
GPU-Accelerated Progressive Gaussian Filtering
with Applications to Extended Object Tracking

Jannik Steinbring and Uwe D. Hanebeck

Intelligent Sensor-Actuator-Systems Laboratory (ISAS)

Institute for Anthropomatics and Robotics

Karlsruhe Institute of Technology (KIT), Germany

jannik.steinbring@kit.edu, uwe.hanebeck@ieee.org

Abstract—Since the last years, Graphics Processing Units
(GPUs) have massive parallel execution capabilities even for
non-graphic related applications. The field of nonlinear state
estimation is no exception here. Particle Filters have already
been successfully ported to GPUs. In this paper, we propose a
GPU-accelerated variant of the Progressive Gaussian Filter (PGF).
This allows us to combine the advantages of the particle flow
with the ability to process thousands of measurements at once in
order to improve state estimation quality. To get a meaningful
comparison between its CPU and GPU variants, we additionally
propose a likelihood for tracking a sphere and its extent in 3D
based on noisy point measurements. The likelihood considers the
physical relationship between sensor, measurement, and sphere
to best exploit the information of the received measurements. We
evaluate the GPU implementation of the PGF using the proposed
likelihood in combination with tens of thousands of measurements.
Although the CPU implementation fully exploits parallelization
techniques such as SSE and OpenMP, the GPU-accelerated PGF
reaches speedups over 20 and real-time tracking can nearly be
achieved.

Keywords—PGF, GPU, OpenCL, Extended Object Tracking.

I. INTRODUCTION

In recent years increased sensor resolutions have made
it possible to observe more and more measurements from a
scenario at a given time, such as in [1]. Also several (maybe
complementary) sensors can observe the same scene, leading
to an increased number of measurements that are available for
processing (see Fig. 1). Especially the field of extended object
tracking benefits from this fact. Objects are now modeled as a
(simplified) shape rather than a single point [2]–[4]. Hence, the
more measurements are available from the object the better can
its pose (and also its shape) be estimated. Usually, this is done
in a probabilistic fashion using (nonlinear) state estimation
techniques. Here, the object pose, its shape parameters, and
maybe other information such as velocities are collected in
the system state, whereas the system model is based on the
object’s kinematic behavior and the measurement model on
how measurements are related to the object [5].

In case of linear models corrupted by additive Gaussian
noise, the Kalman Filter (KF) is the optimal state estimator
in the sense of a minimum mean squared error [6]. More-
over, under the common assumption of mutually independent
measurement noise it is valid to process measurements from
one time step sequentially by executing several measurement
updates in a row. This, of course, without any prediction in
between, as the measurements stem from the same time step.

−4

−2

0

2

4

−2

0

2

0

1

2

3

4

x in my in m

z
in

m

Figure 1: Tracking of a sphere in 3D (blue) using five depth
cameras (orange), and part of the sphere’s trace (red).

Doing so is highly recommended as the computational effort
increases cubically for the KF when processing a rising number
of measurements at once. Due to the optimality of the KF, the
final state estimate is equivalent to the one that would have been
obtained by processing all measurements in a single update.
However, in most practical scenarios measurement models are
nonlinear.

Unfortunately, when applying linear estimators such as the
Extended Kalman Filter (EKF) [6], the Unscented Kalman
Filter (UKF) [7], or the Smart Sampling Kalman Filter
(S2KF) [8] to such a nonlinear estimation problem, processing
measurements sequentially is inadvisable. More precisely, each
single measurement update results only in an approximation
of the posterior state estimate. Then, when performing many
measurement updates sequentially, these errors accumulate and
can finally cause a state estimate that is (much) different from
the one obtained by processing all measurements in a single
update. An additional problem is that, after processing several
hundreds of measurements sequentially, the entries of the state
covariance will become very small. Consequently, this effect
will practically ignore further measurements as the estimator
is already very confident about its current state estimate. This
fact is especially important when the processed measurements
do not represent the current system state correctly, whereas
the entire set of available measurements does. As a thought

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 1038

experiment, consider a set of measurements from a target’s
surface. When processing these measurements sequentially and
the first measurements stem only from one half of the target, the
estimator would ignore the measurements from the other half,
and hence, interprets this as the target being only half the size
of the true one. That is, the order of processing measurements
matters1. A random rearrangement of the measurements could
mitigate this but would still suffer from the problem of ignoring
measurements.

