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Abstract—Anomaly detection is an important use of the Au-
tomatic Identification Systems (AIS), because it offers support
to users to evaluate if a vessel is in trouble or causing trouble.
For instance, it can be used to detect if a ship is doing something
that may cause an accident or if it has changed its route to avoid
bad weather condition. In this work, a new method for finding
anomalies in the ships’ movements is proposed. The method
analyzes the trajectory of ships from a geometrical perspective.
The trajectory of the ship is compared with a near-optimal path
that is generated by a graph search algorithm. The proposed
method extracts some scale-invariant features from the real
trajectory and also from the optimal movement pattern, and
it compares the two sets of features to generate an abnormality
score. The method is unsupervised and it does not require
training. Instead of labeling the trajectories as normal/abnormal
it calculates a score value that denotes the extent of abnormality.
The scoring scheme provides a ranking system in which the user
can sort the trajectories based on their abnormality score. This
is useful when dealing with large number of trajectories and the
user wants to picks the most abnormal cases. For the evaluation,
the method was run on three months data of North Pacific Ocean
and score values were generated. Among the entire dataset, 100
randomly chosen trajectories were labeled by an expert. After
applying a threshold on the score value, the proposed method
had 94% accuracy.

I. INTRODUCTION

Anomaly detection in oceans is a priority for govern-
mental organizations. The transit of goods occurs over the
oceans that cover 2/3’s of the planet and yet are inhabited
by human beings. To help governments with this task, since
2004, the International Maritime Organization (IMO) requires
Automatic Identification System (AIS) transponders to be
aboard vessels [1] that are above 300 gross tons. Maritime au-
thorities use AIS to track and monitor ships. Originally, AIS
transponders used only VHF radio frequencies to broadcast
data about the ship, but with the increasing satellite coverage,
these transponders are also transmitting using satellites. One
problem with AIS protocol is that it generates a large volume
of data, which may overwhelm authorities evaluating the
vessel trajectory. Another problem presented by [14] is that
current systems are “principally navigational aids that do
not provide an adequate solution to new threats and the
ingenuity of criminal organisations”. Under these conditions,
it is necessary to develop automatic tools to improve security

awareness. In this context, this work presents a tool to
evaluate if the trajectory of cargo ships or tankers are normal
or abnormal in the middle of the ocean. The tool is based on a
ranking scheme that reduces the computational requirements,
and facilitates visualization of data on-demand for users.

The AIS protocol is based on VHF radio messages that
transmits ship’s identity, position and heading[3]. Each packet
contains messages 256 bits long and fits in one of the 4500
time slots per minute [3]. It also uses Time Division Multiple
Access (TDMA) to avoid message collisions. The AIS device
installed in the ships is connected to the control bridge
and a satellite navigation system (e.g. GPS) [3]. There are
23 AIS messages types, and they can be divided between
static and dynamic. Static messages contain information such
as vessels’ IMO number, Maritime Mobile Service Identity
(MMSI), name and length. Usually, static messages are sent
with the rate of every six minutes [3], [5]. Dynamic messages
contain the position, time (UTC second indicating when the
report was generated [5]), speed over ground (SOG), etc.
Dynamic messages are sent each 2 seconds to 3 minutes -
depending on the vessel’s speed. There are other messages
related to security and safety, also specified in the protocol.
This creates a huge volume of data that makes very difficult
for an operator to promptly detect these anomalies.

Another related problem deals with the data veracity,
and it is well known that vessels may tamper with the
AIS devices to inform false types of movements. This false
information may, for example, serve to hide fishing activity
in protected areas. The potential for automatic detection of
these anomalies motivates the use of Machine Learning (ML)
techniques.

Instead of using a supervised approach to learn the
abnormality ranking, we present an unsupervised ranking
system based on how the vessel’s trajectory approximates an
optimal trajectory calculated from a graph search algorithm.
The idea is to build an optimal path, then calculate some
geometrical properties of these trajectories (the optimal and
real ones). These properties are combined to generate a score
that will be used by the user to separate the anomalous tracks
from normal ones.

Another key aspect of these features relies on their
independence in relation to time component. The user must
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order the sequence of points to guarantee that the trajectory
keeps the same sequence of points. This also simplifies the
database query for the points, since it allows the evaluation
of any part of the trajectory as normal or not. This approach
also exploits the fact that most vessels in the middle of the
ocean are interested only in reducing their costs including fuel
consumption and time cost, since ship captains have deadlines
to deliver their goods in various ports. This makes them tend
to choose a minimal path between two ports.

