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Abstract—Driven by the promising beaconing techniques, this
paper presents a general received-signal-strength (RSS) threshold
optimization procedure for proximity reports to support network-
based indoor positioning. The desired RSS threshold is found
through optimizing a metric function (for instance the localization
root-mean-square-error) in terms of both the deployment infor-
mation and the RSS modeling in consideration of an evaluation
area. The resulting RSS threshold provides a trade-off between
triggering many but less informative proximity reports with a
low threshold, and triggering few but very informative prox-
imity reports with a high threshold, and thus enables enhanced
performance for some low-cost and low-complex proximity based
positioning algorithms. The proposed framework is also validated
with real RSS measurements collected in an office area with
deployed bluetooth low-energy (BLE) beacons.

I. INTRODUCTION

Over the past few years, indoor localization and tracking
using wireless networks has received considerable attention
due to the ever increasing demand on location-awareness
in various sectors. So far, most of the efforts have been
made to improve the localization accuracy using advanced
technologies, for instance statistical sensor fusion [1], ded-
icated to optimally fuse different types of position-related
measurements. Such measurements include round-trip-time-
of-arrival (RTOA), received-signal-strength (RSS), angle-of-
arrival (AOA), speed, and acceleration measured from indoor
wireless infrastructures, etc (for instance, cellular, wireless
fidelity (Wi-Fi) and bluetooth low-energy (BLE) nodes) or by
mobile device(s), or a combination. RSS reports are typically
also used for radio resource management in cellular networks.
Such reports may be periodic or event-triggered and may also
include the RSS measurements with respect to the triggering
node as well as other nodes. Since RSS is strongly correlated to
the inter-distance between the node and the device, such event-
triggered reports are also referred to as proximity reports.

One way of obtaining proximity information in the network
is to configure devices with an event-triggering threshold Pth

to trigger a proximity report when RSS passes the threshold.
More precisely,

Proximity �

{
0, RSS ≤ Pth

1, RSS > Pth

.

Such proximity report indicates whether or not a target device
is in the coverage area (depending on the threshold) of a
reference network node. This is an example of cell identifier
positioning, where the device is associated to the known
position of the reference network node, either in a mobile
centric manner or in a network centric manner [2]. We give

an illustrative example in Fig. 1 for better explanation of this
concept. Harness of time series of proximity reports may result
in new-fashioned positioning system with lower communica-
tion bandwidth, smaller database, as well as cheaper deploy-
ment and maintenance cost. Instead of finding an accurate
position estimate with unaffordable cost, the ambition of a
proximity based positioning system is to promptly (possibly
in real time) identify which zone the target of interest is
in or about to enter or leave and further trigger events or
performance/measurement report accordingly.

The focus of this paper is not on any specific proximity
based positioning algorithm but about determining an appro-
priate RSS threshold for proximity report triggering. In the lit-
erature, RSS thresholding was once considered for cooperative
localization in [3]. Therein, an RSS threshold was found to get
rid of those neighboring sensors with worse RSS observations
so as to optimize the network localization accuracy. In this
paper, RSS thresholding is considered for non-cooperative,
infrastructure-based indoor positioning. As compared to [3],
our focus is the overall positioning performance in a given
service area, and we give thorough treatment on the measure-
ment campaign, RSS modeling, model fitting and parameter
calibration, signaling, and performance evaluation using real
data measured from a live network. Our contributions in this
paper are two-folds. First, we propose a general framework
for selecting a reasonable RSS threshold for proximity report
based positioning. Figure 2 illustrates the proposed procedure,
where the final RSS threshold is the output of an optimization
process, given a preselected RSS model and a priori known
sensor deployment information as the input. The resulting RSS
threshold can enable subsequent design of novel proximity
based positioning algorithms. For example, we have introduced
in a companion paper [4] a proximity based particle filtering
algorithm that requires much less communication bandwidth
and memory storage for measurement reports. Second, the
proposed RSS threshold optimization procedure is validated
with real RSS measurements collected in a live BLE network.

The remainder of this paper is organized as follows:
Section II lists the prerequisites for performing the RSS
threshold optimization, including the deployment information,
RSS modeling, and selection of an evaluation set of sample
positions. We give three representative RSS models, namely
a conventional linear log-distance model, a piece-wise linear
log-distance model, as well as a more advanced nonlinear
Gaussian process (GP) regression (GPR) model. This section
corresponds to the first step shown in Fig. 2. Section III
introduces a general RSS threshold optimization procedure.
This section corresponds to the second step shown in Fig. 2.
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Fig. 1. An illustrative example of proximity based indoor positioning. In this
example, three transmitter nodes are deployed as reference network nodes to
locate a mobile station. The arcs indicate the coverage radius of the nodes,
given an RSS threshold. The proximity vectors, e.g., [1, 1, 0], indicate the
proximity relative to the three reference network nodes.

Step 1: Prerequisites

* Deployment Information
* RSS Modeling

* Evaluation Set of Positions

Step 2: RSS Threshold Opt.