A solution to this might be to increase the state covariance
after processing a batch of measurements to allow changes
when processing further measurements. However, this requires
unintuitive and error-prone parameter tuning and does not
solve the problem of error accumulation. Another solution
would be to reduce the number of measurements by rejecting
measurements randomly, but this ignores information about the
system state and will not scale to the future when assuming a
rise in available measurements.

Hence, in the nonlinear case, it is to be preferred to process
all measurements from one time step at once. However, as
mentioned above, linear filters do not scale well with an
increasing number of measurements. In order to overcome
this issue, we propose the use of state estimators that directly
work with a likelihood function instead. The advantage of using
a likelihood is that the complexity of its evaluation increases
only linearly with a rising number of measurements2. Moreover,
estimators relying on likelihoods have the additional benefit of
an, in general, superior state estimate compared to linear filters
due to the avoidance of linearizing the measurement model in
some way.

Popular nonlinear estimators are, for example, Particle Fil-
ters (PFs) and their various derivatives [9]–[11]. The downside
of Particle Filters is the problem of sample degeneration: too
many particles can get lost in case of an unfavorable situation
in which the support of the likelihood and the prior state density
do not overlap sufficiently. The result is a diminished estimation
performance or even filter divergence. As a consequence, a
large number of particles may be required to get satisfactory
results, but this in turn leads to a higher computational effort.
Additionally, the creation of random numbers for prediction
and resampling as well as the resampling itself impose further
overhead.

A solution to these problems was proposed with the
Progressive Gaussian Filter (PGF) [12], [13] which makes use
of the so-called particle flow approach. The idea is here to move
the particles during a measurement update to the important
regions of the state space to circumvent the problem of sample
degeneration and simultaneously reduce the required number
of samples drastically. Moreover, the PGF varies the number
of likelihood evaluations from update to update depending on
how much information the new measurements possess. This is
another improvement compared to Particle Filters, where the
number of likelihood evaluations is constant over time.

Although the PGF improves the measurement update
runtime with its particle flow, currently available CPUs are still

1For example, when using a KF in the nonlinear case the posterior
state covariance also depends upon the measurement itself, not only on its
corresponding noise covariance.

2Again, under the assumption of independent measurement noise.

a limiting factor when it comes to time-critical applications
such as real-time object tracking. To accelerate the PGF when
processing many measurements, it stands to reason to exploit
the computational power of a Graphics Processing Unit (GPU).
The large number of measurements makes it possible to fully
utilize the GPU, and hence, to achieve good performance
improvements. As the evaluation will show, this allows real-
time extended object tracking with thousands of measurements.
Moreover, by transferring the state estimation to the GPU, the
CPU load will be reduced and is available for other tasks, e.g.,
measurement pre-processing. The PGF runtime improvements
are also not restricted to tracking applications. Every task
that involves nonlinear state estimation will benefit from the
speedup.

Nonetheless, also classical Particle Filters can profit from
the capabilities of GPUs. Here, resampling and random number
generation are the most challenging parts of porting a PF to
the GPU and are also the runtime bottleneck [14]. Additionally,
due to the lack of a proper random number generator, in
[14] the required random numbers are computed on the CPU.
Unfortunately, this caused a large amount of data that had to
be transferred to the GPU on every measurement update.