This work is divided into following sections: Section
II presents the related work, then Section III shows our
proposed framework. Section IV shows the experimental
results, and this work finishes with some conclusions and
future work on Section V.

II. RELATED WORK

Various works have presented solutions based on ML
algorithms to detect anomalous behaviour in ship trajectories.
They can be categorized as clustering methods or classifica-
tion methods. One of the first methods is based on a clustering
method to allow data enrichment and pattern recognition pro-
posed by Pallota et al [12], which presented the Traffic Route
Extraction and Anomaly Detection (TREAD) methodology
that is an unsupervised and incremental learning approach to
the extraction of maritime movement patterns. Their approach
also enriches the original tracks with a description of the
ship movements (e.g. it adds a label informing the type of
movement executed by the ship like ’sailing’, or ’stationary’).
These labels are added based on the incremental clustering
algorithm DBSCAN [4], and are used to group the main
routes used by ships. Based on the previous step, their
methodology tries to predict the main route that a ship will
use.

Another work based on clustering is TRAjectory CLUS-
tering (TRACLUS) [10], which is a partition-and-group
framework. The algorithm looks at the whole trajectory,
then separates the the trajectory into line segments. In a
second stage, it groups these segments looking for a cluster
connecting them. Both methods, based on clustering, suffer
from a common problem: the dependency on the algorithm
parameters. This issue was also observed by [6]. If the user
is not careful with the input parameters, the algorithms will
generate false clusters.

The proposed method does not suffer from these prob-
lems, because it does not rely on input parameters from the
user. Instead, the algorithm builds a graph and calculates the
optimal paths that ships must use to reduce costs related to
fuel. The next step is simply to measure how far away are
the real trajectory and the optimal ones.

Other ML methods based on classification can be found in
literature, [7] uses self-organizing maps to cluster tracks and
then uses Gaussian mixture models for decision making. An-
other work that uses Gaussian mixture is [8], which proposes
a clustering model and finds the parameters of the model by
Expectation-Maximization method. [11] clusters movement

fragments to extract motifs. These motifs are then used as
higher level features in a classification method. [2] points
out some limitations of trajectory clustering and proposed a
method that tries to model normal trajectories with splines.
[13] uses a kernel density estimation method to estimate
the density of normal points. They use Parzen windows
with adaptive window width using a Gaussian kernel as
a density estimator. However, density estimation methods
are computationally intensive and may not be practical in
real-time systems. [9] compares the performance between
Gaussian mixture models [8] and kernel density estimation
methods [13].

All methods based on classification suffer from the prob-
lem of labeled data. Classification requires the data points to
be associated with the labels indicating the patterns the user
wishes to detect. Methods based on kernel density (like [13])
are applicable only on specific regions, and they cannot deal
with larger geographical areas. This paper’s method solves
both problems, since it does not require labeled data, and it
is computationally robust enough to be used in larger areas.

III. ANOMALY DETECTION FRAMEWORK

The proposed anomaly detection framework analyses the
trajectory of each ship individually. The trajectory of a ship
can be built by connecting its consecutive GPS coordinates in
a time frame. This time frame can be equal to the definition
of a trip which begins when the ship departs from a port
and ends when it arrives at its desired destination. As in
most cases with raw AIS data, the information about the
departure and destination points of the ships are not available.
To address this limitation, we have elected to use a fixed
window and analyze the trajectory in that window. We have
used one day as the time window for our analysis. Therefore,
each trajectory is divided into multiple tracks based on the
one day time window regardless of the departure point and
destination point of the ship. In fact, we analyze the behavior
of each ship in different days separately.

Our anomaly detection framework first tries to find the
most normal path, which is the shortest possible path between
the start point and the end point of the trajectory. After
finding the shortest possible path, it is compared to the
actual trajectory that the ship has taken. To compare the real
trajectory with its corresponding optimal path, we introduce
scale-invariant geometrical features that capture the shape
and maneuvering behavior of the trajectories. These features
are good descriptors in geometrical terms for analyzing and
comparing the shape of the trajectories. Eventually, after
extracting these features an anomaly score is calculated and
assigned to that trajectory.