P
opt

th
= optPth

f(RSS model, deployment, Pth)

Step 3: Terminal Configuration

Fig. 2. Key steps of the proposed RSS threshold optimization procedure.
The first two steps are performed in the offline training phase, while the third
step is performed in the online positioning phase.

In Section IV, we validate the proposed RSS threshold exper-
imentally with real RSS measurements collected in an office
area with deployed BLE beacons. Finally, Section V concludes
the paper.

Throughout this paper, matrices are presented with upper-
case letters and vectors with boldface lowercase letters. The
operator [·]T stands for vector/matrix transpose and [·]−1

stands
for the inverse of a non-singular square matrix. The operator
tr(·) denotes the trace of a square matrix. ‖ · ‖ stands for the
Euclidean norm of a vector and | · | denotes the cardinality of
a set. The operator E(·) stands for the statistical expectation.
The operator ln(·) stands for the natural logarithm and log10(·)
stands for the logarithm to base 10. Further, ∇θ = ∂/∂θ
denotes the gradient operator. N (μ, σ2) denotes a Gaussian
distribution with mean μ and variance σ2. Lastly, erf(·) stands
for the standard Gaussian error function.

II. PREREQUISITES

A. Deployment

Throughout this paper, we restrict ourselves to indoor
positioning scenarios where a number of N reference network
nodes, such as cellular base stations, BLE beacons, Wi-Fi
routers, Zigbee devices, or a combination, are deployed. The
reference network nodes are often placed rather uniformly in
the surveillance area and mounted either on the ceiling or
high on the wall to give a panoramic view. The geographical
position pr and the transmission power PT of each of the

reference network node are assumed to be known a priori.
In addition to a transmitted reference signal, the reference
network node may also broadcast information such as a sensor
ID, position, network configurations, as well as a tiny amount
of information about the event to be triggered.

B. RSS Modeling

In the literature, there exist a plethora of deterministic and
stochastic RSS models. The appropriateness, however, depends
on the actual scenario [5]. Once an RSS model is predefined,
the corresponding model parameters can be calibrated either
offline given a batch of all available RSS measurements or
online given RSS measurements that come in sequentially. We
could also resort to expert knowledge or history records on
any empirical model when a training phase cannot be carried
out due to some reasons. In what follows, we focus on offline
calibration of RSS model parameters, given a calibration set
of M RSS measurements at different calibration locations,
pj , j = 1, 2, . . . ,M . We start with the canonical linear model,
followed by a piece-wise linear log-distatnce model. These
two models both represent an RSS measurement in terms of
the one dimensional (1-D) distance between the transmitter
and the receiver. We further introduce a nonlinear Gaussian
process regression (GPR) [6] model, which represents an RSS
measurement in terms of the 2-D or 3-D geographical position
and is more realistic for complex indoor environments.

Example I: Linear log-distance model. The classical
linear log-distance model is given by

rj = A+ 10B log10

(
dj
d0

)

︸ ︷︷ ︸

μj

+ej , j = 1, 2, ...,M

where rj is the jth RSS, A is a path loss factor, B is a path
loss exponent, and dj is a short-hand notation of the Euclidean
distance between a calibration position pj and the reference

network node’s position pr, i.e., dj � ||pj − pr||. Often, the
measurement term ej is assumed to be Gaussian distributed
with zero mean and variance σ2, hence rj ∼ N (μj , σ

2).
Performing the conventional linear least-squares (LLS) fitting
yields an optimal estimate of the unknown parameters [A,B]T ,
namely,

[Â, B̂]T = arg min
[A,B]

M∑

j=1

(rj − μj)
2
. (1)

We further compute an estimate of the noise variance, σ2, by

σ̂2 =
1

M

M∑

j=1

(

rj − Â− 10B̂ log10

(
dj
d0

))2

. (2)

In practice, the RSS measurements were collected subject
to an intrinsic threshold, Pdec (in dBm), beyond which a
data package cannot be decoded accurately. According to
[7], more accurate fitting results can be obtained by taking
into account this truncation effect. The corresponding log-
likelihood function can be easily expressed as

ll(A,B, σ2) �
M∑

j=1

ln

⎧

⎨

⎩

1√
2πσ2

exp
[

− (rj − μj)
2
/2σ2

]

1
2

[

1− erf
(

Pdec−μj√
2σ2

)]

⎫

⎬

⎭
.
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A set of parameter estimates can be found through maximizing
the above log-likelihood function, namely,

θ̂ = [Â, B̂, σ̂2] = arg max
[A,B,σ2]

ll(A,B, σ2).

We could use the fitting results given in (1) and (2) as the
starting point for the above numerical search.

