
A Novel Approach for Trajectory Feature Representation

and Anomalous Trajectory Detection

Wenhui Feng, Chongzhao Han

MOE KLINNS Lab, Institute of Integrated Automation

School of Electronics and Information Engineering

Xi'an Jiaotong University

Xi'an, China 710049

Email: wenhfeng@stu.xjtu.edu.cn, czhan@mail.xjtu.edu.cn

Abstract – Trajectories obtained from low level tracking

algorithm provide an opportunity for us to analyze

meaningful behaviors and monitor adverse or malicious

events. How to abstract meaningful features from the raw

data of trajectories is a challenge due to the high

dimensionality and noise. In this paper, a novel approach,

stacked denoising autoencoder(SDA) is applied to address

this problem. This method can reduce the dimensionality

of the trajectories significantly, so that they can be

handled easily. More importantly, the denoising process

of the SDA can capture the structure of the raw data, so

the features they producing generalize well for detecting

anomalous trajectories. The results of the numerical

experiments prove the validity of the proposed approach.

Keywords: anomalous trajectory detection, feature

representation, stacked denoising autoencoder

1 Introduction

Anomaly detection has been studied by a variety of

methods and in the context of a large member of application

domains. Several extensive surveys on anomaly detection

are available [1, 2]. As far as safety surveillance systems are

concerned, detection and tracking moving object, then

analyzing and predicting its behavior to detect anomalous

target trajectory is the conventional roadmap for many

works [3-5].

The raw data of trajectories are a list of vectors with

elements representing the spatial position and velocity of

the objects. So they are with very high dimensionality and

often with noise. Finding a proper representation for the

data is always of great importance. A variety of feature

extraction and dimensionality reduction techniques have

been applied to address the problem of trajectory

representation. Johnson and Hogg[5], Stauffer and

Grimson[6] presented vector quantization to address this

problem, while wavelet coefficients were applied in [7, 8].

And there were some other authors employed component

analysis and DFT to deal with the feature representation

problems.

When tracking a moving object, the conventional tracking

algorithm (such as Kalman filter, particle filter and IMM)

will give an estimated variance for the estimator. The

authors believe that fusing this information in the

representation algorithm will improve the accuracy of the

detection. Yet as far as the authors know, few of the

available methods employed for trajectories representation

have concerned the uncertainty of the raw data thoroughly

or using the estimated variance effectively.

The aim of the trajectory representation is to find a proper

feature extraction algorithm which can reduce the

dimensionality of the raw data and is robust to the noise of

the raw data. In this paper, we present a novel method,

stacked denoising autoencoder(SDA), to abstract features

from the raw data. SDA is an important algorithm recently

invented in deep learning. Deep learning, also known as

representation learning, is one of the hot topics in machine

learning and intelligent computing communities. The main

idea of denoising autoencoder is to learn representations

robust to corruption of the input pattern by adding noise to

the raw data artificially and making the decoder get an

output as close as possible to the uncorrupted input.

The remainder of the paper is organized as follow:

Section 2 briefly reviews the denoising autoencoder

algorithm. Section 3 discusses the possibility of applying

this technique to trajectories representation and gives some

preliminary examples. Then, some experimental results

proving the validity of the proposed approach is given in

Section 4. Finally, Section5 concludes the study.

2 Denoising Autoencoder

The main idea at the basis of denoising Autoencoder was

first proposed by Vincent et al [9]. A good representation

should capture stable structures of the raw data regardless

they are contaminated. For high dimensional input (such as

the trajectory), such structures are abstracted from a

combination of many elements of the input vector, and

should remain unchanged (or changed only slightly) when

the input data are noisy.

2.1 The Basic Autoencoder

 We begin with the basic autoencoder. An autoencoder is a
typical unsupervised learning algorithm. In its simplest form,
an autoencoder has two parts, an encoder and a decoder.
When the dimension of the encoder’s output is smaller than
the input dimension, it can be seen as a technique of

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 1093

dimensional reduction. Yet in its modern instantiation, the
output dimension can also be higher than the input
dimensionality. In this case, it is seen as an over-complete
representation.

