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Abstract—In multiple target tracking target occlusion or shad-
owing is a common occurrence. A target may be occluded by an
existing structure, or in many cases, by another moving target
in the environment. In this paper we consider a UWB-based
range-only person tracking system. Occlusion regions induced
by moving targets in the scenario are defined followed by a
derivation of an occlusion likelihood function. The occlusion
likelihood is then incorporated within a person localization and
tracking framework based on the PHD filter by influencing the
probability of target detection. Numerical and experimental re-
sults demonstrate that the incorporation of ’negative information’
leads to a more complete belief of the scenario and can result in
use of fewer sensors for covering the area of interest.

I. INTRODUCTION

In most localization and tracking techniques only positive

information, i.e. target features observed by the sensors, is

used. However, additional information is available from sce-

nario areas that should be observed by the sensor but no

measurements are available due to possible occlusions of the

targets present in these areas. Negative information describes

the general case that no targets were detected in the field of

view of the sensor. According to [1] measurements can be

missing if an expected object is out of range, occluded or

due to sensor failure. It is suggested that false interpretation

of negative information can be avoided by modeling the

measurement process as exactly as possible and considering

occlusions by dynamic or static objects in the scenario.

Negative information is commonly used in robotics [2]

in occupancy grid mapping. In [3], a centralized occupancy

grid is generated from multiple cooperative sensors and used

to confirm the tracking results by discarding tracks in un-

occupied regions. [4] uses negative information to address

sensor limitations such as Doppler blindness, jamming, finite

resolution etc. In localization, negative information is used

in [1] for particle filter based localization in a known map

and in [5] for tracking known number of objects in a known

map. Analytic model of occlusion is presented in [6], where a

penalty cost is defined for unresolved tracks dependent on the

modeled track visibility. In [7] an occlusion likelihood model

is derived for occlusions created by dynamic extended targets.

Utilization of the occlusion information improves the accuracy

and sensibility of state estimates for occluded objects.

In this paper we consider localization and tracking of mul-

tiple tag-free persons as in our work in [8], [9], where persons

are detected by the changes they impose in the channel impulse

response (CIR) measured with a transmitter-receiver pair of a

ultra-wideband (UWB) module. The time of arrival (ToA) (or

correspondingly return range) of the persons can be estimated

and used for localization. When referring to range here we

actually refer to the return range i.e. the distance traveled

by the signal from the transmitter to the target and back to

the receiver. In the presence of multiple persons, a person

close to the transmitter or receiver of the sensor ’shadows’ the

persons located behind it with respect to the sensor since UWB

signals are strongly attenuated after scattering from a person.

Occlusions results in missing or incomplete measurements

and are a serious challenge for extended multi-target tracking.

Shadowing influences on UWB sensors are studied in [10].

In [8], [9], multiple UWB sensors distributed around the area

of interest are used to counteract the shadowing influences.

It is assumed that persons that can not be observed by one

sensor would be observed by another sensor of the network.

In [11] a geometry based occlusion model was introduced

and a simple occlusion handling procedure was applied. The

results show that an occlusion handling procedure highly

benefits the overall person localization and tracking procedure.

In this paper we extend the models presented in [11], derive

an occlusion likelihood function (Section III) and incorporate

it within a PHD filter based person tracking system in Sec-

tion IV. The proposed method is numerically and experimen-

tally verified in Section V.

II. OCCLUSION MODELING

The occlusion region of a detected person is a region in the

scenario where other persons/targets can not be detected due

to the strong attenuation of the UWB signals caused by this

person. For a known person location and extent and known

sensor positions, the occlusion region can be modeled as the

area behind the detected target with respect to the sensor.

Since only the range information of the target is used as ob-

served by the UWB sensor, the location, extent and direction of

that target need to be estimated and/or approximated from the

target tracking procedure. A person in 2D can be approximated

as an elliptical target if the direction of movement is known.
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For simplicity, we here approximate the target as a circle with

diagonal equal to the major axis of a target extent ellipse.