Example II: Piece-wise linear log-distance model. The
dual-slope piece-wise log-distance model is formulated as two
linear log-distance models valid at different ranges from the
reference network node. Concretely,

rj=

⎧

⎨

⎩

A1+10B1 log10

(
dj

d0

)

+e1,j , dj≤dc

A1+10B1 log10

(
dc

d0

)

+10B2 log10

(
dj

dc

)

+e2,j , dj>dc
(3)

where dc is often called critical distance in the literature.
Dual-slope model is characterized by a path loss factor A1

and a path loss exponent B1 from the reference distance d0
up to the critical distance dc. Beyond dc, the RSS falls off
in terms of another path loss exponent B2. Calibration of
the model parameters can be done as follows. For the RSS
measurements with dj ≤ dc, the conventional LLS fitting
(without considering the truncation effect) is used to calculate

Â1, B̂1, and σ̂2
1 , i.e., in light of (1) and (2). As the truncation

effect is more obvious for the RSS data with dj > dc, we solve

B̂2 and σ̂2
2 through maximizing the following log-likelihood

function with respect to B2 and σ2
2 ,

ll(B2, σ
2
2)=

M2∑

j=1

ln

⎧

⎪⎪⎨

⎪⎪⎩

1√
2πσ2

2

exp
[

− (rj − μ2,j)
2
/2σ2

2

]

1
2

[

1− erf

(

Pdec−μ2,j√
2σ2

2

)]

⎫

⎪⎪⎬

⎪⎪⎭

(4)
where μ2,j � Â1 + 10B̂1 log10(dc/d0) + 10B2 log10(dj/dc)
and for simplicity the data are sorted so that the first M2

elements have dj > dc. Finally, we obtain a complete set of

calibrated parameters θ̂ = [Â1, B̂1, B̂2, σ̂
2
1 , σ̂

2
2 ].

Example III: Gaussian process regression (GPR) model.
In the following, we adopt GPR to model RSS. Similar
work can be found for instance in [8]. The motivation is
that for different geographical positions but with the same
Euclidean distance to a node, the corresponding radio channel
conditions (line-of-sight or non-line-of-sight, richness of the
multi-paths, strength of the reflections, and so on) can be
different. We represent the underlying RSS as a real-valued
Gaussian process, r̃(p), nonlinearly in terms of 2-D or 3-D
geographical position. By ignoring the subscript j, we give a
function view of the underlying RSS as follows:

r̃(p) = A+ 10B log10

( ||p− pr||
d0

)

+ e(p)

where A, B follow the same meanings as given in the first
example. Similarly, the error term, e(p), due to the large-scale
shadowing effect follows a zero-mean Gaussian distribution

e(p) ∼ N (0, σ2
s).

However, in contrast to the independence assumption made
in the previous examples, the measurement errors (due to the
shadowing effect) observed at two positions, say p and p′,

relative to the same reference network node are assumed to
correlate in space according to the well-established Gudmund-
son’s model [9], namely

E [e(p)e(p′)] = σ2
s · exp

[−||p− p′||
lc

]

,

with lc being the correlation distance [6].

The above nonlinear GPR model of the underlying RSS
is completely specified by its mean function and covariance
function, namely

r̃(p) ∼ GP(m(p), k(p,p′))

where we followed the notation of a Gaussian process GP(·, ·)
defined in [6, Section 2.2] and

m(p) � E [r̃(p)] = A+ 10B log10

( ||p− pr||
d0

)

,

k(p,p′) � E [(r̃(p)−m(p))(r̃(p′)−m(p′))] = E [e(p)e(p′)] .

Assume we have a training/calibration data set

D = {(pj , r(pj))| j = 1, 2, . . . ,M}
collected (can be sparsely) at different calibration locations,
pj , in the offline phase. To be realistic, we assume that the
actually observed RSS, r(pj), is of the form

r(pj) = r̃(pj) + nj , j = 1, 2, . . . ,M.

The noise terms nj , j = 1, 2, . . . ,M are assumed to be i.i.d.
Gaussian with zero mean and variance σ2

n, accounting for the
joint influence of the interference from other devices, signal
absorption from human bodies, as well as the (unsuccessfully
removed) small-scale fading. We write the likelihood function
of the observed RSS measurements as

p(r(P);θ) ∼ N (m(P),C(P,P)) (5)

where the following notations are newly introduced:

θ = [A,B, σ2
s , σ

2
n, lc]

T ,

P � [p1,p2, . . . ,pM ],

r(P) � [r(p1), r(p2), . . . , r(pM )]T ,

m(P) � [m(p1),m(p2), . . . ,m(pM )]T ,

K(P,P) �

⎡

⎢
⎢
⎢
⎢
⎣

k(p1,p1) k(p1,p2) . . . k(p1,pM )

k(p2,p1) k(p2,p2) . . . k(p2,pM )
...

...
. . .

...

k(pM ,p1) k(pM ,p2) . . . k(pM ,pM )

⎤

⎥
⎥
⎥
⎥
⎦

,

C(P,P) � K(P,P) + σ2
n · IM .

The parameters included in θ are usually unknown and need to

be calibrated. A parameter estimate, θ̂, can be found through
maximizing the likelihood function (5) numerically using for
instance the limited-memory BFGS (LBFGS) quasi-Newton
method or the conjugate gradient (CG) method [10]. The

obtained θ̂ is treated then as the underlying parameters.