Due to this fact, the authors of [15] implemented a random
number generator for the GPU on their own to be able to
execute the PF completely on a GPU, and used it for a single
target video tracking application. Their GPU version is about
ten times faster than their OpenMP version on a multi-core
CPU. Moreover, today random number generators are available
for the GPU, e.g., NVIDIA’s cuRAND library [16].

A real-time human motion tracking based on depth cameras
for data acquisition and PFs for estimation was presented in [1].
Here, the challenge was to estimate a 22D state vector, which is
a considerable problem for the PF. To handle this, the authors
split the state space into five subspaces and used a PF on each
subspace. A comparison between CPU and GPU also showed
a speedup of about ten, from 0.5 s processing time per frame
down to 0.05 s. Despite these runtime improvements, PFs still
suffer from the problem of a constantly large set of particles,
which imposes an unavoidable computational burden.

The remainder of this paper is structured as follows. In
the next Section, we give a short introduction to the PGF and
describe its general work flow. Then, in Sec. III, we describe
how to port the PGF to a GPU and what should be taken into
account to make the implementation as fast as possible. In
Sec. IV, we propose a model to track a sphere and its shape in
3D based on noisy point measurements. This scenario is then
used in Sec. V to evaluate the GPU-accelerated PGF against
its CPU implementation. Finally, the conclusions are given in
Sec. VI.

II. THE PROGRESSIVE GAUSSIAN FILTER

In this Section, we can only give a brief introduction to the
PGF and its concepts that constitute the particle flow approach.
For a more detailed overview of the PGF and its workflow, it
is strongly recommended to refer to [13].

The PGF aims to recursively estimate the hidden state xk

of a discrete-time stochastic nonlinear dynamic system3. In

3Here, k denotes the k-th discrete time step and vectors are underlined.

1039

each time step, we receive a set of Nk noisy measurements

Yk = {y(1)
k

, . . . , y(Nk)
k

} .

Given a prior (i.e., predicted) state estimate

fp
k (xk) := f(xk | Yk−1, . . . ,Y1) ,

our goal is to incorporate the measurements Yk into the prior
to obtain the posterior (i.e., filtered) state estimate

fe
k(xk) := f(xk | Yk, . . . ,Y1)

by using Bayes’ rule

fe
k(xk) ∝ f(Yk |xk) · fp

k (xk) . (1)

Here, f(Yk |xk) denotes the likelihood function. Unfortunately,
solving (1) in closed-form is intractable for arbitrary state
densities and likelihood functions. This is the reason why the
PGF approximates the predicted as well as the filtered state
density as a Gaussian, i.e.,

fp
k (xk) ≈ N (xk; x̂

p
k,C

p
k) (2)

and
fe
k(xk) ≈ N (xk; x̂

e
k,C

e
k) , (3)

with means x̂p
k and x̂e

k, and covariance matrices C
p
k and

Ce
k, respectively. Of course, this implies that the PGF, in

contrast to Particle Filters, is only capable of maintaining a
unimodal state distribution. However, this is also true for the
popular (nonlinear) Kalman Filters, and often a unimodal state
distribution is sufficient. Also, when linear system models are
involved, the PGF allows for a closed-form prediction whereas
PFs have to draw random noise samples and propagate each
particle individually through the linear model.

Now, how can we compute the posterior Gaussian approx-
imation (3) given the prior Gaussian (2) and the likelihood
f(Yk |xk)? As closed-form solutions are still not possible
even when the prior is Gaussian, a sample-based solution is
required. The naı̈ve approach of simply sampling the prior
Gaussian, reweighting the samples using the likelihood, and
finally approximating the posterior Gaussian using moment
matching is not possible as this can also lead to sample
degeneration.

