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Abstract – Trajectories obtained from low level tracking 

algorithm provide an opportunity for us to analyze 

meaningful behaviors and monitor adverse or malicious 

events. How to abstract meaningful features from the raw 

data of trajectories is a challenge due to the high 

dimensionality and noise. In this paper, a novel approach, 

stacked denoising autoencoder(SDA) is applied to address 

this problem. This method can reduce the dimensionality 

of the trajectories significantly, so that they can be 

handled easily. More importantly, the denoising process 

of the SDA can capture the structure of the raw data, so 

the features they producing generalize well for detecting 

anomalous trajectories. The results of the numerical 

experiments prove the validity of the proposed approach. 

 

Keywords: anomalous trajectory detection, feature 

representation, stacked denoising autoencoder 

1 Introduction 

Anomaly detection has been studied by a variety of 

methods and in the context of a large member of application 

domains. Several extensive surveys on anomaly detection 

are available [1, 2]. As far as safety surveillance systems are 

concerned, detection and tracking moving object, then 

analyzing and predicting its behavior to detect anomalous 

target trajectory is the conventional roadmap for many 

works [3-5].  

The raw data of trajectories are a list of vectors with 

elements representing the spatial position and velocity of 

the objects.  So they are with very high dimensionality and 

often with noise. Finding a proper representation for the 

data is always of great importance. A variety of feature 

extraction and dimensionality reduction techniques have 

been applied to address the problem of trajectory 

representation. Johnson and Hogg[5], Stauffer and 

Grimson[6] presented vector quantization to address this 

problem, while wavelet coefficients were applied in [7, 8]. 

And there were some other authors employed component 

analysis and DFT to deal with the feature representation 

problems. 

When tracking a moving object, the conventional tracking 

algorithm (such as Kalman filter, particle filter and IMM) 

will give an estimated variance for the estimator. The 

authors believe that fusing this information in the 

representation algorithm will improve the accuracy of the 

detection. Yet as far as the authors know, few of the 

available methods employed for trajectories representation 

have concerned the uncertainty of the raw data thoroughly 

or using the estimated variance effectively.  

The aim of the trajectory representation is to find a proper 

feature extraction algorithm which can reduce the 

dimensionality of the raw data and is robust to the noise of 

the raw data. In this paper, we present a novel method, 

stacked denoising autoencoder(SDA), to abstract features 

from the raw data. SDA is an important algorithm recently 

invented in deep learning. Deep learning, also known as 

representation learning, is one of the hot topics in machine 

learning and intelligent computing communities. The main 

idea of denoising autoencoder is to learn representations 

robust to corruption of the input pattern by adding noise to 

the raw data artificially and making the decoder get an 

output as close as possible to the uncorrupted input. 

The remainder of the paper is organized as follow: 

Section 2 briefly reviews the denoising autoencoder 

algorithm. Section 3 discusses the possibility of applying 

this technique to trajectories representation and gives some 

preliminary examples.  Then, some experimental results 

proving the validity of the proposed approach is given in 

Section 4. Finally, Section5 concludes the study. 

2 Denoising Autoencoder 

The main idea at the basis of denoising Autoencoder was 

first proposed by Vincent et al [9]. A good representation 

should capture stable structures of the raw data regardless 

they are contaminated. For high dimensional input (such as 

the trajectory), such structures are abstracted from a 

combination of many elements of the input vector, and 

should remain unchanged (or changed only slightly) when 

the input data are noisy.  

2.1 The Basic Autoencoder 

  We begin with the basic autoencoder. An autoencoder is a 
typical unsupervised learning algorithm. In its simplest form, 
an autoencoder has two parts, an encoder and a decoder. 
When the dimension of the encoder’s output is smaller than 
the input dimension, it can be seen as a technique of 
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dimensional reduction. Yet in its modern instantiation, the 
output dimension can also be higher than the input 
dimensionality. In this case, it is seen as an over-complete 
representation. 

   We denote the training set as
(1) (2) ( ){ , , , }mX x x x= " , 

where  
dx R∈  , d  is the dimensionality of the input 

vector, and m  is the number of the training vectors. 