In order to give a training data dependent observed RSS
model that takes into account all error sources, we compute
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according to [6] the Gaussian posterior probability of an
observed RSS value at any position p∗ by

p(r(p∗)|D; θ̂) ∼ N
(
μ(p∗), k(p∗)

)
(6)

where

μ(p∗) = kT (p∗,P)C−1(P,P)(y(P)−m(P))+m(p∗) (7)

and

k(p∗) = σ2
n + σ2

s − kT (p∗,P)C−1(P,P)k(p∗,P). (8)

Note that in (7) and (8),

k(p∗,P) � [k(p∗,p1), k(p∗,p2), . . . , k(p∗,pM )]T .

Although the GPR model is more advanced to use, it still
ignores the spatial correlation in the measurements collected
for different reference network nodes. More advanced RSS
model that is able to take into account this aspect will be our
future work.

C. Evaluation Set of Sample Positions

Apart from the deployment information and the RSS
model, we need also an evaluation set of sample positions for
which localization accuracy will be evaluated. An evaluation
set can be selected for instance to contain uniform grids or a
plurality of trajectories that cover the area where positioning
is of interest.

III. RSS THRESHOLD OPTIMIZATION

This section aims to give a general procedure for RSS
threshold optimization, which may lead to enhanced perfor-
mance of some low-cost proximity based positioning algo-
rithms.

Before performing the threshold optimization, the prereq-
uisites, cf. Step 1 in Fig. 2, are first obtained. Concretely,

• Obtain the sensor deployment information, including
for instance the floor plan, reference network node
positions, transmit power, etc.

• Obtain an RSS model, possibly calibrated, for each
reference network node i, i = 1, 2, . . . , N , character-
ized by one of the model parameter vectors:

1) θ̂i = [Âi, B̂i, σ̂
2
i ]

T in the linear log-distance
model, cf. Example I given in Section II-B.

2) θ̂i = [Â1,i, B̂1,i, B̂2,i, σ̂
2
1,i, σ̂

2
2,i]

T in the dual-
slope piece-wise linear model, cf. Example II
given in Section II-B.

3) θ̂i = [Âi, B̂i, σ̂
2
s,i, σ̂

2
n,i, l̂c,i] in the nonlinear

GPR model, cf. Example III given in Sec-
tion II-B.

Herein, we use the subscript i in the model parameters
to indicate their attribution to node i.

• Obtain an evaluation set, X ∗, which contains
known sample positions p∗

i � [x∗
i , y

∗
i , z

∗
i ]

T , i =
1, 2, . . . , |X ∗| that might be considered to be of varied
importance quantified by the weighting factors w∗

i ,
i = 1, 2, . . . , |X ∗|.

The key parts of step 2 in Fig. 2 are as follows:

1) For every candidate RSS threshold Pth (unit in dBm)
in a finite interval [Pmin

th , Pmax
th ], sequentially do:

a) For every sample position p∗
i ∈ X ∗, evaluate

some localization accuracy metric f(Pth)
based on the proximity information and the
RSS model parameters calibrated in Step 3.

b) Taking the average by

f(Pth) =

|X∗|
∑

i=1

w∗
i · f(p∗

i , Pth) (9)

where f(Pth) is a short-hand notation

of f(RSS model, deployment, Pth), and
f(p∗

i , Pth) is a short-hand notation of
f(evaluation set,RSS model, deployment,Pth).

2) Solve P opt

th = optimize
Pth

f(Pth).

In step 3 of Fig. 2, the device(s) are configured with the
optimized reporting threshold P opt

th to generate proximity re-
ports. These proximity reports can be used then for positioning
purposes. The RSS threshold optimization is supported by an
architecture, and we characterize the architecture by describing
the logical entities performing different steps in the procedure.
Furthermore, different node candidates are discussed for the
logical entities. Figure 3 provides a signaling chart, where
most of the key steps are performed by a computation entity.
It can also be so that the offline processing is performed
in a configuration entity, and the online processing in a
separate fusion entity. Another possibility is that the calibration
efforts are performed in a dedicated calibration entity. These
logical entities can be implemented separately or jointly in
a mobile device, a reference network node, or some other
network node. The necessary communication in the two phases
between a device and logical entity may be via a link with a
reference network node, via some other communication link,
or internally in the device.

Some remarks are given below to conclude this section:

• Finite L levels are assumed in the search interval
[Pmin

th , Pmax
th ]. Pmin

th and Pmax
th can be predefined, for

instance, according to the sensor reading limits or
expert knowledge, if any. Alternatively, we could set
the lowest/highest RSS threshold candidate as the
minimum/maximum RSS value of the whole batch
of data (used in the offline phase for RSS model
calibration).