Lets assume that a target m can be modeled by a circle

with radius rm and center (xm, ym) (blue dashed circle in

Fig. 1). Let the observed target range be dm (represented by

the black ellipse in Fig. 1). The target range is represented by

an ellipse due to the bistatic configuration of the transmitting

and receiving antennas. The target extent limits with respect

to the sensor can be determined as the intersection points of

the circle representing the target and the range ellipse (the

two black points in Fig. 1). These intersection points can be

determined by solving the two equations:

rm =

√

(xm − x)
2
+ (ym − y)

2
(1)

dm =

√

(x− xTx)
2
+ (y − yTx)

2

+

√

(x− xRx)
2
+ (y − yRx)

2
(2)

where (xTx, yTx) and (xRx, yRx) are the coordinates of the

transmitter and receiver respectively.

To determine the region shadowed by target m we need to

determine the left and right cut-off lines. They are determined

by the line passing through one of the antennas and one of the

points we determined above (light gray dotted lines in Fig. 1).

The modeled occlusion region is limited to the field of view

of the sensor.

1 

Fig. 1. Occlusion region of a target: the modeled occlusion region (light
gray) and the true occlusion region (dark gray) - target 1 (orange) is fully
shadowed, targets 2, 3, and 4 are partially shadowed by target m (dark blue),
and target 5 (purple) may be observed by the sensor

The true size, shape and orientation of the object influence

the accuracy of this model. Any inaccuracies result in a

conservative likelihood, guaranteeing that the true shadow is a

subset of this approximation and is not mistaken to be visible.

In a generalized case, an arbitrary number of tracked targets

exist, and each of them generates a shadow over the field

of view. To avoid duplicates, the likelihood that target n is

shadowed is defined as the likelihood that target n is shadowed

by the target with minimum range to the sensor that also

shadows target n.

III. OCCLUSION LIKELIHOOD

To determine the occlusion likelihood at a given point in

time, the estimated location and extent of the present targets

is needed. In the above section the occlusion region is modeled

geometrically. Here we give the minimum conditions that need

to be satisfied to define the occlusion region analytically. This

is similar to the modeled likelihood in [7], with the difference

that in [7] range and bearing measurements are available, and

here we only have range measurements and model the target

extent to obtain the angular extent of a target.

Object n is shadowed by object m if m is closer to the

sensor compared to n, i.e. Rn,m = (dn ≥ dm), and the angular

extend of object n is smaller than the extent of object m with

respect to the sensor position, i.e. Bn,m
1 = (θn ≥ θm)∩(φm ≥

φn), where θi is the clockwise angular extent of object i and φi

is the counter clockwise angular extent of object i. The angular

extent of the objects is always calculated positive clockwise

from the x-axis. The probability that object n is fully occluded

by object m, On,m, assuming Rn,m and Bn,m
1 are independent

of each other, is then defined as:

p(On,m) = p(Em) p(Rn,m|Em) p(Bn,m
1 |Em) (3)

where p(Em) is the probability that object m exists. The range
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Fig. 2. Full occlusion diagram of a target and defining parameters

and angular extent probabilities are computed using a smooth

transition function based on the hyperbolic tangent function,

i.e.

p(Rn,m|Em) = s

(

dn − dm
√

σ2
dn + σ2

dm

)

p(Bn,m
1 |Em) = s

(

θn − θm
√

σ2
θn + σ2

θm

)

s

⎛

⎝

φm − φn

√

σ2
φn + σ2

φm

⎞

⎠

(4)

where

s(x) =
1

2
+

1

2
tanh(x) (5)

Analogous to the occlusion model in [7], we extend the oc-

clusion likelihood function to also cover the cases of partially
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occluded targets such as targets 2, 3, and 4 in Fig. 1. For these

cases additional angular extent conditions are defined i.e.

