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Abstract—The commercial interest in proximity services is
increasing. Application examples include location-based informa-
tion and advertisements, logistics, social networking, file sharing,
etc. In this paper, we consider positioning of devices based
on time series proximity reports from a mobile device to a
network node. This corresponds to nonlinear measurements
with respect to the device position in relation to the network
nodes. Therefore, particle filtering is applicable for positioning.
Positioning performance is evaluated in a typical office area with
Bluetooth-low-energy beacons deployed for proximity detection
and report. Accuracy is concluded to vary spatially over the
office floor, and in relation to the beacon deployment density.

I. INTRODUCTION

Particle filtering (PF) is known as a powerful numerical
methodology for nonlinear and non-Gaussian Bayesian re-
cursive estimation problems. The particle filtering theory has
enabled many applications in various sectors over the past two
decades [1]. One salient example is target tracking using radio
signals, such as time-of-arrival (TOA), received-signal-strength
(RSS), etc. Nowadays, it draws more attention to combine
particle filtering/smoothing with cutting-edge techniques, such
as cloud, big-data, beaconing, and sensor fusion techniques to
meet the challenges in dealing with (1) sensor data complexity,
(2) model complexity, and (3) large scale systems that are
commonly encountered in practical problems—the main aim of
the ongoing (2013-2017) European union training programme
on Tracking in Complex Sensor Systems (TRAX) project [2].

With the deployment of small cells, Wi-Fi access points
and Bluetooth-low-energy beacons, it is possible to utilize
this infrastructure for positioning and thereby indoor location-
based services. Motivated by this, we consider a novel RSS-
proximity report based particle filtering for indoor positioning,
where model complexity appears as a hard-thresholding when
converting an RSS measurement into a proximity measure-
ment. More precisely,

Proximity �

{
0, RSS ≤ Pth

1, RSS > Pth

. (1)

A proximity measurement obtained in the above way reveals
whether or not a target of interest is in the coverage area
(depending on the threshold) of a reference network node, for
instance a radio base station, a bluetooth-low-energy (BLE)
beacon or a Wi-Fi access point. In a companion paper, we
have also proposed a general framework for finding a reason-
able RSS threshold, Pth [3]. Harness of proximity measure-
ments may result in new fashioned positioning system with

lower communication bandwidth, smaller database, as well as
cheaper deployment and maintenance cost. Besides, there is
a big trend nowadays in proximity based services, and such
kind of quantized data can be used in many applications. To
the best of our knowledge, RSS-proximity based PF for indoor
positioning has never been considered before and serves as a
working example of the theoretical work [4] on filtering and
estimation using quantized sensor information.

Specifically, we consider centralized tracking of a mobile
device using proximity measurements. The mobile device
collects RSS measurements from the reference network nodes
that know their own geographical positions and broadcast data
package periodically to the air. In the conventional centralized
framework, the mobile device will upload the RSS measure-
ments to the computation entity either directly or via the
reference nodes for position estimation. The computation entity
is assumed to be equipped with sufficient computational power.
In order to reduce the communication bandwidth and the
storage usage at the computation entity, we propose to upload
the proximity reports (converted from the RSS measurements
according to (1)) to the computation entity.

Our contributions of this paper are as follows. First, we
introduce an RSS-proximity model where the RSS threshold
is selected in a more meaningful way as introduced in [3] and
further develop a novel RSS-proximity report based particle
filtering algorithm. Building map constraint is also taken into
account to refine the position estimates. Then, evaluations are
taken out with both simulated measurements as well as the real
measurements collected within an office area. The resulting
positioning system requires obviously less communication
bandwidth and storage due to the binary nature of a proximity
measurement.

The remainder of this paper is organized as follows: Sec-
tion II introduces a complex state-space model and describes
the problem at hand. Section III introduces a novel RSS-
proximity based particle filtering algorithm. Section IV vali-
dates the new proposed RSS-proximity based particle filtering
algorithm in various simulations. Lastly, Section V concludes
the paper.

Throughout this paper, matrices are presented with upper-
case letters and vectors with boldface lowercase letters. The
operator [·]T stands for vector/matrix transpose and [·]−1

stands
for the inverse of a non-singular square matrix. The operator
tr(·) denotes the trace of a square matrix. ‖ · ‖ stands for the
Euclidean norm of a vector and | · | denotes the cardinality of
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a set. The operator E(·) stands for the statistical expectation.