• In the sequel, we consider a representative localization
accuracy metric, namely the localization root-mean-
square-error (RMSE). This metric is often used to
evaluate the performance of a localization algorithm.
However, in this paper we are not focusing on any
specific algorithm and compute the best achievable
localization RMSE with the aid of the Cramér-Rao
bound (CRB) analysis. More precisely, we have

f(p∗
i , Pth) �

√

tr(FIM−1(p∗
i , Pth)) (10)

where the fisher information matrix (FIM) of p∗
i ,

FIM(p∗
i , Pth), is computed in a snapshot manner and

under the assumption that the sample positions are
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Fig. 3. Signaling chart illustrating the proposed RSS threshold optimization
procedure. The steps marked with dashed lines and in red color are optional.

deterministic. Extension to Barankin bound [11] or
Bayesian type CRB [12] will be considered in our
future work. But we believe that the results shouldn’t
vary much.1 We also stress that some other localiza-
tion metrics, such as percentile and localization outage
probability, could also be used.

• An optimal RSS threshold can also be determined
to optimize some localization metric of a particular
localization or tracking algorithm. A concrete example
has been given in [4], where P opt

th = −82 dBm has
been found to minimize the Monte-Carlo RMSE over
different trajectories.

• Only a single RSS threshold has been trained so far.
Extension to multiple thresholds for different reference
network nodes is straightforward but comes at an
exponentially increased computational complexity. For
instance, when we need to train an RSS threshold Pth,i

for each reference network node individually, all LN

combinations of [Pth,1, Pth,2, . . . , Pth,N ] need to be
considered.

IV. EXPERIMENTAL VALIDATION

In Section III, we have shown how to optimize a single
RSS threshold for enhanced localization performance. In what
follows, we aim to validate the idea experimentally using a
batch of real RSS measurements collected in an indoor blue-
tooth low-energy (BLE) network. The most attractive features
of the BLE network as compared to other wireless networks

1When computing the Barankin bound, the sample positions in the eval-
uation set are treated as deterministic and unknown. While for computing
Bayesian type CRB, such as the posterior-CRB, the evaluation set should
contain several trajectories that follow certain motion model.

TABLE I. 3-D POSITION OF THE REFERENCE NETWORK NODES (BLE
BEACONS) AND THE AMOUNT OF RSS MEASUREMENTS COLLECTED BY

EACH NODE DURING THE OFFLINE MEASUREMENT CAMPAIGN.

Node ID Position (x-,y-,z-) m # Measurements

# 1 (2.27, 24.26, 2.60) 638 samples

# 2 (16.47, 20.34, 2.35) 1226 samples

# 3 (14.83, 11.48, 0.71) 1217 samples

# 4 (30.89, 20.36, 2.35) 1928 samples

# 5 (29.13, 14.90, 2.54) 2197 samples

# 6 (49.00, 20.34, 2.35) 203 samples

# 7 (37.74, 4.10, 2.60) 1214 samples

# 8 (18.82, 4.00, 2.60) 642 samples

# 9 (45.51, 13.30, 2.25) 1442 samples

# 10 (29.66, 4.10, 2.60) 1437 samples

lie in the low power consumption and efficient monitoring
procedures in devices. As trade-off, more BLE beacons need to
be deployed due to the shorter communication range compared
to techniques based on higher transmission powers.

A. Sensor Deployment and Measurement Campaign

We consider a typical office environment at Ericsson,
Linköping, Sweden. In total N = 10 BLE beacons are placed
rather uniformly in the area. The floor plan as well as the
known beacon positions are shown in two-dimensional (2-D)
space in Fig. 4, wherein a local coordinate system is used. The
BLE beacons serve as transmitters and broadcast beacon in-
formation regularly. The transmit power is PT = −58 dBm. A
moderate scale measurement campaign was conducted during
normal work hours. Throughout the measurement campaign,
the mobile device (equipped with BLE chipset) receives data
packages from the BLE beacons and measures the RSS. A
total number of M = 12144 RSS measurements were collected
along 52 predefined tracks. During the measurement campaign,
the mobile device was held approximately 1.3 meter above
the ground. For clarity, we depict the 52 tracks all together in
Fig. 4 and use different colors to indicate the quality of the
observed RSS. Besides, Table I gives the 3-D positions of the
BLE beacons as well as the total number of RSS measurements
collected per beacon. The obtained RSS measurements were
then uploaded to the computation entity (in this case a laptop)
via Wi-Fi for RSS model fitting and threshold optimization.
In the above training phase, we assumed full knowledge about
the position of all BLE beacons and tracks.