Bn,m
2 = (φm ≥ θn) ∩ (φn ≥ φm)

Bn,m
3 = (θm ≥ θn) ∩ (φn ≥ θm)

(6)

where Bn,m
2 is the condition for partially occluded targets on

the left of the occlusion region (covering case 2 and 4 from

Fig 1) and Bn,m
3 is the condition for partially occluded targets

on the right of the occlusion region (covering case 3 and 4

from Fig 1).

Since Bn,m
2 and Bn,m

3 both include case 4, they are not

mutually exclusive. Thus the partial occlusion likelihood is

p(On,m) = p(Em) p(Rn,m|Em) p(Bn,m|Em) (7)

where

p(Bn,m|Em) = p(Bn,m
1 ∪Bn,m

2 ∪Bn,m
3 |Em)

= p(Bn,m
1 |Em) + p(Bn,m

2 |Em) + ...

p(Bn,m
3 |Em)− p(Bn,m

2 ∩Bn,m
3 |Em)

(8)

and

p(Bn,m
2 |Em) = s

⎛

⎝

φm − θn
√

σ2
φm + σ2

θn

⎞

⎠ s

⎛

⎝

φn − φm

√

σ2
φn + σ2

φm

⎞

⎠

p(Bn,m
3 |Em) = s

(

θm − θn
√

σ2
θm + σ2

θn

)

s

⎛

⎝

φn − θm
√

σ2
φn + σ2

θm

⎞

⎠

p(Bn,m
2 ∩Bn,m

3 |Em) = ...

s

(

θm − θn
√

σ2
θm + σ2

θn

)

s

⎛

⎝

φn − φm

√

σ2
φn + σ2

φm

⎞

⎠

(9)

In the general case of arbitrary number of tracked targets,

N , the total occlusion likelihood of object n is

p(On) =
N
⋃

m=1,m �=n

p(On,m) (10)

Since an object n may be occluded by multiple targets

simultaneously, the events in (10) are not mutually exclusive.

Thus (10) is expanded as in [7]:

p(On) =
N−1
∑

i=1

⎧

⎨

⎩

(−1)(i+1)

(N−1)Ci
∑

j=1

[

i
∏

k=1

p
(

On,Ci
j(k)

)

]

⎫

⎬

⎭

(11)

where C
i
j(k) is the k-th object in the j-th i-combination and

(N−1)Ci is the number of i-combinations in the set of N − 1
tracked targets (all targets excluding n).

The complement of the occlusion likelihood is the detection

likelihood, i.e. the likelihood that target n is fully visible to

the sensor

p(On) = 1− p(On) (12)

IV. OCCLUSION INFORMATION FUSION

The occlusion model and likelihood function presented

above are integrated within the PHD filter as shown in Fig. 3.

The ’Feature extraction’ block estimates the ranges from the

raw measurements which are then used as observations in the

tracker. The range estimation procedure is explained in [9].

An observation dependent birth model for the target birth

intensity is used as in [11]. Since each transmitter-receiver

pair is considered as separate sensor, a multi-sensor update

equations are used in the PHD filter. This is the way the

conventional PHD filter is defined. In the modified PHD filter

we use the ’Occlusion likelihood definition’ block to define

the probability of target occlusion based on the predicted target

states, and integrate it within the ’Measurement update’ block.

Raw measurements 

Feature extraction 
Prediction 

Valid tracks 

State 

Estimation 

Pruning/ 

Merging 

Target Birth 

range observations 

Occlusion 

likelihood 

definition 

Measurement 

update 

Fig. 3. Block diagram of the modified multi-target tracker

A. The Conventional PHD Filter

The target tracking problem can be summarized as an

estimation of the number of targets and their states (locations)

at each point in time using a set of noisy measurements and

the information of the previous target states. In finite set

statistics terminology, at a given time t, the random finite

set (RFS) of targets states is Xt = {x
(i)
t }

Nx,t

i=1 and the RFS of

measurements is Zt = {z
(i)
t }

Nz,t

i=1 , where Nx,t is the estimated

number of targets at time t and Nz,t is the number of available

measurements at time t. Each z
(i)
t is either a noisy observation

of one of the targets or clutter. Each target state is represented

by x
(i)
t . The set-based approach allows for varying number of

targets to appear and disappear without any particular order

while avoiding explicit data association.