 We denote the training set as
(1) (2) (){ , , , }mX x x x= " ,

where
dx R∈ , d is the dimensionality of the input

vector, and m is the number of the training vectors.

 The encoder is a mapping f ⋅杕 枀 which transforms an

input vector x into a hidden representation z . Its typical

form is an affine mapping followed by a nonlinearity ()s ⋅ :

() ()z f x s Wx b= = + . (1)

The output vector takes the form of
pz R∈ , p is the

dimensionality of the hidden representation; the weight

matrix W is an
p dR ×

matrix, and b is an offset vector of

dimensionality p . The function ()s ⋅ , also known as

activity function, takes the form of the family of sigmoid
function. A typical choice is logistic function

1
()

1 exp()
s x

x
=

+ −
 . (2)

Clearly, the range of this function is (0,1) .

The decoder function ()g ⋅ maps the hidden

representation z back to a reconstructed vector y in input

space

() ()y g z h Dz c= = + . (3)

The reconstructed vector y has the same dimensionality as

the input vector x . So the weight matrix of the decoder D

is a d p× matrix. When D is constrained by
TD W= ,

the autoencoder is said to have tied weights. And
dc R∈ is

the offset vector of the decoder. The activity function of the
decoder typically is either the identity (yielding linear
reconstruction) or a sigmoid. It can be seen that when
logistic function is taken as an activity function, rang of the

reconstructed vector is constrained as [0,1]dy∈ . The aim

of the autoencoder is to make the reconstructed vector close
to the input vector, so the input vector should be also

normalized as [0,1]dx∈ . When the autoencoder takes the

fashion of tied weights, the parameters of this model

are { , , }W b cθ = .

A variety of loss functions and algorithms have been
applied to train the autoencoder. One of the primary one is
as follow. The parameters are optimized to minimize the
average reconstruction error:

*

() ()

1

() ()

1

arg min ()

1
arg min (,)

1
arg min (, (()))

m
i i

i

m
i i

i

J

L x y
m

L x g f x
m

θ

θ

θ

θ θ

=

=

=

=

=

∑
∑

 (4)

where ()L ⋅ is the reconstruction error. A typical choice of

the lost function is the squared error
2

2
(,)L x y x y= − . (5)

Another choice is cross-entropy loss when ()h ⋅ is logistic

function (in this case the input vectors are also normalized

into the range of [0,1]):

1

(,) (log (1) log(1))
d

k k k k

k

L x y x y x y
=

= − + − −∑ (6)

where kx denotes the k-th element of the vector x .

 Stochastic gradient decent is a typical algorithm used to
address the optimization problem. It can find a sensible local
optimal value for the parameters.

2.2 Denoising Autoencoder

When the activity function for the encoder ()s ⋅ and the

activity function for the decoder ()h ⋅ take a linear form, the

autoencoder is the same as PCA. And when a nonlinear

function is applied, it can extract much richer features. But

just applying the reconstruction criterion alone is

insufficient to guarantee that the extracted features are

useful. The outputs may just simply copy the input or

similarly uninteresting ones. One strategy to address this

problem is to constrain the representation. For example, if

we constrain that the dimensionality of the hidden variable

must be less than that of the input, we get a bottleneck; and

more recently, sparse representations are also a hot

researching area following this strategy.

In practical applications, the input is always disturbed by

noise. So it is a desirable property for the autoencoder to be

robust to the noisy input. The denoising autoencoder is

motivated by making the basic autoencoder robust to noise.

The criterion of the denoising autoencoder is cleaning the

corruption of the input, or in short denoising. Concretely,

we find a stochastic mapping:

: ~ ()x x x q x x→ � � � (7)

to map the input vector x into a noising corrupted version

x� . Then the corrupted version x� instead of raw input x is

fed into the denoising autoencoder to compute the

representation () ()z f x s Wx b= = +� � . The raw input

vector x is finally reconstructed by the decoder as eq. (3).