B. Fitted RSS Models

In Section II-B, we enumerated three different RSS models.
In the first two linear models, we take into account the trun-
cation effect by setting Pdec = −99 dBm. Next, we perform
RSS model calibration repeatedly for each BLE beacon using
the real RSS measurements. Due to space constraint, we only
show some representative results. Specifically, we show the
calibrated linear log-distance model, dual-mode piece-wise
linear model, and nonlinear GPR model all for beacon #4
in Fig. 5 and Fig. 6, respectively. It is straightforward to see
that the piece-wise log-distance mode can better represent the
data as compared to the simplest log-distance model, but they
are only able to represent the predicted mean RSS value as a
simple function of the Euclidean distance between the mobile
device and the reference network node. In contrast, the GPR
model is able to take into account some additional information
hidden in the training data about the deployment area. As was
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Fig. 4. Illustration of the deployment area and the calibration set of sample
positions and RSS measurements (with the strength indicated by different
colors). The BLE beacons are indexed and marked by red ∗.
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Fig. 5. Scatter plot of the collected RSS measurements (marked by red circles)
versus the calibrated log-distance model (blue line) and piece-wise linear log-
distance model (black lines) for the 4th BLE beacon. The calibrated parameters

for the log-distance model are Â4 = −60.0145 dB, B̂4 = −2.1156 dB,
and σ̂4 = 7.45 dB; while the calibrated parameters for the piece-wise log-

distance model are Â1,4 = −66.81 dB, B̂1,4 = −0.87 dB, B̂2,4 = −3.50
dB, σ̂1,4 = 8.30 dB, and σ̂2,4 = 7.27 dB, and the corresponding critical
distance is set to 0.8 meter (in log-scale) for this beacon.

demonstrated in Fig. 6(a), concrete walls should have more
adverse impact on the mean RSS value than glass walls.

C. RSS Threshold Optimization

In order to perform the RSS threshold optimization, we
first generate a set X ∗ with 3038 sample positions p∗

i spread
uniformly over the area, as shown in Fig. 7. The weighting
factors are set equally as w∗

i = 1/|X ∗| for all sample positions
in X ∗. We note that this evaluation set X ∗ shouldn’t be
confused with the calibration data set used for RSS model
calibration. As the localization accuracy metric, we adopt
the best achievable RMSE as defined in (10). Herein, we
assume that the z-component of all sample positions is fixed
to 1.3 meter and known a priori. In other words, we only
concern about position estimation in x- and y-directions. As a
consequence, f(p∗

i , Pth) boils down to f([x∗
i , y

∗
i ], Pth).

We repeat the steps for RSS optimization as given in Sec-
tion III for the three different RSS models. In Fig. 8, we depict
the overall best achievable localization RMSE as a function
of the RSS threshold Pth, which ranges from Pmin

th = −99

(a)

(b)

Fig. 6. Illustration of the training data set (marked by black +) and the

calibrated GPR model with parameters Â4 = −69.85 dB, B̂4 = −1.41 dB,

σ̂s,4 = 3.75 dB, σ̂n,4 = 2.78 dB, l̂c,4 = 5.55 meter, for the 4th BLE
beacon: (a) depicts the posterior mean and (b) depicts the posterior variance
of (6).

dBm to Pmax
th = −70 dBm with an increment 1 dBm. It

is not surprising to have convex profiles of RMSEpos(Pth)
with respect to Pth in all cases. The reason is that too large
or too small threshold gives very little information about
an unknown location. In order to better explain this, let us
reconsider the example shown in Fig. 2. Therein, when P opt

th
is set to −∞ or equivalently the coverage area is infinitely
large, the receiver will receive [1, 1, 1] everywhere; Similarly,

when P opt

th is set to +∞ or equivalently the coverage area
is null, the receiver will always receive [0, 0, 0]. Despite the
use of different RSS models, the final RSS thresholds remain
similar. In addition, we illustrate in Fig. 9 the best achievable
localization RMSE at each sample position of the evaluation
set, X ∗, but only for the conventional linear log-distance RSS
model and Pth = P opt

th = −82 dBm. Therein, we can clearly
see that the localization performance is quite good in the center
of this floor, where many beacons can be received, but can
be extremely bad in perimeter areas, where few beacons are
received. This can be seen from Fig. 10, where the average
number of received BLE beacons reaches the maximum in
the center of this floor and decreases when moving to the
boundary. Appendix B gives detailed derivations for computing
this quantity based on the linear log-distance RSS model.
Similar results can be observed for the other two RSS models
and are omitted here due to space constraint. Lastly, we note
that in Fig. 9 it is obvious to see a few narrow stripe-like
areas where the best achievable RMSE is relatively big. The
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Fig. 7. Illustration of an evaluation set of uniformly distributed sample
positions (marked by blue dots), X ∗.
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Fig. 8. Overall best achievable localization RMSE versus threshold candidates
for the linear log-distance model in subfigure-I, piece-wise linear log-distance
model in subfigure-II, and Gaussian process regression model in subfigure III,
respectively. The optimal RSS threshold is marked by red circle.

reason is that in these areas the mobile device and the most
influencing BLE beacons are nearly co-linearly located, hence
the geometric dilution of precision (GDOP) or simply the
geometry for positioning is extremely poor.