A. Finding the shortest possible path

As described before, we first try to find the shortest
possible path between the start and end point of the trajectory.
A* algorithm is used to find the shortest path, and it is a well
known algorithm used in graph theory. A* is guaranteed to
find the shortest path if it exists. It requires a connectivity
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(b) Density heat-map

Fig. 1: One week data of north pacific ocean.

graph that defines the map. A grid partitioning with a fixed
resolution is used to discretize the map of the region of
interest and it is used to build the graph. In fact, each
cell/node in the grid/graph represents a geographical area and
the size of this area depends on the resolution that is used
for partitioning.

After constructing the grid, we calculate the number of
ships that have passed through each cell. If there exists at
least one ship that passed through the cell, we assign it to 1
as passable region and if there is no ship passing the region
we assign it to 0 as impassable or obstacle. It should be
mentioned that only a small fraction of the dataset is sufficient
for constructing the graph and detecting paths and obstacles.
In the next step, we run the A* algorithm for each single
ship’s trajectory, considering its start and end point, to find
the shortest possible path for the ship.

Figure 1a represents a binary connectivity graph generated
from one week of data in the North Pacific Ocean. Figure
1b illustrates a heat-map generated from the same dataset.
The heat-map represents the density of presence of the ships
passing from different grids. These kind of heat-maps can
be used for detecting the most common paths taken by the
vessels. They can also be used as a weighted graph in A*
algorithm to find the shortest common path. In this work we
used the binary version in the A* algorithm.

B. Feature extraction

As described before, we compare the real trajectory of the
ship to the optimal path which is extracted by A*. For this

purpose, we introduce four features that capture the geometri-
cal information regarding the shape of the trajectories. These
features are extremely useful for comparing the optimal
trajectory with the real trajectory in finding anomalies.

1) Length of the trajectory: This is the most intuitive
feature that measures the length of the trajectory. This is
done by traversing the trajectory and adding up the distance
between each sequential pair of GPS coordinates. Since lati-
tude and longitude observations are in a spherical coordinate
system, we cannot use Euclidean geometry and Euclidean
distance for calculating the distance between two points. For
this purpose, the Haversine formula is used to calculate the
spherical distance (i.e. great-circle distance) between consec-
utive points based on their latitude and longitude coordinates.
The distance calculations are based on equation (1):

h(p1, p2) = sin2 (
∆θ

2
) + cos θ1 cos θ2 sin

2 (
∆φ

2
) (1a)

d(p1, p2) = 2R arctan(

√

h(p1, p2)
√

1− h(p1, p2)
) (1b)

where R = 6378137 is the radius of the earth in meters,
p1 : (θ1, φ1) and p2 : (θ2, φ2) are the (latitude, longitude)
coordinates of the two observations, ∆θ = θ2−θ1 and ∆φ =
φ2 − φ1. The length of the trajectory is calculated based on
equation (2):

L =
N−1
∑

i=1

d(pi, pi+1) (2)

where N is the number of points in the trajectory.

2) Area under the curve: As mentioned before, we have
focused on cargo and tanker ships which have more pre-
dictable behavior as they tend to use the shortest path and
keep their transit costs as low as possible. If we draw a
straight line connecting the start and end point of the trajec-
tory and measure the area under the curve of the trajectory
it will give us an indication that how much the ship has
digressed from that straight line. The more digression from
the straight line will result in a bigger area under their curve.

If we treat the trajectory as a function f : φ→ θ, we can
integrate the function to calculate the area under the curve of
the trajectory. To make this happen, a translation and rotation
transformation are needed to change the coordinate system.
At first, the origin is transfered to the first point by translating
all the points in the trajectory as equation (3).

p
′

i = pi − p1 i = 1, 2, ..., N (3)

Next, the angle between the horizon and the straight line
connecting the start and end point is calculated. The rotation
is applied to the data afterwards based on the calculated angle
ψ in order to make the straight line parallel to the equator as
in equation (4):
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ψ = arctan(
θN − θ1

φN − φ1
) (4a)

Rψ =
[

cosψ − sinψ
sinψ cosψ

]

(4b)

p
′′

i = Rψp
′

i i = 1, 2, ..., N (4c)

where ψ is the angle between the horizon and the straight
line connecting start and end point, Rψ is the rotation matrix

and p
′′

i : (φ
′′

i , θ
′′

i ) i = 1, 2, ..., N are the points in the new

coordinate system. If we treat the new points p
′′

i in the new
coordinate system as the (input, output) of a function f :
φ

′′

→ θ
′′

, by integrating the function we can calculate the
area under the curve of digression from straight line as in
equation (5).