The parameters of the denoising autoencoder are also

trained to minimize the reconstruction error as eq. (4), that

is, to make y as close as possible to the uncorrupted input

1094

vector x . As the basic autoencoder, the loss function is

defined as either squared error in eq. (5) or cross-entropy

loss in eq. (6). The algorithm of denoising autoencoder is

summered in algorithm 1.

Algorithm 1: Denoising Autoencoder

Input: training set X ;

 Learning rate η

 Output: parameters of the model { , , }W b cθ =

1: initialize parameters { , , }W b cθ =

2: choose random minibatch 1 2 (t)(t) (t){ , , , }ntX x x x= "

3: corrupt each vector
()itx in the minibatch according

to eq. (7) to get the corrupted vector
()itx� ;

4: compute the average reconstruction error ()J θ on

the minbatch tX ;

5: update the parameters according to:

()

new

J θ
θ θ η

θ

∂
← − ,

 newθ θ←

6: repeat from step 2 until convergence or other

terminal conditions

2.3 Stacked Denoising Autoencoder

Stacking denoising autoencoder(SDA) to form a deep

architecture is quite the same way as stacking RBM in deep

belief networks[10]. Once the mapping ()f ⋅ has been

learned, the hidden representation z is determined. Then

the hidden representation z can be taken as input vector for

the second layer of the SDA. Following the same procedure,

a deep architecture is formed from denoising autoencoder. It

should be pointed out that input corruption is only used for

the training of each denoising autoencoder. After the

parameters of the denoising autoencoder are determined,

cleaning input vectors is fed into the mapping to get the

input vector for the denoising autoencoder in the next layer.

A three layers’ deep architecture can be shown as fig. 1

Stacking several nonlinear models to form a deep

architecture is a basic idea in deep learning. It is believed

()Ix

() ()I If x′ ″

() ()
()

I II
g x

() ()II IIf x′ ″

() ()()II IIg x

() ()III IIIf x′ ″

() ()()III IIIg x

()Iy

()II
y

()IIIy

Figure 1: Three layers SDA. (The superscript Roman

mumber is used to denote the number of the layer)

that the higher layer, which takes the output vectors of the

lower layer as input vector, will extract more abstract

features, and will achieve better generalization performance

on difficult recognition tasks. This idea has been verified by

many successful applications of the deep architecture in

machine learning, computer vision, and pattern recognition.

3 SDA for Trajectory Repressention

3.1 Possibility of SDA for Trajectory

Repressention

In this section, we will explore the possibility of using

SDA for trajectory representation. The trajectories of the

moving objects are usually obtained through low level

tracking algorithm, such as Kalman filter, particle filter and

IMM. These filters will estimate the position and velocity of

the object in the given time instance. So the trajectory is by

convention represented by a sequence of spatial position

coordinate and velocity. Take 2-D space as an example, the

trajectory at each time instance will be represented by 4

elements. The sensor always works at a very high rate, so

tracking a moving object for just several minutes will get a

trajectory represented by a vector with hundreds of elements.

Dimensionality reduction is the key technique for trajectory

repressention.

The other problem in the raw data of the trajectory is

noise. The aim of each tracking algorithm is to reduce the

noise of the sensor’s measurements, but no one algorithm

can get rid of noise. So any algorithms must be able to work

with noise. Two trajectories with difference of just little

fluctuation should be regarded as the same (see Fig. 2 for an

illustration).

1095

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

Fig.2: (Left) Illustration of a ground truth trajectory which

should be a circle one; (Right) Illustration of two

trajectories obtained by difference tracking

algorithms; one is denoted by points and the other by

triangles. And they should be regarded as the same.

Those two problems can both be addressed by SDA. For

each layer of the SDA, the dimensionality of the hidden

variable is set to be lower than that of the input variable.

When the raw data are input into a SDA, the dimensionality

is reduced by each layer of the SDA efficiently. During the

training process, the raw data are corrupted by some

elaborate stochastic mapping, and the reconstruction data

are as close as possible to the uncorrupted input data. Thus

the hidden variables are expected to be robust to noise.