The probability hypothesis density is the first moment of

the multi-target posterior distribution. It is a multi-modal

distribution over the target space and each mode, or peak,

represents a high probability of target presence. Since at

a given time the target states are considered to be a set-

valued state, it operates on single target state space and avoids

the complexities arising from data association. It is not a
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probability density function and does not integrate to unity. Its

integration over a finite subset of the space gives an estimated

number of the targets in this subset. The propagation of the

posterior intensity function vt uses the following recursion:

vt|t−1 (xt) =

∫

φt|t−1 (xt, ζ) vt−1 (ζ) dζ + γt (xt) (13)

vt (xt) = [1− pD,t (xt)]vt|t−1 (xt)

+
∑

zt∈Zt

ψt,z (xt) vt|t−1 (xt)

κt (zt) +
∫

ψt,z (ζ) vt|t−1 (ζ) dζ
(14)

The transition density in (13) is defined as:

φt|t−1 (xt, ζ) = pS,t (ζ) ft|t−1 (xt|ζ) + βt|t−1 (xt|ζ) (15)

where ft|t−1 (xt|xt−1) is the single target transition density,

pS,t (xt−1) is the probability of survival, βt|t−1 (xt|xt−1) is

the PHD for spawned target birth and γt (xt) is the PHD

for spontaneous birth of new targets at time t. In the update

equation (14), ψt,z (xt) = pD,t (xt) g (zt|xt), where g is the

single target likelihood function and pD,t (xt) is the proba-

bility of detection. The intensity of clutter points is defined

as κt (zt) = λtct (zt), where λt is the Poisson parameter

defining the expected number of false alarms and ct (zt) is

the probability distribution over the measurement space.

The main assumptions of the PHD filter are independence of

the measurements generated by each target, independence of

clutter from target-based measurements, and that the predicted

RFS is Poisson.

Generalizations of the single-sensor PHD filter to a multiple

sensor case have been originally proposed by Mahler in [12].

The update equation is however too complicated to be of

practical use. Different multiple sensor approximations are

presented in [13]. The most common approach is to apply

the single sensor update equation multiple times in succession

as in [14]. The update equation of the multiple sensor PHD

filter is then approximated as:

vt (xt) = v
[N ]
t|t−1 (xt) (16)

where N is the number of sensors used. For the j-th sensor

we have:

v
[j]
t|t−1 (xt) = [1− p

[j]
D,t (xt)]v

[j−1]
t|t−1 (xt)

+
∑

zt∈Z
[j]
t

ψ
[j]
t,z (xt) v

[j]
t|t−1 (xt)

κ
[j]
t (zt) +

∫

ψ
[j]
t,z (ζ) v

[j]
t|t−1 (ζ) dζ

(17)

where

v
[0]
t|t−1 (xt) = vt|t−1 (xt)

ψ
[j]
t,z (xt) = p

[j]
D,t (xt) g

[j] (zt|xt)
(18)

p
[j]
D,t (xt) is the probability of detection of sensor j, Z

[j]
t is the

set of acquired measurements by sensor j at time t, κ
[j]
t (z) is

the clutter intensity for sensor j and g[j] is the single target

likelihood function of sensor j.

The sequential PHD filter is highly dependent on the order

the sensors are used. Thus if sensor ’reliability’ is known

or computed, the observations of the most ’reliable’ sensors

should be used first.

To avoid the sensor order dependency, the sequential PHD

filter can be applied over all possible sensor orders. This

can be very expensive when many sensors are used. The

updated intensities of the different sensor orders can then be

merged. We have to note that before merging the intensity

obtained from the different sensor orders a normalization with

the number of possible sensor order permutations should be

applied.