A =

∫ φ
′′

N

φ
′′

1

f(φ
′′

)dφ
′′

(5)

Since the trajectory is represented a discrete set of ob-
servations, the equation (5) can be numerically calculated by
the sum of trapezoidal rule as equation (6).

A =
N−1
∑

i=1

|φi+1 − φi|
|θi + θi+1|

2
(6)

As the trajectories are not ordered based on the longitude
and they may go back and forth, we take the absolute value
of ∆φ. Also, the area under the curve below the baseline
should not counteract the area above the baseline as they are
both digressions from the straight line. Thus, we used the
absolute value of θi + θi+1.

3) Gradient of trajectory with respect to latitude and
longitude: The other two features are based on the partial
derivatives of the trajectory with respect to latitude and
longitude dimension. These features try to measure the to-
tal amount of variations in each direction separately. Here
the derivations are time independent and they calculate the
variations in location. Gθ and Gφ are the gradient features
with respect to latitude and longitude respectively ad they are
calculated based on equation (7).

Gθ =

N−1
∑

i=1

|θi+1 − θi| (7a)

Gφ =
N−1
∑

i=1

|φi+1 − φi| (7b)

C. Scale-independent measure of abnormality

After extracting the aforementioned features from the real
trajectory and the optimal trajectory which is found using the
A* algorithm, they are used as a measure of abnormality in
the form of equation (8):

f
′

=
fop − fre

Lop
f ∈ {L,A,Gθ, Gφ} (8)

where Lop is the length of the optimal trajectory, fre and
fop are the extracted features from the real trajectory and its
corresponding optimal trajectory, respectively. We normalize
the differences between the features of optimal and real
trajectories by the length of the optimal trajectory in order to

make scale-independent features f
′

. The f
′

features express
the ratio of digression from the optimal trajectory. These
features are scale-independent that means if the trajectories
are scaled-up or scaled-down, the value of the features would
not change as they calculate the amount of digression in unit

length. Negative values of the f
′

features mean that the real
trajectory that the ship has taken is longer or it has more
variation than the optimal trajectory. Zero value means that
they are equal in terms of variations, and positive values
means that the real trajectory is even better than the optimal
one that we found using A*. For example, if the training data
used for building the A* graph is not enough, a ship may take
a route which is shorter than any similar route that we used
to build the graph. In these cases, we expect a positive value
for the features.

D. Calculating the final score

Each of the f
′

features is a measure of difference from the
optimal path. These features can be added together to build
up the final anomaly score if they are properly normalized.
The length feature L is calculated based on meters, but the
other three features, A, Gθ and Gφ are calculated based on
degrees. In order to normalize them in the same scale, we
multiply the A, Gθ and Gφ features by a constant that is the
number of meters in one degree of latitude. Therefore, the
final score is calculated based on equation (9):

Score =
Lop − Lre

Lop
+η(

Aop −Are

Lop
+
G
op
θ −Greθ
Lop

+
G
op
φ −Greφ

Lop
)

(9)

where η = 111319 is the number of meters in one
degree of latitude, Lop, Lre, Aop, Are, G

op
θ , Greθ , G

op
φ and

Greφ are the length of the optimal trajectory, length of the
real trajectory, area under the optimal trajectory, area under
the real trajectory, latitude variations of optimal trajectory,
latitude variations of real trajectory, longitude variations of
optimal trajectory and longitude variations of real trajectory,
respectively.

If the final score value is greater than or equal to zero it
means that the trajectory is completely normal with respect
to our algorithm, since it is equal or better than the optimal
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route that we found using A*. When the value is negative it
is an indication that the ship did not take the shortest possible
path. The absolute value of the score gives us the level of
abnormality.

If there is a need to label the trajectories as normal or
abnormal, a simple threshold value (e.g. -1) on the final scores
can be used to label the data. If the score is less than the
threshold, the trajectory is considered to be abnormal and if
it is greater than the threshold it is normal. In general, the
score value is beyond a simple labeling and it can also give
us a ranking between the abnormal patterns. One can rank
the trajectories based on their score values and pick up the
most abnormal ones. This is extremely useful in monitoring
applications by interested parties.