3.2 A Preliminary Test

We now present a preliminary experiment on trajectory

data representation. The experiment is motivated by

Mustafa F. and Krishnamurthy V [11]. The target moves in

a specific trajectory around a sensitive asset (like an

embassy or a security check-point). The shape of the

trajectory correlates with the intent of the target and is of

great importance if it can be reliably detected. The target

dynamics are summarized using its kinematic state in

vector [, , ,]Tt t t t ts x y x y= � � . The state variable (,)t tx y

refer to the position of the target, while (,)t tx y� � refer to

the velocity of the target in Cartesian co-ordinates (2-D

space is assumed here). Concatenating this state vector in

each time gets a trajectory 1 2[, , ,s]TnT s s= " . In paper

[11], the authors discretized surveillance space into a

number of grid cells; each grid cell was represented by its

center iλ ; and quantized the position state to the closest iλ

at each time instant. Then stochastic context-free grammars

(SCFG) were applied to convert the trajectory into a string

of terminal symbols.

In this section, we use SDA to address the trajectory

representation problem. Several shapes of the trajectories

are considered here. A ground truth and an estimated

version of the rectangle trajectory traversed by a target are

shown in fig.3 while those of an arc trajectory are shown in

fig.4. The horizontal and the vertical axis represent the

target’s position. In each case, 1000 time instances are

included.

-15 -10 -5 0 5 10 15
-2

0

2

4

6

8

10

12

14

16

truth trajectory

estimated trajectory

noisy measuements

Fig.3: A rectangle trajectory, its noisy measurements and

estimated output from the tracking algorithm

-15 -10 -5 0 5 10 15
-2

0

2

4

6

8

10

12

14

16

truth trajectory

estimated trajectory

noisy measuements

Fig.4: An arc trajectory, its noisy measurements and

estimated output from the tracking algorithm

To get a corrupted input vector for the SDA, we must find

a proper stochastic mapping to map the estimated trajectory

from the basic level tracking algorithm to a noisy version.

The basic level tracking algorithm will give variance of the

estimator, which proves a hint for the stochastic mapping.

In this experiment, considering the variance at each time

instance, we set the mapping as:

() (,0.09)s p s s N s� �∼ ∼ (8)

where s refers to the estimated position of the target at

some time instance, and ()N ⋅ denotes normal distribution.

For each trajectory, 1000 corrupted samples were drawn

from this distribution during the training process.

1096

A four-layer SDA is built to extract the representation

features for the trajectories, and logistic functions are taken

as the activity functions of the SDA. Each element of the

input vector must be normalized into the range of [0,1] .

Take the element of the horizontal co-ordinate as an

example. It is normalized by:

min

max min

normalized

x x
x

x x

−
=

−
 (9)

where normalizedx refers to the normalized value of the

horizontal co-ordinate; minx refers to the minimum

horizontal co-ordinate value of the position at each time

instance of the trajectory, while maxx refers to that of the

maximum value. As there are 1000 time instances in each

trajectory, the dimensionality of the input vector for the first

layer of the SDA is set to be 2000. Based on the results of

some preliminary experiments, the dimensionalities of the

hidden variables of successive three higher layers are 1500,

300, and 40 respectively. And the dimensionality of the

output layer is 4. Stochastic gradient descent algorithm is

applied to optimize the parameters of the model. The initial

values of the parameters are randomly sampled from the

standard normal distribution. Each minibatch includes 50

samples, and a fixed learning rate of 0.02 was applied to

perform 8000 weight updates. In order to visualize the

results, we choose three dimensions of the output features to

draw in figure 5. The circle in the figure denotes the

features of the rectangle trajectory, and the triangle denotes

the arc trajectory. It can be shown from figure 5 that the two

different shapes of the trajectories can be properly

distinguished.