II. MODELS

We consider an indoor sensor network which comprises
NB reference network nodes with a priori known positions,
pj , j = 1, 2, . . . , NB and one computation entity. The state of
a mobile device, xk, is to be tracked at each time instance k.
To that end, the mobile device collects received-signal-strength
measurements, converts them to proximity measurements, and
further upload them to the computation entity for position
filtering.

A. Propagation Models

This subsection provides a brief description of the linear
log-distance propagation model. This model represents an RSS
measurement in terms of the distance (one dimensional in
nature) between a reference network node (say the jth) and
the mobile device, namely,

rj = Aj + 10Bj log10

(
dj
d0

)

︸ ︷︷ ︸

μj

+ej, (2)

where rj is the RSS measurement, d0 is the reference
distance, Aj is the path loss measured at d0, Bj is the path
loss exponent, dj is a short-hand notation of the Euclidean
distance between a sample position pr and the jth reference
network node’s position pj , i.e., dj � ||pj − pr||. Often, the
measurement noise ej is assumed to be time invariant and
univariate Gaussian distributed with zero mean and variance
σ2
j , i.e., rj ∼ N (μj , σ

2
j ). The propagation model parameters,

Aj , Bj , and σ2
j , can be calibrated for instance in an offline

phase, given a batch of RSS measurements collected from all
reference nodes [3].

B. State-Space Model

In what follows, we merely consider state-space models
that are linear in the state dynamics and non-linear in the
measurements. For instance, we could use the following con-
ventional motion model to relate position and velocity indoors
[5],

xk+1 = Fxk +Bwwk,

where xk = [pxk
, pyk

, vxk
, vyk

]
T
is the underlying state vector

at time instance k with pxk
and pyk

denoting the 2-D position
and with vxk

and vyk
denoting the velocity in the correspond-

ing dimension. wk is the acceleration noise assumed to be
multivariate Gaussian distributed with zero mean vector and
covariance matrix Σw = σ2

wI2. Two different measurement
models, namely the conventional RSS model and the novel
proximity model, are considered in the sequel. We start with
the conventional RSS model, where the relationship between
an RSS measurement and the state vector, say at time instance
k, is given as follows:

rk = h(xk) + ek,

where rk = [rk,1, . . . , rk,NB
]T and h(xk) ∈ R

dim(xk) �→dim(rk).
Considering the propagation model given in Section II-A and

the assumption that RSS measurements collected for different
reference nodes are mutually independent yields

rk =

⎡

⎢
⎢
⎢
⎢
⎣

rk,1
rk,2
...

rk,NB

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

μ1,k + e1
μ2,k + e2

...

μNB ,k + eNB

⎤

⎥
⎥
⎥
⎥
⎦

where μj,k � Aj+10Bj log10(dk,j), and dk,j is the Euclidean
distance between a sample position, [pxk

, pyk
]T , and the jth

reference node’s position, pj , ej is the measurement error
defined in (2), which is Gaussian distributed with zero mean
and variance σ2

j .

For proximity based measurements, the proximity reports
vector can be obtained by comparing the RSS measurements
with a predefined threshold, as was shown in (1). A proximity
measurement model is thus expressed as

yk = f(rk) =

⎡

⎢
⎢
⎢
⎢
⎣

f(rk,1)

f(rk,2)
...

f(rk,NB
)

⎤

⎥
⎥
⎥
⎥
⎦

(3)

where yk = [yk,1, . . . , yk,NB
]T is the proximity report vector

with ‘1 ’and ‘0 ’indicating in and out of proximity, respectively.
f(x) is a non-linear function which performs hard-thresholding
of an input, x, as follows:

f(x) =

{
0, x ≤ Pth

1, x > Pth

.

It is noted that in the RSS measurement model, the noise factor
is additive and thus linear to the measurement vector. However,
in the proximity model, nonlinear noise factor is introduced by
the nonlinearity of function f(x). Solving filtering problems
with this nonlinearity will be the main focus of the remainder
of this paper.