D. Verification

Given the optimized RSS threshold, we next verify the
performance improvement achieved by P opt

th (in dBm) as com-
pared to a too-low threshold, say Pth = −99 dBm. Assuming
that we are now in the online positioning phase and a mobile
device moves along a line in the x-direction as shown in
Fig. 11. Instead of plotting the position estimation uncertainty
of any specific algorithm, we use the 1σ uncertainty of both x-
direction and y-direction extracted from the diagonal elements
of the CRB. The resulting 1σ uncertainty circle is centered at
the true position, because the CRB is derived for the unbiased
estimator. In Fig. 11, we plot the 1σ circle at some specific
positions on the trajectory along with the average number of
connected BLE beacons evaluated at these positions. From the
results shown in Fig. 11, we can clearly see the performance
improvement. When we use Pth = −99 dBm as the threshold
for proximity based indoor localization, almost all the BLE
beacons are within the RSS threshold but very little informa-
tion is hidden in the proximity measurements simply because

Fig. 9. Illustration of the best achievable localization RMSE evaluated at
each sample position of the evaluation set, X ∗.

Fig. 10. Illustration of the average number of communicating BLE beacons
at each sample position of the evaluation set, X ∗.

any point in the deployment area is a good candidate. When
we decrease Pth from -99 dBm to P opt

th = −82 dBm, the
uncertainty circle shrinks despite that the average number of
BLE beacons within the RSS threshold decreases as well.

E. Concluding Remarks

We have shown in the previous subsections that the pro-
posed RSS threshold optimization procedure is capable of
providing enhanced localization accuracy. But still the local-
ization uncertainty can be quite huge in the areas where the
mobile device receives very few (≤ 2) BLE beacons within
the RSS threshold. We believe that this problem can be well
solved by installing more BLE beacons in the deployment area.
We also believe that even more reasonable RSS model can
be achieved by fully exploiting the deployment information,
such as the height and orientation of the transmit antenna,
mixed LOS/NLOS propagation condition, wall effect, etc. In
our experiments, we merely took advantage of the geometry of
the reference network nodes. Apart from these, optimizing the
network nodes’ positions to give the best geometric dilution of
precision (GDOP) would help further improve the localization
accuracy, however, at additional cost. As a summary, we
strongly believe that proximity based indoor localization is
able to provide not-too-coarse position estimate for a wide
range of event-based applications.

V. CONCLUSION

In this paper, we have proposed a general RSS threshold
optimization procedure for indoor positioning using wireless
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Fig. 11. Online localization accuracy obtained for different RSS thresholds.
In the figures, blue dots constitute the trajectory of the moving receiver. At
some particular positions (painted in red), 1σ uncertainty circle is also plotted
in red. Besides, the average number of connected BLE beacons is given right

above the red dots. (a) depicts the results obtained for P
opt

th
= −82 dBm

corresponding to the conventional linear log-distance model; and (b) depicts
the results obtained for Pth = −99 dBm.

networks. The importance of this work is to provide a fun-
damental baseline for converting a continuous RSS measure-
ment to a binary proximity measurement for analyzing time
series of binary proximity reports. Given the prior knowledge
about the deployment information and the RSS model, a
reasonable RSS threshold can be found via optimizing an
adequate performance metric. As a concrete example, we have
exemplified how to optimize the RSS threshold for three salient
RSS models so that the best achievable localization RMSE
of any unbiased position estimator is minimized. Moreover,
we have conducted experimental validation of the proposed
procedure in a live BLE network deployed at an office area at
Ericsson. The results have shown largely enhanced localization
performance when using the optimized RSS threshold, which
underpins our statement that inappropriately selected RSS
threshold will result in little information in the proximity
measurements.

APPENDIX A

In the following, the Fisher information matrix (FIM) for
estimating an unknown deterministic position p = [x, y, z]T

will be computed based on the proximity information con-
verted from the RSS measurements, more precisely,

ci =

{
0, ri ≤ Pth

1, ri > Pth

,

where ci is introduced here to denote the proximity information
obtained through comparing a threshold Pth with the instanta-
neous RSS value, ri, measured at a receiver in communication

with the ith reference network node. ci being equal to ‘0
’indicates that the receiver is not connected with reference
network node i or ‘1 ’indicates a successful connection of
them. Given the whole batch of RSS measurements collected
after the offline phase, the FIM computation may be performed
either in the receiver (e.g. a mobile device) or in the transmiter
(e.g., one of the reference network nodes), but the computation
remains the same as shown below. No matter where the
computation will be performed, it is assumed that the total
number of reference network nodes as well as their positions
are known.

The FIM for estimating p is defined as FIM(p), which can
be easily proven to be equal to

FIM(p) =

N∑

i=1

FIMi(p), (11)

owing to the independence assumption on the measurements
collected from different reference network nodes. Hence, it is
much simpler to work with

FIMi(p) � E
[
∇p ln (Pr{ci;p, Pth})∇T

p
ln (Pr{ci;p, Pth})

]

where the expectation is taken with respect to a discrete-valued
probability Pr{ci;p, Pth}. Next we show how to compute
Pr{ci;p, Pth} for the three different RSS models given in
Section II-B. The nice statistical property in common is the
Gaussian distribution of a RSS measurement, which facilitates
the subsequent derivations.

