory data points in
JUAN DE FUCA STRAIT area. GVs and SSPs are in red and the normal
points are in green. The two types of abnormal points are in blue (abnormal
in relation to ADD or RDD) and purple (abnormal in relation to CDD).

In this step, we first apply our model to the trajectory data

points; the labeling results of the data points are shown in

Figure 7. The red points stand for the GVs and the SSP in

this area. The green points are normal, while the blue and

purple ones are abnormal. More specifically, a blue point

means it is too far away from the corresponding GV or SSP,

while a purple point represents that its speed or direction

is too aberrant in the specific location. In this case, 1,534
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Table II
LABELS AND DESCRIPTIONS BY THE EXPERT

Label Description

Bad Pos Track contains questionable point, far outside
track, looks like bad GPS return

In Excl Zn Track has significant portion within the exclu-
sionary zone between traffic lanes

XING TSS Track appears to be crossing lanes of TSS [14]
XING NShor Track appears to be crossing lanes of near sh-

ore two way traffic area
Odd Mvmt Track shows unusual movement without other

explanation
Leave Lane Vessel was in traffic lane, then veered outside
Harbour Track seems to describe in-harbour navigation

or moored vessel
Normal Normal Movement

points (872 in blue and 662 in purple) of the 17,431 points

are finally considered as abnormal.

After finishing the labeling process, we calculate the

abnormality ratio of each trajectory. We use a threshold of

0.5 as the minimum confidence rate to extract the abnormal

trajectories. Noteworthy, the number 0.5 is adjustable and

was chosen based only on the experiments to reduce the

presence of false alarms (normal trajectories considered

abnormal by our model). The result is that 22 trajectories

are labeled abnormal among the total 284 trajectories, in

other words, the abnormality rates of the 22 trajectories are

over 0.5. In Figure 8, six examples of abnormal cases are

illustrated. As can be seen in the figures, both purple points

and blue points contribute to the final abnormality of one

trajectory.

B. Experiment On Labeled Data Set

In this experiment, the same data set is labeled by an

expert who has multiple years of experience in maritime data

analysis. The labelling process is not biased by our model’s

results since only the raw AIS data has been provided to the

expert.

A track division method is employed by the expert before

labelling. More specifically, the AIS data points are divided

into distinct tracks on the basis of vessel ID (MMSI), and

where temporally sequential points are separated by no more

than 4.5 minutes of time. Thus one track, as defined above,

may be divided into multiple-sub tracks on the basis of time.

Additionally, this process can result in tracks comprised of

single points. For the one-point track case, the length of the

track is 0 nautical mile and the track is not assigned with

any labels. The final labels and their descriptions provided

by the expert are shown in Table II.

The labels assigned by the expert are not based on the

points; instead, they are based on the whole sub-tracks. In

other words, as long as one sub-track shows an anomalous

pattern, the whole set of points inside the sub-track will be

assigned as one kind of abnormal label. Another noteworthy

point is that the expert has not taken SOG (speed) into

Table III
CONFUSION MATRIX

Abnormal Normal
(Our Model) (Our Model)

Abnormal (Expert’s Label) 4 10
Normal (Expert’s Label) 127 1301

account except for Harbour behavior during his labeling

process. That is, whether the speed of the vessel is too fast

or too slow near the lane is not considered, but our algorithm

can take this into account.

From Table II, we can firstly assume the label of Normal
as normal patterns based on the description. Then the label

Harbour can also be considered as a normal case because

it is reasonable for a vessel to moor in harbour. Lastly, we

observe that all the sub-tracks with the label of Leave Lane
only have tiny changes from their route and they still

navigate strictly within the normal lanes. So we also classify

the label of Leave Lane as normal.

After dividing the 284 tracks (284 different MMSIs),

2,122 sub-tracks are generated. Among them, 680 sub-

tracks contain only one point (Length=0 nautical mile). Then

14 sub-tracks are classified as abnormal labels (other than

Leave Lane, see Table II) by the expert and the remaining

1,428 tracks are all normal patterns. Thus we can see that

the data set is a highly imbalanced data set which can make

our work extremely challenging.