III. PARTICLE FILTERING ALGORITHM

Considering systems that are described by the state-space
model in II-B, particle filtering algorithms based on both RSS
and proximity measurements are given in this section. Particle
filters are methods to perform Monte Carlo approximations to
the optimal Bayesian filtering equations. The main problem
with Bayesian filtering is to compute the posterior probability
density p(xk|z0:k), where z0:k are all measurements collected
since k = 0. Then, the minimum mean square (MMS) estimate
is obtained by

E[xk|z0:k] =
∫

xkp(xk|z0:k) dxk (4)

However, such an integral can be evaluated in closed form only
in a few special cases (e.g., if the noise distribution of ek and
wk are independent and Gaussian distributed, the measurement
are linear in the state, i.e., zk = Cxk, the optimal solution
is given by the Kalman filter [6]). For more general cases,
numerical methods have to be used. Monte Carlo methods
provide numerical methods for calculating integrals of the form
(4) by drawing samples from the distribution and estimating
the quantities by sample averages. For the state-space model
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as given in Section II-B, we use the sequential importance
resampling (SIR) method to approximate the posterior distribu-
tion. Further details of Monte Carlo approximation, Bayesian
filtering and sequential importance sampling can be found in
[6]. In the following subsections, we first give the choices
of different importance distribution and then particle filter
algorithms based on both RSS measurements and proximity
reports.

A. Discussions on the Choice of Importance Distribution [7]

In practical Bayesian models, it is not possible to obtain
samples directly from the posterior distribution due to its com-
plicated functional form. In importance sampling (IS), we use
an approximate distribution called the importance distribution,
from which we can easily draw samples. Note that in following
algorithms, the importance distribution from which the particle

samples are selected is modeled as p(xk | x(i)
k−1). The choice

of importance distribution may influence the depletion problem
significantly. Here some comments on available options of
the importance distribution are provided. The most general
importance distribution has the form π(x0:k|z0:k), where z0:k
denotes the measurements in general from time 0 to k and
x0:k denotes the state vector from time 0 to k. This means
that the whole trajectory should be sampled at each iteration,
which is not desirable in real-time applications. The general
form can be factorized as

π(x0:k|z0:k) = π(xk|x0:k−1, z0:k)π(x0:k−1|z0:k)

The most common approximation is to reuse the path x0:k−1

and only sample the new state xk. Due to the Markov property
assumed on the model, we have

π(xk|x0:k−1, z0:k) = π(xk|xk−1, zk)

The optimal distribution that includes all information from the
previous state and the current observation can be derived as

π(x
(i)
k |x(i)

k−1, zk)=p(x
(i)
k |x(i)

k−1, zk)=
p(zk|x(i)

k )p(x
(i)
k | x(i)

k−1)

p(zk|x(i)
k−1)

The weights are derived to be

w
(i)
k ∝ w

(i)
k−1

p(zk|x(i)
k )p(x

(i)
k |x(i)

k−1)

π(x
(i)
k |x(i)

k−1, zk)
∝ w

(i)
k−1p(zk|x

(i)
k−1).

However, it is generally hard to sample from this distribution
and also the weight update, since it requires integrating over
the whole state space

p(zk|x(i)
k−1) =

∫

p(zk|x(i)
k )p(x

(i)
k |x(i)

k−1)dx
(i)
k . (5)

As an alternate, the likelihood function p(zk|x(i)
k ) is often used

as the importance distribution. However, in our work due to
the form of the likelihood function as shown in (7), drawing
samples from it is quite challenging. Hence, in this paper, the

conditional prior of the state vector p(x
(i)
k |x(i)

k−1) is used as
the importance distribution for simplicity but at the cost of
losing useful information in zk. Efficient sampling from more
advanced importance distributions will be our future work.

B. Particle Filtering Based on RSS measurements

According to the state-space model given in Section II-B,
a particle filter algorithm based on RSS measurements is given
below:

1) Initialization: Generate samples x
(i)
0 ∼ p(x0), i =

1, ..., N . Here, p(x0) denotes the prior probability of
the initial state. Each sample of the state vector is

referred to as a particle. Set w
(i)
0 = 1/N , for all

i = 1, ..., N .
2) Importance Sampling: For each k = 1, ..., T , do the

following.

a) Draw samples x
(i)
k , i = 1, ..., N from the

importance distribution p(xk|x(i)
k−1).

b) Calculate new weights according to

w
(i)
k ∝ w

(i)
k−1p(rk|x

(i)
k )

where rk is a vector of RSS measurements

and p(rk|x(i)
k ) is the likelihood function of

rk given x
(i)
k , which is given by:

p(rk|x(i)
k ) =

NB∏

j=1

p(rk,j |x(i)
k ) (6)

c) Normalize the weights to sum to unity, i.e.,

w
(i)
k :=

w
(i)
k

∑N

i=1 w
(i)
k

.