   The encoder is a mapping f ⋅杕 枀  which transforms an 

input vector x  into a hidden representation z . Its typical 

form is an affine mapping followed by a nonlinearity ( )s ⋅  : 

( ) ( )z f x s Wx b= = +  .                        (1) 

The output vector takes the form of
pz R∈ , p  is the 

dimensionality of the hidden representation; the weight 

matrix W  is an 
p dR ×

matrix, and b  is an offset vector of 

dimensionality p . The function  ( )s ⋅  , also known as 

activity function, takes the form of the family of sigmoid 
function. A typical choice is logistic function 

1
( )

1 exp( )
s x

x
=

+ −
 .                              (2) 

Clearly, the range of this function is  (0,1)  . 

The decoder function ( )g ⋅  maps the hidden 

representation z  back to a reconstructed vector y  in input 

space 

( ) ( )y g z h Dz c= = +  .                      (3) 

The reconstructed vector y  has the same dimensionality as 

the input vector x . So the weight matrix of the decoder D  

is a d p×  matrix. When D is constrained by
TD W=  , 

the autoencoder is said to have tied weights. And
dc R∈ is 

the offset vector of the decoder. The activity function of the 
decoder typically is either the identity (yielding linear 
reconstruction) or a sigmoid. It can be seen that when 
logistic function is taken as an activity function, rang of the 

reconstructed vector is constrained as  [0,1]dy∈  . The aim 

of the autoencoder is to make the reconstructed vector close 
to the input vector, so the input vector should be also 

normalized as [0,1]dx∈  . When the autoencoder takes the 

fashion of tied weights, the parameters of this model 

are { , , }W b cθ =  . 

A variety of loss functions and algorithms have been 
applied to train the autoencoder. One of the primary one is 
as follow. The parameters are optimized to minimize the 
average reconstruction error: 

*

( ) ( )

1

( ) ( )

1

arg min ( )

1
arg min ( , )

1
arg min ( , ( ( )))

m
i i

i

m
i i

i

J

L x y
m

L x g f x
m

θ

θ

θ

θ θ

=

=

=

=

=

∑
∑

         (4)  

where ( )L ⋅  is the reconstruction error. A typical choice of 

the lost function is the squared error 
2

2
( , )L x y x y= −  .                           (5) 

Another choice is cross-entropy loss when ( )h ⋅  is logistic 

function (in this case the input vectors are also normalized 

into the range of [0,1]  ): 

1

( , ) ( log (1 ) log(1 ))
d

k k k k

k

L x y x y x y
=

= − + − −∑    (6) 

where kx  denotes the k-th element of the vector x  . 

    Stochastic gradient decent is a typical algorithm used to 
address the optimization problem. It can find a sensible local 
optimal value for the parameters. 

2.2 Denoising Autoencoder 

When the activity function for the encoder ( )s ⋅ and the 

activity function for the decoder ( )h ⋅  take a linear form, the 

autoencoder is the same as PCA. And when a nonlinear 

function is applied, it can extract much richer features. But 

just applying the reconstruction criterion alone is 

insufficient to guarantee that the extracted features are 

useful. The outputs may just simply copy the input or 

similarly uninteresting ones. One strategy to address this 

problem is to constrain the representation. For example, if 

we constrain that the dimensionality of the hidden variable 

must be less than that of the input, we get a bottleneck; and 

more recently, sparse representations are also a hot 

researching area following this strategy. 

In practical applications, the input is always disturbed by 

noise. So it is a desirable property for the autoencoder to be 

robust to the noisy input. The denoising autoencoder is 

motivated by making the basic autoencoder robust to noise. 

The criterion of the denoising autoencoder is cleaning the 

corruption of the input, or in short denoising. Concretely, 

we find a stochastic mapping: 

: ~ ( )x x x q x x→ � � �                           (7) 

to map the input vector x  into a noising corrupted version 

x� . Then the corrupted version x�  instead of raw input x is 

fed into the denoising autoencoder to compute the 

representation ( ) ( )z f x s Wx b= = +� � . The raw input 

vector x is finally reconstructed by the decoder as eq. (3).  

The parameters of the denoising autoencoder are also 

trained to minimize the reconstruction error as eq. (4), that 

is, to make y  as close as possible to the uncorrupted input 
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vector  x  . As the basic autoencoder, the loss function is 

defined as either squared error in eq. (5) or cross-entropy 

loss in eq. (6). The algorithm of denoising autoencoder is 

summered in algorithm 1. 