The PGF tackles this major problem using the homotopy
continuation [17]. Here, we reformulate the Bayes update (1)
by introducing the progression parameter γ ∈ [0, 1] according
to

fe
k(xk, γ) = c(γ) · f(Yk |xk)

γ · fp
k (xk) ,

where c(γ) is only a normalization constant. For γ = 0, we
have fe

k(xk, 0) = fp
k (xk) which means no information (from

the measurements Yk) is processed, and hence, the posterior
equals the prior. In contrast, for γ = 1 we have fe

k(xk, 1) =
fe
k(xk), i.e., the unmodified Bayes update, and thus, the entire

information from the measurements is fused into the prior state
estimate. Furthermore, the above equation can be expressed in
terms of a recursive formula

fe
k(xk, γ +∆) =

c(γ +∆)

c(γ)
· f(Yk |xk)

∆ · fe
k(xk, γ) , (4)

starting with γ = 0, given step sizes ∆ > 0, and γ +∆ ≤ 1.

Using this, the Bayes update (1) can be approximated by
exploiting the fact that the system state is already Gaussian
and sampling from such is relatively easy. That is, on the one
hand we also approximate any fe

k(xk, γ) as a Gaussian

fe
k(xk, γ) ≈ N (xk; x̂

(γ)
k ,C

(γ)
k) . (5)

On the other hand, we can compute a Dirac mixture approxi-
mation

1

M

M
∑

i=1

δ(xk − x
(γ)
k,i) (6)

of (5) comprising M equally weighted samples with posi-

tions x
(γ)
k,i . Plugging (6) into (4) yields its Dirac mixture

approximation

M
∑

i=1

c(γ +∆)

c(γ)M
· f(Yk |x(γ)

k,i)
∆ · δ(xk − x

(γ)
k,i) . (7)

Computing sample mean and covariance of (7) also yields a
Gaussian approximation of fe

k(xk, γ +∆).

Now, we can get the desired Gaussian approximation of
fe
k(xk) by starting with prior Gaussian (2), i.e., fe

k(xk, 0), and
recursively computing a Gaussian approximation of (4) until
we reach γ = 1. That is, we perform several resamplings during
one measurement update4. The result is the desired particle
flow that moves samples to the important regions of the state
space to avoid sample degeneration.

For a better understanding, Algorithm 1 summarizes the
PGF filter step procedure. In line 1, the progression starts with
the prior mean and covariance. In line 3, the samples xi are

computed to approximate the current Gaussian N (x̂
(γ)
k ,C

(γ)
k).

This is done in two steps. First, we compute a set of M
equally weighted samples si approximating a standard normal
distribution of appropriate dimension offline (before filter
execution) using the LCD approach [18], which also serves as
basis for the S2KF [8]. Second, the samples si are transformed
online (during filter execution) to the samples xi with the aid of
the Mahalanobis transformation [19]. The evaluation of the log-
likelihood and the determination of the minimum and maximum
log-likelihood value that are required to obtain the step size ∆
are performed in lines 4 to 9. When the extremes are equal or all
samples are evaluated to −∞ (i.e., a likelihood value of zero),
there is no particle flow direction, and hence, no progression is
possible. The progression increment ∆ for the current iteration
is computed in lines 10 to 14. After that, in lines 15 to 19, the
new sample weights αi are computed, and used to obtain the

next Gaussian approximation N (x̂
(γ+∆)
k ,C

(γ+∆)
k) by means

of moment matching. The progression stops when γ reaches 1.
The result is the updated Gaussian state estimate fe

k(xk).

III. PROGRESSIVE GAUSSIAN FILTERING ON THE GPU

In Sec. II, we described the idea and the algorithm of the
PGF. In this Section, we focus on how to offload the PGF onto
a GPU in order to speed up the state estimator and reduce
the workload of the CPU. Here, we only deal with the PGF’s
measurement update. Of course, the state prediction can be
performed on the GPU, too. However, as we need to copy the

4This can be compared with Particle Filters, which perform only one
resampling after an update (if any).

1040

filtered state estimate back to the CPU to save and/or process
it anyway, we can also perform the prediction on the CPU
and copy the predicted state estimate back to the GPU for the
next measurement update. This holds in particular when the
prediction is easy to compute, e.g., in case of a linear system
model.