In this work we use the Gaussian Mixture implementation

of the PHD filter (GMPHD) [15]. Target spawning is omitted

for simplicity. The number of Gaussian mixtures (GMs) in

vt (xt) is Jt = (Jt−1 + Jγ,t)
(

1 + |Z
[1]
t |

)

...
(

1 + |Z
[N ]
t |

)

has

an almost exponential growth 1 with time and N . Thus the use

of pruning and merging is very important.

B. Occlusion likelihood integration

Often the probability of detection, pD,t(x) is considered

constant or dependent on the signal-to-noise ratio. In the

modified version of the PHD filter a probability of target

detection based on the occlusion likelihood is used. Thus,

the detection likelihood is calculated as the complement of

the occlusion likelihood defined in Section III. The new

probability of detection is then

pnewD,t (xt) = pD,t (xt) p(On) = pD,t (xt) (1− p(On)) (19)

This probability of detection is used in the update step of

the PHD filter, i.e. equations (14), (17) and (18).

C. Sensor and target model for range-only tracking

A single transmitter synchronized with multiple receivers

is considered. The time needed for the signal to travel from

the transmitter to a target and back to a receiver can be

thus accurately measured. Each transmitter-receiver pair is

considered to represent a separate sensor. It is also assumed

that the location of the transmitter and receivers is known.

The state vector of a target at time t is defined by the

Cartesian (x, y) target position coordinates and velocity:

xt = [xt, yt, ẋt, ẏt]
T

(20)

At time instant t we measure the range with respect to each

sensor j. Thus the observation is defined as z
[j]
t = rt and the

measurement equation at time t is:

z
[j]
t = h[j] (xt) + w

[j]
t (21)

where

h[j] (xt) =

√

(xt − xTx)
2
+ (yt − yTx)

2

+

√

(xt − xRxj )
2
+ (yt − yRxj )

2
(22)

1The growth is exponential if |Z
[1]
t | = ... = |Z

[N ]
t | and Jγ,t = Jγ is

time independent.
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and the observation process noise is w
[j]
t ∼ N

(

0, R
[j]
t

)

. The

target dynamics is defined as:

xt = ft|t−1 (xt|xt−1) (23)

where ft|t−1 (xt|xt−1) = N (x;Ft−1xt−1, Qt−1) is the tran-

sition density and the process noise is vt ∼ N (0;Qt).

Ft =

[

I2 dtI2
O2 I2

]

is the state transition matrix and the

covariance is defined as Qt = σ2
v

[

dt4

4 I2
dt3

2 I2
dt3

2 I2 dt2I2

]

, where dt is

the time interval between two observations, σ2
v is the variance

of the process noise, and In and On denote n×n identity and

zero matrices respectively.

V. EVALUATION AND RESULTS

A. Numerical results

For demonstrating the performance of the described PHD

filter with occlusion likelihood incorporation we simulate a

scenario with three moving targets. The target trajectories are

shown in Fig. 4 where the end state of each trajectory is

indicated by a black circle. The sensor transmitter and two

receivers are indicated by the black, blue and green triangles,

respectively. For simulating the scenario a person is modeled

as a circle with radius 0.3 m.

−8 −6 −4 −2 0 2 4 6 8
−1

0

1

2

3

4

5

6

7

8

x [m]

y
 [

m
]

Fig. 4. Simulated tracks for three targets (red, magenta and cyan). Sensor
position - transmitter (black), receiver 1 (blue) and receiver 2 (green)

The range observations of the targets including clutter

is shown in Fig. 5, where the blue circles represent the

observations with respect to the first receiver and the green

squares with respect to the second receiver. The red target

is shadowed by the magenta target from time 29 to time

50. The cyan target is shadowed by the magenta and red

targets from time 44 to time 65. P (1) clutter points uniformly

distributed along the range are simulated at each time step,

where P (x) = e−λλx

x! is the Poisson distribution. The mea-

surement noise variance used is σw = 0.1 m. The probability

of target detection by the receivers is assumed constant and

same for both receivers, i.e. p
[j]
D,t (xt) = pD = 0.95. Thus

the probability of detection in the modified version of the

tracker is pnewD,t (xt) = pD (1− p(On)). For the probability of

occlusion, a target is modeled as a circle with radius 0.5 m. In

both versions of the filter a process noise variance σv = 10−3

and probability of survival pS,t (xt−1) = pS = 0.99 is used.