 

Algorithm 1: Denoising Autoencoder 

Input: training set X  ; 

              Learning rate η   

   Output: parameters of the model { , , }W b cθ =  

1: initialize parameters { , , }W b cθ =  

2: choose random minibatch 1 2 (t )(t ) (t ){ , , , }ntX x x x= "  

3: corrupt each vector 
( )itx  in the minibatch according 

to eq. (7) to get the corrupted vector
( )itx�  ; 

4: compute the average reconstruction error ( )J θ  on 

the minbatch tX ; 

5: update the parameters according to: 

    
( )

new

J θ
θ θ η

θ

∂
← −  , 

 newθ θ←   

6: repeat from step 2 until convergence or other 

terminal conditions 

2.3 Stacked Denoising Autoencoder 

Stacking denoising autoencoder(SDA) to form a deep 

architecture is quite the same way as stacking RBM in deep 

belief networks[10]. Once the mapping ( )f ⋅  has been 

learned, the hidden representation z is determined. Then 

the hidden representation z can be taken as input vector for 

the second layer of the SDA. Following the same procedure, 

a deep architecture is formed from denoising autoencoder. It 

should be pointed out that input corruption is only used for 

the training of each denoising autoencoder. After the 

parameters of the denoising autoencoder are determined, 

cleaning input vectors is fed into the mapping to get the 

input vector for the denoising autoencoder in the next layer. 

A three layers’ deep architecture can be shown as fig. 1 

Stacking several nonlinear models to form a deep 

architecture is a basic idea in deep learning. It is believed  

( )Ix

( ) ( )I If x′ ″

( ) ( )
( )

I II
g x

( ) ( )II IIf x′ ″

( ) ( )( )II IIg x

( ) ( )III IIIf x′ ″

( ) ( )( )III IIIg x

( )Iy

( )II
y

( )IIIy

 
Figure 1: Three layers SDA. (The superscript Roman 

mumber is used to denote the number of the layer) 

 

that the higher layer, which takes the output vectors of the 

lower layer as input vector, will extract more abstract 

features, and will achieve better generalization performance 

on difficult recognition tasks. This idea has been verified by 

many successful applications of the deep architecture in 

machine learning, computer vision, and pattern recognition. 

3 SDA for Trajectory Repressention 

3.1 Possibility of SDA for Trajectory 

Repressention 

In this section, we will explore the possibility of using 

SDA for trajectory representation. The trajectories of the 

moving objects are usually obtained through low level 

tracking algorithm, such as Kalman filter, particle filter and 

IMM. These filters will estimate the position and velocity of 

the object in the given time instance. So the trajectory is by 

convention represented by a sequence of spatial position 

coordinate and velocity. Take 2-D space as an example, the 

trajectory at each time instance will be represented by 4 

elements. The sensor always works at a very high rate, so 

tracking a moving object for just several minutes will get a 

trajectory represented by a vector with hundreds of elements. 

Dimensionality reduction is the key technique for trajectory 

repressention. 

The other problem in the raw data of the trajectory is 

noise. The aim of each tracking algorithm is to reduce the 

noise of the sensor’s measurements, but no one algorithm 

can get rid of noise. So any algorithms must be able to work 

with noise. Two  trajectories with difference of just little 

fluctuation should be regarded as the same (see Fig. 2 for an 

illustration). 
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Fig.2: (Left) Illustration of a ground truth trajectory which 

should be a circle one; (Right) Illustration of two 

trajectories obtained by difference tracking 

algorithms; one is denoted by points and the other by 

triangles. And they should be regarded as the same. 

 

Those two problems can both be addressed by SDA. For 

each layer of the SDA, the dimensionality of the hidden 

variable is set to be lower than that of the input variable. 

When the raw data are input into a SDA, the dimensionality 

is reduced by each layer of the SDA efficiently. During the 

training process, the raw data are corrupted by some 

elaborate stochastic mapping, and the reconstruction data 

are as close as possible to the uncorrupted input data. Thus 

the hidden variables are expected to be robust to noise. 