Linear log-distance model: Owing to the Gaussian nature
of the RSS, namely,

ri ∼ N (μ̂i(p), σ̂
2
i ),

where

μ̂i(p) � Âi + 10B̂i log10

( ||p− pr||
d0

)

,

we have,

Pr{ci;p, Pth} =

⎧

⎨

⎩

G
(

Pth−μ̂i(p)
σ̂i

)

, ci = 0

1−G
(

Pth−μ̂i(p)
σ̂i

)

, ci = 1
, (12)

where

G

(
t− μ

σ

)

�
1

2

[

1 + erf

(
t− μ√
2σ

)]

.

It is easy to derive that

FIMi(p) �

⎡

⎣

fi,xx fi,xy fi,xz
fi,yx fi,yy fi,yz
fi,zx fi,zy fi,zz

⎤

⎦ (13)

where for any combination of m ∈ {x, y, z} and n ∈ {x, y, z},

fi,mn = E

[
∂

∂m
Pr{ci;p, Pth}

Pr{ci;p, Pth}
·

∂
∂n

Pr{ci;p, Pth}
Pr{ci;p, Pth}

]

=
∑

ci∈{0,1}

∂
∂m

Pr{ci;p, Pth} · ∂
∂n

Pr{ci;p, Pth}
Pr{ci;p, Pth}

=

(
∂G

∂m
· ∂G
∂n

)

·
(
1

G
+

1

1−G

)

. (14)
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Note that G is a short-hand notation of G
(

Pth−μ̂i(p)
σ̂i

)

in the

above expressions. It is easy to verify that

∂G

∂m
≡ ∂

∂m

{
1

2
erf

(
Pth − μ̂i(p)√

2σ̂i

)}

=
−10B̂i

ln(10)
√
2πσ̂i

exp

[

− (Pth − μ̂i(p))
2

2σ̂2
i

]
m−mr,i

||p− pr,i||2
.

Inserting the above result into (14) and performing some
algebraic manipulations yields

fi,mn = C1 ·
(m−mr,i)(n− nr,i)

||p− pr,i||4
, (15)

where C1 is a variable in terms of the calibrated RSS model
parameters and the RSS threshold, more precisely,

C1 =
200B̂2

i

πσ̂2
i ln

2(10)
·
exp

[
−(Pth−μ̂i(p))

2

σ̂2

i

]

1− erf2
(

Pth−μ̂i(p)√
2σ̂i

) .

Combining the results in (15), (13), and (11), we can then
easily obtain a final expression of FIM(p).

Piece-wise linear log-distance model: In this case, we
need to determine in the first place the underlying mode by
comparing the distance ||p − pr,i|| with the critical distance,
dc,i, defined in (3). When the mode number is one, we use

Âi,1, B̂i,1, σ̂2
i,1 for computing FIMi(p) in light of the steps

given in the previous case; Otherwise Âi,1, B̂i,2, σ̂2
i,2 will be

used for the FIM computation.

Gaussian process regression model: Adopting the Gaus-
sian posterior, cf. (6), as the observed RSS model yields

Pr{ci;p, Pth} =

⎧

⎨

⎩

G
(

Pth−μi(p)

ki(p)

)

, ci = 0

1−G
(

Pth−μi(p)

ki(p)

)

, ci = 1

where μi(p) and ki(p) are the predicted mean and variance
as given in (7) and (8), respectively. Similarly, we have

∂G

∂m
≡ ∂

∂m

⎧

⎨

⎩

1

2
erf

⎛

⎝
Pth − μi(p)
√

2 · ki(p)

⎞

⎠

⎫

⎬

⎭

= C2 ·
[

∂ui(p)
∂m

vi(p)− ∂vi(p)
∂m

ui(p)

v2i (p)

]

where

C2 =
1√
π
exp

[

− (Pth − μi(p))
2

2ki(p)

]

,

ui(p) = Pth − μi(p), vi(p) =

√

2ki(p).

Due to space limitations, the explicit expressions of the first
order derivatives as well as the final FIM(p∗) are not shown.

APPENDIX B

In the following, we show how to compute the average
number of communicating BLE beacons for the linear log-
distance RSS model, but the methodology also applies for the
other two RSS models. The computation relies on (12). Before
proceeding further, let us first define Sk as a set of all possible

combinations (c1, c2, . . . , cN ) such that any of them fulfills the

constraint
∑N

i=1 ci = k. The cardinality of Sk can be easily
computed by

|Sk| =
N !

k!(N − k)!
.

The probability of having k connected beacons at any unknown
location p is computed by

Pr{Nc = k} =
∑

∀(c1,...,cN )∈Sk

[
N∏

i=1

Pr{ci;p, Pth}
]

.

The average number of connected beacons is finally computed
to be

N̄c =
N∑

k=0

k · Pr{Nc = k}.
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