0.025
0.03

0.035
0.04

0.045
0.05

0.9

0.92

0.94

0.96

0.98

1
0.4

0.45

0.5

0.55

0.6

feature of rectangle trajectory

feature of arc trajectory

Fig.5: Output features of the two shapes of the trajectories

As the parameters of the model have been achieved, the

SDA can be used to abstract representation features for

some other shapes of trajectories. Figure 6 shows one semi-

circle and two lines trajectories. The output features of the

SDA for these three shapes of the trajectories are shown in

figure 7 (We only choose three dimensionalities of the

output features to draw the figure).

-15 -10 -5 0 5 10 15
-2

0

2

4

6

8

10

12

14

16

Fig. 6: three shapes of trajectories

0.025

0.03

0.035

0.04

0.9

0.95

1
0.4

0.45

0.5

0.55

0.6

0.65

feature of the vertical line trajectory

feature of the diagonal trajectory

feature of the semi-circle trajectory

Fig.7: Output features of the tree shapes of the trajectories

As shown in figure 7, the different shapes of trajectories,

which have not been seen in the training process, can be

distinguished by the SDA effectively, even though no

classifier is used. From the results of the preliminary

experiment, we believe that the features extracted by the

SDA really make sense. In the next section, the output

features will be fed to SVM for abnormal detection.

4 Experimental Results

To verify that the feature vectors abstracted by the SDA

are indeed able to be used to detect anomalous trajectories,

the numeric experimental results are given in this section.

The experiment is borrowed form [12], where 100 different

experimental cases were considered, each one with a

different number of groups of 100 normal trajectories

(ranging from 1 to 10) and outliers (from 1 to 10). For each

test, ten different training/test sets were created, for a total

of 2000 data sets. The outliers in the test sets are drawn

from the same distribution used for outliers in the

corresponding training sets. The experimental data were

1097

Anomalies

Anomalies

created according to the matlab program provided by the

authors on web (http://avires.dimi.uniud.it/papers/trclust/).

In this paper, an SDA is constructed to abstract feature

vectors for the trajectories. A small fraction (5%) of the data

is randomly chosen to determine some super-parameters for

the model. We use a stochastic mapping of a normal

distribution with the mean being the trajectory data and the

variance, 0.01. A three-layer SDA is applied, and the

dimensionality of the two hidden variable is 25 and 14,

respectively; while that of the input and output vector is 32

and 8 respectively. The activity function is logistic function,

and the input vectors are normalized according to Eq. (9).

Other super-parameters are setting the same as those in the

preliminary experiment. Once the parameters of the SDA

have been trained, the raw trajectories data are input into the

SDA and the output feature vectors are fed into the single-

class SVM. The results of the proposed approach in terms

of false positives (%) and true positives (%) are shown in

table 1 and 2, respectively. The underline indicates that the

result is better than that in [11]. It can be shown from the

result that using the feature vectors abstracted from the

SDA improves the performance of the anomalous trajectory

detection.

Table 1: False positives (%) for the proposed methods.

The results have been averaged over ten runs. The underline

shows that the result is better than that in [11].

 Clusters in the training set
1 2 3 4 5 6 7 8 9 10

1 2.0 2.2 2.2 2.0 1.5 1.6 1.2 1.2 1.0 0.8

2 1.7 2.1 1.0 1.5 1.6 1.1 1.0 0.5 0.8 0.5

3 2.3 2.5 1.5 1.8 1.3 1.2 1.3 1.3 1.1 0.7

4 2.3 1.5 1.0 1.5 1.0 1.5 1.1 1.1 0.9 0.4

5 3.4 2.2 2.3 1.2 1.5 1.7 1.4 0.8 1.1 0.6

6 3.0 2.0 3.0 1.0 1.4 1.4 1.0 1.1 0.5 0.9

7 1.5 2.5 1.0 1.3 1.3 1.3 1.3 1.1 0.8 0.8

8 1.2 2.0 1.5 1.6 1.1 1.6 1.4 1.3 1.0 1.0

9 2.5 2.0 2.2 1.2 1.6 1.0 1.7 0.8 1.4 1.4

10 2.5 2.3 1.4 1.6 1.2 1.1 1.2 0.7 0.4 0.6

Table 2: True positives (%) for the proposed methods.