3.2 A Preliminary Test 

We now present a preliminary experiment on trajectory 

data representation. The experiment is motivated by 

Mustafa F. and Krishnamurthy V [11]. The target moves in 

a specific trajectory around a sensitive asset (like an 

embassy or a security check-point). The shape of the 

trajectory correlates with the intent of the target and is of 

great importance if it can be reliably detected. The target 

dynamics are summarized using its kinematic state in 

vector [ , , , ]Tt t t t ts x y x y= � � . The state variable ( , )t tx y  

refer to the position of the target, while ( , )t tx y� �  refer to 

the velocity of the target in Cartesian co-ordinates (2-D 

space is assumed here). Concatenating this state vector in 

each time gets a trajectory 1 2[ , , ,s ]TnT s s= "  . In paper 

[11], the authors discretized surveillance space into a 

number of grid cells; each grid cell was represented by its 

center iλ ; and quantized the position state to the closest iλ  

at each time instant. Then stochastic context-free grammars 

(SCFG) were applied to convert the trajectory into a string 

of terminal symbols. 

In this section, we use SDA to address the trajectory 

representation problem. Several shapes of the trajectories 

are considered here.  A ground truth and an estimated 

version of the rectangle trajectory traversed by a target are 

shown in fig.3 while those of an arc trajectory are shown in 

fig.4. The horizontal and the vertical axis represent the 

target’s position. In each case, 1000 time instances are 

included. 

-15 -10 -5 0 5 10 15
-2

0

2

4

6

8

10

12

14

16

 

 

truth trajectory

estimated trajectory

noisy measuements

 
Fig.3: A rectangle trajectory, its noisy measurements and 

estimated output from the tracking algorithm 
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Fig.4: An arc trajectory, its noisy measurements and 

estimated output from the tracking algorithm 

 

To get a corrupted input vector for the SDA, we must find 

a proper stochastic mapping to map the estimated trajectory 

from the basic level tracking algorithm to a noisy version. 

The basic level tracking algorithm will give variance of the 

estimator, which proves a hint for the stochastic mapping. 

In this experiment, considering the variance at each time 

instance, we set the mapping as: 

( ) ( ,0.09)s p s s N s� �∼ ∼                     (8) 

where s  refers to the estimated position of the target at 

some time instance, and ( )N ⋅  denotes normal distribution. 

For each trajectory, 1000 corrupted samples were drawn 

from this distribution during the training process.  
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A four-layer SDA is built to extract the representation 

features for the trajectories, and logistic functions are taken 

as the activity functions of the SDA. Each element of the 

input vector must be normalized into the range of [0,1]  . 

Take the element of the horizontal co-ordinate as an 

example.  It is normalized by: 

min

max min

normalized

x x
x

x x

−
=

−
                            (9) 

where normalizedx  refers to the normalized value of the 

horizontal co-ordinate; minx  refers to the minimum 

horizontal co-ordinate value of the position at each time 

instance of the trajectory, while maxx  refers to that of the 

maximum value. As there are 1000 time instances in each 

trajectory, the dimensionality of the input vector for the first 

layer of the SDA is set to be 2000. Based on the results of 

some preliminary experiments, the dimensionalities of the 

hidden variables of successive three higher layers are 1500, 

300, and 40 respectively. And the dimensionality of the 

output layer is 4. Stochastic gradient descent algorithm is 

applied to optimize the parameters of the model. The initial 

values of the parameters are randomly sampled from the 

standard normal distribution. Each minibatch includes 50 

samples, and a fixed learning rate of 0.02 was applied to 

perform 8000 weight updates. In order to visualize the 

results, we choose three dimensions of the output features to 

draw in figure 5. The circle in the figure denotes the 

features of the rectangle trajectory, and the triangle denotes 

the arc trajectory. It can be shown from figure 5 that the two 

different shapes of the trajectories can be properly 

distinguished. 
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Fig.5: Output features of the two shapes of the trajectories 

 

 

As the parameters of the model have been achieved, the 

SDA can be used to abstract representation features for 

some other shapes of trajectories. Figure 6 shows one semi-

circle and two lines trajectories. The output features of the 

SDA for these three shapes of the trajectories are shown in 

figure 7 (We only choose three dimensionalities of the 

output features to draw the figure). 
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Fig. 6: three shapes of trajectories 
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Fig.7: Output features of the tree shapes of the trajectories 

 

 

As shown in figure 7, the different shapes of trajectories, 

which have not been seen in the training process, can be 

distinguished by the SDA effectively, even though no 

classifier is used. From the results of the preliminary 

experiment, we believe that the features extracted by the 

SDA really make sense. In the next section, the output 

features will be fed to SVM for abnormal detection. 

4 Experimental Results 

To verify that the feature vectors abstracted by the SDA 

are indeed able to be used to detect anomalous trajectories, 

the numeric experimental results are given in this section. 