In the target birth model the intersection points of all

range-induced ellipses are used as x and y terms of the

mean mγ,t of the newborn GMs. The ẋ and ẏ terms of

the mean are 0. The covariance of the newborn targets is

Pγ,t = diag ([1, 1, 0.1, 0.1]). Pruning threshold of 10−4 and

merging threshold 50 is used. The state extraction threshold

was set to 0.5.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

time steps

ra
n
g
e
 [

m
]

Fig. 5. Targets observations (range as transmitter-target-receiver distance) by
Rx1 (blue circles) and Rx2 (green squares)

To evaluate the performance of the PHD filter the OSPA

metric as defined in [16] with cut-off c = 10 and order p =
1 is used. The modified PHD filter (Mod.GMPHD) and the

conventional PHD filter (GMPHD) are compared in Fig. 6

where the OSPA metric averaged over 100 Monte Carlo runs

for the scenario described above is shown.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

time steps

O
S

P
A

 (
c
=

1
0
,p

=
1
)

GMPHD−occlusions

ModGMPHD−occlusions

Fig. 6. Average OSPA metric using the PHD filter, GMPHD, (green) and
the modified version with occlusion likelihood incorporation, Mod.GMPHD,
(red)

As can be observed, using the PHD filter with occlusion

likelihood to define the probability of target detection leads to

better results, since the filter is able to track the occluded

targets (between time step 29 and 65 one or two targets

are occluded) and update their state as soon as there is a

fitting observation of the previously occluded target. It can

be observed that from time step 65 to 69 although all three

targets are detected, the GMPHD takes some time until it can

correctly estimate the states of all three targets.
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B. Experimental verification

The suggested modification with occlusion likelihood in-

tegration is applied to data acquired using one UWB sensor

node with transmitter and two receivers placed behind a wall.

The UWB sensor node has a bat-type configuration with

closely spaced antennas which make the sensor node portable

and implementable for hand-held devices. The scenario is

as described in Fig. 7. Two persons walk in a room along

roughly predefined paths straight to and from the sensor node

to the end of the room. The complete ground truth path

of the motion of the persons is unfortunately not available

and thus a close approximation is used. The UWB module

used has 3.5 GHz bandwidth. The measurement rate is

100 CIR/s. The UWB module has an M-sequence radar

architecture as described in [17]. The feature extraction

Brick-Wall 30cm 

Brick-Wall 30cm 

9.65m 

Fig. 7. Scenario schematics

time [s]

0 1 2 3 4 5 6

ra
n
g
e
 [

m
]

0

5

10

15

20

25

Fig. 8. CFAR range detections (blue) and simulation based expected range
estimates (black) for receiver 1 in the two person scenario

procedure is range estimation from the received CIRs at

each time step as in [9]. The background subtraction method

is exponential averaging with forgetting factor 0.85 which

removes the static background reflections. For range detection

the constant false alarm rate (CFAR) detector with false alarm

probability 0.15 is applied due to the low signal-to-noise

ratio resulting from the signal attenuation when propagating

through the wall. To reduce the number of range estimates

per target and transmitter-receiver pair to one a hierarchical

clustering algorithm is applied. The estimated ranges from the

CIR received by receiver 1 are shown in Fig. 8 in blue. The

expected range estimates at each time point from a simulation

of the same scenario are depicted in black for comparison. As

expected, the person closer to the sensor is detected whereas

the other person is only sometimes detected. This is accounted

to the low signal-to-noise ratio, the attenuation of the UWB

signal due to the penetration through wall, and in part to the

shadowing imposed by the person closer to the sensor over the

rest of the scenario. Based on the approximated ground truth

the person closer to the sensor partially occludes the other

person throughout the complete measurement time. However,

in the first 3 s of the track less than 50 % of the body is

occluded, and thus it can often be detected by the sensor.