IV. EXPERIMENTAL RESULTS

Three months worth of data from June to August 2013 for
the North Pacific region were collected from the exactEarth
database and used for the analysis. After dividing the trajec-
tories by one day time frame, the dataset contained 39682
tracks. In this work, a track is taken to mean a trajectory
for a certain vessel within a specific day. Ship types other
than cargo and tanker were removed from the dataset and
the proposed anomaly detection method was run on the
remaining 21546 tracks to generate score values.

Figure 2 illustrates the distribution of the score values.
The 21546 score values are plotted in an ordered way. As it
can be seen, there are a few highly negative values, which
indicate absolute abnormality by the algorithm, and the rest
are either positive or a very small negative number. There are
also very few highly positive values that have happened when
the A* returned a longer path due to sparseness in the search
graph. Lack of training data in some geographical regions
leads to such sparseness in the generated graph. Another point
that can be observed from the figure is that even by looking at
the distribution of the scores, the user can easily pick the right
threshold as the bending point of the elbow at the negative
side.

For the evaluation of the method, a subset of this dataset
was selected for labeling by the expert. 100 tracks from differ-
ent ships and different geographical regions were chosen for
labeling process. The tracks were chosen randomly in such
a way that they uniformly cover the entire score space. The
reasoning being that we wanted to evaluate the quality of the
score function, and our ranking system, and to measure the
correlation between the score values to the labels produced
by the expert. The maritime expert labeled the data as normal
or abnormal. The expert also gave us additional information
about the possible reasons for the unusual movement pattern,
but we only used the binary labels for the evaluation.

Since the proposed method generates score values instead
of labels, we can plot an ROC curve for different score thresh-
olds. Figure 3 illustrates the ROC curve for the proposed
score function. As it can be seen, it has very high accuracy
and the area under the curve is very good. The reason for

Fig. 2: Distribution of the score values for different tracks.
21546 tracks are ordered by their abnormality score.

Fig. 3: ROC curve for different score thresholds

such a high AUC is that the proposed features can extract
the core geometrical properties of a trajectory in a helpful
and efficient way.

Table I displays the confusion matrix obtained using -
0.75 score threshold. The precision in detecting abnormal
cases is 97.62% that is very good. In fact, we only have one
false alarm by the method. The recall is 89.13% since the
method has missed five abnormal patterns. The F-measure is
93.18% and the Correct Classification Rate (CCR) is 94%.
This results show that the proposed score function has a good
correlation with the labels that means it can detect anomalies
in the vessel movements by analyzing trajectories from the
geometrical perspective.

Figure 4 illustrates some of the abnormal trajectories
taken by cargo and tanker ships. Since we are analyzing open
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TABLE I: Confusion matrix for -0.75 score threshold

Predicted label

Abnormal Normal

Real Label
Abnormal 41 5

Normal 1 53

(a) tanker
score = -5.218

(b) cargo
score = -5.5956

(c) tanker
score = -1.6973

(d) cargo
score = -2.3879

Fig. 4: Some examples of abnormal paths taken by cargo and
tanker ships.

ocean area in North Pacific Ocean, any unusual trajectory
bending or looping behavior should be detected as abnormal.
All the score values in the figure are below -1.5 and they are
detected as abnormal, since -0.75 score threshold is used for
labeling.

V. CONCLUSION

We propose a new anomaly detection framework which
is developed for detecting abnormalities in the cargo and
tankers’ movements. It is based on comparing the ship’s
trajectory with a near-optimal trajectory found using A*
algorithm. To what extent does the real trajectory differ
from the optimal trajectory is the basis for calculation of
an abnormality score value. For this purpose, four scale-
independent geometric features were introduced and extracted
from the trajectories. Providing a score value instead of labels
has an advantage that the user can define a threshold for
deciding on the label based on how sensitive they want to
be in detecting anomalies. Moreover, it gives a ranking of
trajectories from the most abnormal to the most normal.
Experiments showed that the generated score values highly
correlate with the labels provided by the expert. The area
under the ROC curve (i.e. AUC) was very high that shows

the effectiveness of the method. Another advantage of the
proposed method is that it does not have any limitation on
the size of the region of interest and it can be applied on
very large geographical areas. Moreover, it does not require
any training or parameter tuning which makes it robust and
reliable when working with different datasets.
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