The experiment is borrowed form [12], where 100 different 

experimental cases were considered, each one with a 

different number of groups of 100 normal trajectories 

(ranging from 1 to 10) and outliers (from 1 to 10). For each 

test, ten different training/test sets were created, for a total 

of 2000 data sets. The outliers in the test sets are drawn 

from the same distribution used for outliers in the 

corresponding training sets. The experimental data were 
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Anomalies 

Anomalies 

created according to the matlab program provided by the 

authors on web (http://avires.dimi.uniud.it/papers/trclust/). 

In this paper, an SDA is constructed to abstract feature 

vectors for the trajectories. A small fraction (5%) of the data 

is randomly chosen to determine some super-parameters for 

the model. We use a stochastic mapping of a normal 

distribution with the mean being the trajectory data and the 

variance, 0.01. A three-layer SDA is applied, and the 

dimensionality of the two hidden variable is 25 and 14, 

respectively; while that of the input and output vector is 32 

and 8 respectively. The activity function is logistic function, 

and the input vectors are normalized according to Eq. (9). 

Other super-parameters are setting the same as those in the 

preliminary experiment. Once the parameters of the SDA 

have been trained, the raw trajectories data are input into the 

SDA and the output feature vectors are fed into the single-

class SVM. The results of the proposed approach in terms 

of false positives (%) and true positives (%) are shown in 

table 1 and 2, respectively. The underline indicates that the 

result is better than that in [11]. It can be shown from the 

result that using the feature vectors abstracted from the 

SDA improves the performance of the anomalous trajectory 

detection.  

 

Table 1: False positives (%) for the proposed methods. 

The results have been averaged over ten runs. The underline 

shows that the result is better than that in [11]. 

 Clusters in the training set 
1 2 3 4 5 6 7 8 9 10 

1 2.0 2.2 2.2 2.0 1.5 1.6 1.2 1.2 1.0 0.8 

2 1.7 2.1 1.0 1.5 1.6 1.1 1.0 0.5 0.8 0.5 

3 2.3 2.5 1.5 1.8 1.3 1.2 1.3 1.3 1.1 0.7 

4 2.3 1.5 1.0 1.5 1.0 1.5 1.1 1.1 0.9 0.4 

5 3.4 2.2 2.3 1.2 1.5 1.7 1.4 0.8 1.1 0.6 

6 3.0 2.0 3.0 1.0 1.4 1.4 1.0 1.1 0.5 0.9 

7 1.5 2.5 1.0 1.3 1.3 1.3 1.3 1.1 0.8 0.8 

8 1.2 2.0 1.5 1.6 1.1 1.6 1.4 1.3 1.0 1.0 

9 2.5 2.0 2.2 1.2 1.6 1.0 1.7 0.8 1.4 1.4 

10 2.5 2.3 1.4 1.6 1.2 1.1 1.2 0.7 0.4 0.6 

 

Table 2: True positives (%) for the proposed methods. 

The results have been averaged over ten runs. The underline 

shows that the result is better than that in [11]. 

 Clusters in the training set 
1 2 3 4 5 6 7 8 9 10 

1 100 100 98 100 91 100 93 84 100 92 

2 100 98 100 100 100 100 97.3 100  100 90 

3 100 100 100 99.5 100 98.7 90 92.8 92.1 94.1 

4 100 100 100 98 95 96 95.6 91.5 96.3 91 

5 100 96 100 100 99.2 91 96.2 90 87.4 96 

6 100 97.5 99 100 95 92.1 92.8 95.8 92 84 

7 100 100 96 98 96.5 91 97.4 90.8 90.8 81 

8 100 96.6 98 96 97.2 98.5 93 94.6 95.8 94.7 

9 100 99 97.8 98 97.8 99.1 91.6 97 90.2 82 

10 100 100 100 100 98.9 98 98.3 98.5 94.5 94.8 

 

5 Conclusion 

In this paper, we propose a novel method for trajectory 

representation. SDA is an important algorithm in deep 

learning community. The corrupted vector is input into 

SDA, and be reconstructed as close as the uncorrupted 

vector: cleaning the corrupted input, or in short denoising. It 

is expected that performing the denoising task well requires 

extracting features that capture useful structure in the input 

distribution. The numerical experimental results show that 

the feature obtained from SDA can really improve the 

accuracy of the anomalous trajectory detection. 
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