d) The approximation to the posterior expecta-
tion of xk is then given as

x̂k ≈
N∑

i=1

w
(i)
k x

(i)
k

3) Resampling: In resampling if the effective number of
particles,

Neff ≈
1

∑N

i=1(w
(i)
k )2

,

is too low, perform resampling as follows:

a) Interpret each weight w
(i)
k as the probability

of obtaining the sample index i in the set

x
(i)
k : i = 1, ..., N .

b) Draw N samples from that discrete distribu-
tion and replace the old sample set with this
new one.

c) Set all weights to the constant value w
(i)
k =

1/N .

The purpose of resampling is to prevent high concentration of
probability mass at a few particles. Without this step, some

w
(i)
k will converge to 1 and the filter would brake down to a
pure simulation.

Remark: In (6), we assume that the RSS measurements
collected for different reference nodes are independent. More-
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over,

p(rk,j |x(i)
k ) = p(Aj + 10Bj log10(d

(i)
k,j)

︸ ︷︷ ︸

μ
(i)
j,k

+ej|x(i)
k )

=
1√
2πσj

exp

[

−
(rk,j − μ

(i)
j,k)

2

2σ2
j

]

where d
(i)
k,j is the Euclidean distance between the ith sample

position, x
(i)
k , and the jth reference node’s position.

C. Particle Filtering Based on Proximity Reports

For proximity measurements, we follow the same particle
filtering procedure as described above. However, the complex-

ity of calculating marginal probability p(yk|x(i)
k ) is increased

by introducing a nonlinear noise factor. It further impacts
the calculation of the weights. Accordingly, the method of
calculating weights in step 2.b is given in the following
equation:

w
(i)
k ∝ w

(i)
k−1p(yk|x(i)

k )

where yk is a vector of proximity measurements, cf.(3), and

p(yk|x(i)
k ) is the probability distribution of yk given x

(i)
k ,

which is given by:

p(yk|x(i)
k ) =

NB∏

j=1

p(yk,j |x(i)
k )

=

NB∏

j=1

∑

l∈{0,1}

δ(yk,j − l)p(yk,j = l|x(i)
k ). (7)

It is easy to prove further that

p(yk,j = 0|x(i)
k ) = Φ

(

Pth − μ
(i)
k,j

σj

)

,

p(yk,j = 1|x(i)
k ) = 1− p(yk,j = 0|x(i)

k ),

where

Φ

(
t− μ

σ

)

=
1√
2πσ

∫ t

−∞

exp

[

− (t− μ)2

2σ2

]

.

IV. RESULTS

In this section, descriptions of the evaluation setup as well
as positioning performance of the proposed filtering algorithm
will be provided.

A. Setup

We consider a typical office environment at Ericsson,
Linköping, Sweden. In total NB = 10 BLE beacons are placed
rather uniformly in the area. The floor plan as well as the
known beacon positions are shown in two-dimensional (2-D)
space in Fig. 1. Herein, a local coordinate system is used. The
BLE beacons serve as transmitters and broadcast beacon in-
formation regularly. The transmit power is PT = −58 dBm. A
moderate scale measurement campaign was conducted during
normal work hours. Throughout the measurement campaign,
the mobile device (equipped with BLE chipset) receives data
packages from the BLE beacons and measures the RSS. In
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Fig. 2. Scatter plot of the collected RSS measurements (marked by red circles)
versus the calibrated log-distance model (black line) for the 4th BLE beacon.

The calibrated parameters for the log-distance model are Â4 = −60.0145

dB, B̂4 = −2.1156 dB, and σ̂4 = 7.45 dB
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Fig. 3. Example of 5 pre-generated trajectories.

order to train a set of propagation parameters, a total number
of M = 12144 RSS measurements were collected along 52
predefined tracks. After the training phase, an RSS propagation
model between the transmitter and receiver is obtained as
shown in Fig. 2. Then, propagation parameters are used to
calculate the optimal RSS threshold. A brief description of
the procedure to select a threshold is as follows: given a set
of candidate RSS thresholds, evaluate the average positioning
accuracy metric at each candidate threshold. Obtain the opti-
mal threshold as the one optimizing an adequate positioning
accuracy metric. One example of the impacts of selecting
different thresholds on positioning accuracy will be given in
later sections. For further details about the setup, training phase
experiments, and selection of the threshold, consult to [3].