At this point we can use our algorithm to label the data

set and compare the results with the expert’s labels. To

compare the results, we first apply the same division method

to separate the tracks. We can then use a threshold to decide

the whole sub-track’s label. In this experiment, we employ

60% as the threshold value. For example, if the portion of

abnormal points in one track is greater than 60%, we will

label this whole track as abnormal. Using this approach, we

find that 131 sub-tracks are classified as abnormal and the

remaining 1,311 sub-tracks are all normal. Table III is the

confusion matrix for the experiment.

From Table III we can see that 4 sub-tracks are classified

as abnormal by both the expert and our model and 1301

sub-tracks are classified as normal by both too. On the other

hand, another 10 sub-tracks are labeled as abnormal by the

expert while normal by our model. The remaining 127 sub-

tracks are classified as abnormal by our model while normal

by the expert. And the overall accuracy of this detection

result is 90.49%.

To understand the result, we investigate the 14 sub-tracks

designated as abnormal by the expert. Among these, we find

that the 4 which are further designated as abnormal by the

algorithm are so labeled solely because of their direction.

After investigating other tracks, we find that even if the

ships deviate far from the lane the expert may still label

them as normal. The intuition behind this is straight forward,

1118



Figure 8. Six Examples of the abnormal trajectories detected by our framework in JUAN DE FUCA STRAIT area. GVs and SSPs are in red and the
normal points are in green. The two types of abnormal points are in blue (abnormal in relation to ADD or RDD) and purple (abnormal in relation to
CDD).

Table IV
CONFUSION MATRIX

Abnormal Normal
(Our Model) (Our Model)

Abnormal (Expert’s Label) 4 10
Normal (Expert’s Label) 52 1376

the labelling process is based on Traffic Separation Scheme

(TSS) [14] boundaries and the expert cannot affirm that a

trajectory point far from the TSS Boundaries is abnormal.

Considering this fact, in the following experiment, we only

use the abnormal labels cased by CDD during the evaluation

and we choose a lower threshold for deciding whole sub-

tracks’ labels. In the previous experiment we use 60% while

we choose 10% here. It should be noted that the threshold

can be adjusted based on the input from domain experts. In

real-time application, it is not necessary to have the threshold
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while labelling the new incoming points instead of tracks.

Table IV presents the improved results and we can see

that the overall accuracy has been increased from 90.49%
to 95.70% while keeping the same recall for abnormal cases.

V. DISCUSSION AND CONCLUSIONS

In this paper, we extend the work in [1] to propose

a clustering-based anomaly detection model for maritime

traffic data. An abnormality detection algorithm is presented

based on three division distances (ADD, RDD and CDD).

Our model is a fairly straightforward point-based approach,

and is capable of handling complicated maritime traffic

situations. One advantage is that the clustering process is

associated with TSS Boundaries [14] which can assure a

reliable clustering result for the following anomaly detection

work. Another critical advantage is that besides position

information (Longitude and Latitude), the model can also

take speed and direction into account while deciding the

abnormality of a single trajectory point. The model is also

flexible enough for analysts to set their own thresholds for

labeling whole trajectories. To evaluate the effectiveness of

the model, a highly imbalanced data set from Juan de Fuca

Strait area is used. There are 2,122 trajectories while only 14

of them are abnormal (imbalance rate ≈ 0.66%). Fortunately,

as shown in Table IV, our model can detect 28.57% of the

abnormal tracks while maintaining a relatively high overall

accuracy (95.70%).

One limitation of this work is that the labelling process

applied by the expert does not consider speed while our work

takes this into account. This leads to another possible future

direction, that is, more work should be done while labelling

the data set to consider speed, which should reduce the false

alarm rate. Another limitation is that the experiments are

only conducted with data from Juan de Fuca Strait area and

as a result, more experiments in other regions should be

done to better illustrate the effectiveness of our approach.

Another possible future work is to try some classification

algorithms designed for handling imbalanced data sets and

the proposed specialized division distances can be used as

the features of the classification models. Then comparisons

between the results and our model’s could be done to

illustrate the effectiveness of the proposed division distances.

As stated in Section I, approaches based on predictive

models usually predict future status information of a partic-

ular vessel and then compare the real data with the prediction

to decide the abnormality. Thus, to improve the performance

of the model, an ensemble model which incorporates a

predictive model can be developed in the future. Specifically,

once a trajectory point needs to be labeled, we can consider

both its anomalous score and its deviation from the predicted

position to get a more confident result.
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