The results have been averaged over ten runs. The underline

shows that the result is better than that in [11].

 Clusters in the training set
1 2 3 4 5 6 7 8 9 10

1 100 100 98 100 91 100 93 84 100 92

2 100 98 100 100 100 100 97.3 100 100 90

3 100 100 100 99.5 100 98.7 90 92.8 92.1 94.1

4 100 100 100 98 95 96 95.6 91.5 96.3 91

5 100 96 100 100 99.2 91 96.2 90 87.4 96

6 100 97.5 99 100 95 92.1 92.8 95.8 92 84

7 100 100 96 98 96.5 91 97.4 90.8 90.8 81

8 100 96.6 98 96 97.2 98.5 93 94.6 95.8 94.7

9 100 99 97.8 98 97.8 99.1 91.6 97 90.2 82

10 100 100 100 100 98.9 98 98.3 98.5 94.5 94.8

5 Conclusion

In this paper, we propose a novel method for trajectory

representation. SDA is an important algorithm in deep

learning community. The corrupted vector is input into

SDA, and be reconstructed as close as the uncorrupted

vector: cleaning the corrupted input, or in short denoising. It

is expected that performing the denoising task well requires

extracting features that capture useful structure in the input

distribution. The numerical experimental results show that

the feature obtained from SDA can really improve the

accuracy of the anomalous trajectory detection.

Acknowledgement

This research work was supported by the Grant for State
Key Program for Basic Research of China (973) (No.
2013CB329405), Foundation for Innovative Research
Groups of the National Natural Science Foundation of China
(61221063)

References

[1] Liao, T. Warren. "Clustering of time series data—a
survey." Pattern recognition 38.11 (2005): 1857-1874.

[2] Gupta M., Jing G., te al. "Outlier Detection for
Temporal Data : a survey." Knowledge and Data

Engineering, IEEE Transaction on recognition 9.26 (2014) :
2250-2267

[3] Hu, Weiming, et al. "A system for learning statistical
motion patterns."Pattern Analysis and Machine Intelligence,

IEEE Transactions on 28.9 (2006): 1450-1464.

[4] Piciarelli, Claudio, and Gian Luca Foresti. "On-line
trajectory clustering for anomalous events
detection." Pattern Recognition Letters 27.15 (2006): 1835-
1842.

[5] Johnson, Neil, and David Hogg. "Learning the
distribution of object trajectories for event
recognition." Image and Vision computing 14.8 (1996): 609-
615.

[6] Stauffer, Chris, and W. Eric L. Grimson. "Learning
patterns of activity using real-time tracking." Pattern
Analysis and Machine Intelligence, IEEE Transactions

on 22.8 (2000): 747-757.

[7] Lin, Jessica, et al. "Iterative incremental clustering of
time series."Advances in Database Technology-EDBT 2004.
Springer Berlin Heidelberg, 2004. 106-122.

[8] Vlachos, Michail, et al. "A wavelet-based anytime
algorithm for k-means clustering of time series." In Proc.
Workshop on Clustering High Dimensionality Data and Its
Applications. 2003.

[9] Vincent, Pascal, et al. "Extracting and composing
robust features with denoising autoencoders." Proceedings

of the 25th international conference on Machine learning.
ACM, 2008.

1098

[10] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural
networks." Science 313.5786 (2006): 504-507.

[11] Fanaswala, Mustafa, and Vikram Krishnamurthy.
"Detection of anomalous trajectory patterns in target
tracking via stochastic context-free grammars and reciprocal
process models." Selected Topics in Signal Processing,

IEEE Journal of 7.1 (2013): 76-90.

[12] Piciarelli, Claudio, Christian Micheloni, and Gian
Luca Foresti. "Trajectory-based anomalous event
detection." Circuits and Systems for Video Technology,

IEEE Transactions on 18.11 (2008): 1544-1554.

1099