After the propagation parameters as well as the threshold
are obtained, the evaluation of the proposed particle filter
algorithms are performed. Two cases are evaluated in this
section. In the first case, the measurements are simulated
based on the propagation model given in II along the selected
trajectories. The trajectories are either selected from one of the
52 tracks which are pre-defined to collect RSS measurements
or generated according to the map constraints of the office area.
Some examples of the generated trajectories are illustrated in
Fig. 3. In order to have enough time for the particle filter to
converge, usually the start and end points are selected such that
each trajectory has at least 300 time stamps. In the second case,
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Fig. 1. Illustration of sensor deployment and the calibration set of sample positions and RSS measurements(with the strength in dBm indicated by different
colors). The BLE beacons are indexed and marked by red ∗.

x-position, in meter

0 10 20 30 40 50 60

y
-p

o
s
it
io

n
, 

in
 m

e
te

r

0

5

10

15

20

25

30
True Trajectory

Est-position based on RSS

Est-position based on Proximity reports

Fig. 4. Illustration of estimated positions and true trajectory with σw = 0.5.
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Fig. 5. Illustration of estimated positions and true trajectory with σw = 1.

in order to show the performance of the proposed algorithm
under real circumstances, we also provide results with real
RSS measurements which are collected along the 52 prede-
fined tracks. The RSS values are then converted to proximity
measurements yk by comparing RSS with the threshold. Then,
the Constant Velocity (CV) motion model listed in Table I,
is used to model the trajectories, since it matches well with
human walking in indoor environment. Performance of particle
filtering algorithms with various parameters listed in Table-I
will be compared in Section IV-B.

B. Performance Evaluation

In this section, the positioning performance of the proposed
algorithm is evaluated. In the following parts, the positioning
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Fig. 6. Illustration of estimated positions and true trajectory with σw = 2.5.

TABLE I. EVALUATION PARAMETERS.

Parameter Value Description

F







1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1






CV motion model parameter

Bw













Ts

2
0

0
Ts

2
Ts 0
0 Ts













CV motion model parameter

Ts 0.1 sec Sampling interval

σw 1 or specified Variance of the acceleration noise

Pth −82 dBm Predefined RSS threshold

N 5000 or specified Number of particles

NB 10 Number of deployed reference nodes

μ0 x
∗

0 Mean of x0

Σ0







20 0 0 0
0 20 0 0
0 0 2 0
0 0 0 2






Covariance matrix of x0

M 20 Number of Monte Carlo runs

Nh

2

3
N Threshold for resampling

performance with simulated measurements is given first. Then,
the positioning performance for the case with real measure-
ments collected from the office area is provided.

1) Performance evaluation with simulated measurements:
In order to provide an overall performance of the filtering
algorithm, an illustration of the estimated positions as well
as the true trajectory are shown in Figure 4 to Figure 6 with
different values of σw. This trajectory is selected from one
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of the 52 predefined tracks. It starts from the left side of the
map (i.e. coffee room) to the right side (i.e. corridor next to
the washroom) and consists of a number of 90 degrees turns.
Particle filters are ran for several times (e.g. 10 times) and
the position estimates averaged over all these Monte Carlo
runs are plotted on the figures. It can be seen that algorithm
based on proximity reports exhibits similar performance as
compared to algorithm based on RSS measurements. The first
a few estimated positions are a bit out of the track. This is
probably due to the fact that in this area, there are fewer
number of beacons which are within the communication range.
Also, at the end of the trajectory, the positioning performance
is degrading as it goes out of the coverage of all the beacons. In
order to compare the statistical performance of the proposed
filtering algorithm, the particle filter is applied for different
trajectories and Monte Carlo evaluations are performed. Figure
3 shows 5 trajectories generated with the map constraints. All
these 5 trajectories start at the same position and end at 5
different positions. Then, particle filtering is applied to each
of these trajectories for M times. The estimation error at each
position is calculated as

Ek =
√

(p̂xk
− p∗xk

)2 + (p̂yk
− p∗yk

)2

where p̂xk
, p̂yk

denote the estimated position and p∗xk
, p∗yk

denote the ground truth. The CDF of the estimation errors
at each position is illustrated in Figure 7. Different error
distribution has been observed for various σw values. Similar
performance is achieved with σw = 1 and σw = 2.5, both of
which out perform σw = 0.5. The result obtained here is not
surprising , since larger σw is preferred to use when maneuvers
dominate. However, larger σw will lead to larger gate, which
is not desirable when dealing with multiple-target tracking.
Hence, σw = 1 will be used in the following evaluations.