Starting from the 4th second larger portions of the body (more

than 50 %) are occluded increasingly. Between the 3rd and

4th second of the scenario the paths of the two persons are

crossing.

Detected targets are modeled as circles with radius 0.7 m
and the angular extent parameters are obtained from the model

at each time point for each detected target. The radius used

to model the target is very large, however it partially accounts

for location estimation errors of the detected target. In our

scenario location estimation errors arise due to the vicinity of

the antennas. The range estimates of both transmitter-receiver

pairs are close to each other and the intersection of the range

induced ellipses is flat. The accuracy of the occlusion likeli-

hood estimation is highly dependent on the location estimation

of the detected targets. Location estimation errors of detected

targets can result in predicting high occlusion probability for

non-occluded targets or predicting low occlusion probability

for occluded targets. Modeling the target with larger radius or

based on the error covariance of the current estimate might

lead to better results.

For this scenario measurement noise variance σw = 0.3 m
and process noise variance σv = 0.5 is used. The other filter

parameters are same as in the simulation scenario.
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Fig. 9. Average OSPA metric using the PHD filter, GMPHD, (green) and the
modified version with occlusion likelihood incorporation, Mod.GMPHD (red)

The OSPA metric with cut-off c = 10 and order p = 1

1083



of the scenario for the PHD filter and the modified PHD

filter is shown in Fig. 9. It should be mentioned that in

the implementation of both conventional and modified PHD

filter, the number of estimated targets equals the number of

surviving mixtures after merging and pruning, and the state

estimate of these targets is the mean of those mixtures. Thus,

as expected when the paths of the two targets are crossing

(around 3.5 s), the filter doesn’t manage to keep the tracks of

both targets. Additionally, the OSPA metric of the conventional

PHD filter results in many jumps over the measurement time.

As mentioned above one of the targets is always partially

occluded by the other. In the first half of the measurement

time a smaller portion of the target is occluded and thus it is

often detected. However there are still many intervals where

the target is not detected (miss detections). Since the PHD filter

is not a tracker, if a target state is not updated by an observation

for multiple time steps it’s weight falls below the estimation

threshold and it’s state is thus not part of the estimated target

states.

Sample of the scenario with the occlusion likelihood at the

given time step and the estimated target locations as error

ellipses for the conventional and modified PHD filter are

shown in Fig. 10. The black circles represent the approximated

ground truth location of the persons. The improvement in

target location estimation with the modified PHD filter can

be clearly observed.
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Fig. 10. Sample likelihood without (left) and with (right) occlusion likelihood
incorporation with black circles representing the targets positions and green
ellipses representing the estimates state covariances of detected targets

VI. CONCLUSION

In multiple person localization scenarios, person-induced

shadows (or occlusions) lead to target miss-detection. In

this paper we describe an occlusion model for defining the

occluded area of the scenario at each time point based on

the estimated locations of the detected targets. An occlusion

likelihood function is described and is later used to calculate

the probability of target detection. The modified PHD filter is

evaluated on a simulated scenario with three moving persons

showing a significant improvement compared to the typical

PHD filter where occluded targets are simply discarded after

few time steps of non-detection. The modified PHD filter is

also applied on experimental data gathered using a bat-type

UWB sensor. The improvement in target localization with

the modified PHD filter is significant since occluded targets

continue to be tracked even tough there are no detections

from the sensor. Future improvements by incorporating the

occlusion likelihood function in the innovation would limit

the error estimate within the occluded region. In addition

improvement of the target extent model should result in

improved target estimates with lower error covariance.
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