To compare the overall positioning accuracy with various
parameters, the average RMSE is introduced as

RMSE =

√
√
√
√ 1

Ntr

Ntr∑

tr=1

(
1

M

M∑

m=1

Ttr∑

k=1

1

Ttr

E2
k,m,tr)

where Ttr is the length of each trajectory and Ntr is the
number of trajectories. The average RMSE versus the number
of particles is shown in Figure 8. Proximity based particle
filtering algorithm provides better accuracy when the number
of particles is small (e.g. below 1000). Overall, approximately
0.25 m positioning accuracy difference can be seen between
RSS and proximity based filtering for large number of par-
ticles. It can be concluded that proximity based algorithm is
preferred for low computation complexity, and both RSS and
proximity based algorithm can provide satisfactory accuracy
when computation complexity is not essential. As discussed
in [3], the selection of RSS threshold is critical in determining
positioning accuracy. The comparison between various RSS
thresholds is shown in Figure 9. Among all the tested Pth

from −91 dBm to −70 dBm, the lowest RMSE is achieved
at Pth = −82 dBm, which is consistent with the result in
[3], although different criteria have been selected. This is
reasonable since with a high threshold (e.g. −70 dBm), the
receiver may not within any beacon’s coverage, while a low
threshold may lead to the case that receiver is within all
beacon’s coverage. In both cases, little information can be
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Fig. 7. Particle filter based on RSS measurements and proximity reports:
CDF of Ek with different values of σw .
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Fig. 8. RMSE versus number of particles

obtained, and the positioning accuracy may degrade due to
the loss of information.

2) Performance evaluation with real measurements: In
the above theoretical demonstration, it is assumed that RSS
measurements from all beacons in the deployment area can
be obtained. However, in practical environments, this is not
realistic since the device may only measure RSS from 1 or 2
beacons at one position due to different scanning time of each
beacon. In the following part, in order to show the performance
of the proposed algorithm in practical circumstances, evalua-
tions based on real RSS measurements taken out in the office
area are provided. Figure 10 shows an overall performance
with real RSS measurements which are collected within the
office area. Similar performance is still achieved for proximity
based positioning compared with RSS based positioning. The
median estimation error is approximately 4 meters as shown in
Figure 11. The filtering algorithm works well in distinguishing
if the device is in the upper or lower corridor area. It is noted
from the figures that in real circumstances, due to the complex
indoor propagation conditions, the estimation of positions may
be difficult. E.g. near the lower corridor on the figure, the user
may also hear strong signals from beacon 8 and 10, so that
the user may have been “fooled” that it is close to beacon 8
and 10. This may explain why the estimated positions for those
points are very close to beacon 8 and 10. Considering all those
factors which may impact the RSS propagation model, such as
concrete walls penetration, reflections, multi-paths, shadowing
effects, etc, the simple propagation model used here may not
be sufficient to achieve similar performance as the case with
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simulated measurements. More advanced modeling may be
studied in the future work. Moreover, due to the fact that
the device may only receive RSS measurements from 1 or
2 beacons at a certain location, with only RSS measurements
it is not sufficient for high accuracy positioning. However, the
performance with the proposed algorithm is still acceptable
for some applications which do not require high positioning
accuracy.

V. CONCLUSIONS

In this paper, we have proposed a particle filtering al-
gorithm which is applicable for indoor positioning based
on time series proximity reports from a mobile device to
the reference network node. Positioning performance of the
proposed algorithm is comparable with that of the conventional
one using RSS measurements. We have further demonstrated
that the selection of a proper motion model, the particle
numbers, the RSS threshold which determine proximity and
the spacial distribution of beacons are all essential in determin-
ing positioning accuracy. Such a proximity based positioning
algorithm is beneficial in different aspects, among which the
signaling overhead can be significantly reduced via sending
binary proximity reports (i.e. 1 bit) in stead of e.g., 8 bits
(signed) quantized RSSI values.
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