When writing code for a GPU, some aspects have to be
considered.

1) Avoid copying data between CPU and GPU memory
whenever possible. The PCI express bus is very slow
compared to the usual memory access, and it can take
milliseconds to transfer data.

2) To best profit from its massive parallel execution capa-
bilities, keep the GPU busy with arithmetic operations
to hide memory access latencies by running hundreds or
thousands of threads at a time.

3) Try to reduce the GPU memory access. Performing
computations multiple times can be better instead of
sharing results between threads.

4) Ensure that threads follow the same control flow whenever
possible. Threads are executed in groups, and threads of
a group are stalled when the control flow of the group
diverges, e.g., when not all threads of a group take the
same branches.

In the following, we go step by step through Algorithm 1 and
discuss porting it to the GPU. Not the entire procedure will be
executed on the GPU. All lines marked as orange remain on
the CPU.

Before entering the while loop, we transfer the predicted
state mean x̂p

k and covariance matrix C
p
k, the pre-computed

standard normal samples si (column-wise stored in single
matrix V), the measurements Yk, and maybe other likelihood
related data such as noise covariances from the CPU to the
GPU. In particular, if the number of samples M does not
change over time, the samples si have to be transferred only
once for the entire program execution (as will be case in our
evaluation in Sec. V). The while loop itself is executed on the
CPU and enqueues all the necessary function calls on the GPU.

First, the Cholesky decomposition of C has to be computed.
Unfortunately, this is a recursive procedure, and hence, only
the data can be read and written in parallel. The Cholesky
decomposition itself is computed by a single thread. Then, each
sample xi can be computed using a parallized matrix-matrix
multiplication

√
C ·V followed by a parallized column-wise

addition of the mean vector x̂. Hence, the samples xi are
likewise stored column-wise in a matrix M.

Also, the log-likelihood evaluation (line 4) can be basically
performed in parallel. However, this is problem-specific and can
lead to different implementations for different log-likelihoods.
We will discuss the implementation of the log-likelihood of our
evaluation in Sec. V. For finding the minimum and maximum
log-likelihood value, we exploit the usual parallel reduction
scheme that requires only a logarithmic number of operations,
e.g., [14].

The log-likelihood extremes (lmin and lmax) are then copied
to the CPU, and the step size ∆ of the current progression step
is computed. This is done as we need ∆ on the CPU anyway to
increment γ in order to determine end of the progression. The

Algorithm 1 Progressive Gaussian Filter

1: Set x̂ = x̂p
k,C = C

p
k, γ = 0

2: while γ < 1 do

3: xi =
√
C · si + x̂ ∀ 1 ≤ i ≤ M

4: li = log(f(Yk |xi)) ∀ 1 ≤ i ≤ M

5: S = {li | ∀ 1 ≤ i ≤ M ∧ li > −∞}
6: lmin = min(S) lmax = max(S)
7: if S = ∅ ∨ lmin = lmax then

8: No progression possible ⇒ Abort update.

9: end if

10: ∆ = − log(M) / (lmin − lmax)

11: if γ +∆ > 1 then

12: ∆ = 1− γ

13: end if

14: γ = γ +∆

15: f(Yk |xi)
∆ = exp((li − lmax) ·∆) ∀ 1 ≤ i ≤ M

16: α =
∑M

j=1 f(Yk |xj)
∆

17: αi = f(Yk |xi)
∆ / α ∀ 1 ≤ i ≤ M

18: x̂ =
∑M

i=1 αi · xi

19: C =
∑M

i=1 αi · (xi − x̂) · (xi − x̂)⊤

20: end while

21: Set x̂e
k = x̂,Ce

k = C

step size ∆ is then transferred back to the GPU and used to
compute f(Yk |xi)

∆ for all samples in parallel. The required
sum of sample weights α is again computed by means of
the paralell reduction scheme. The subsequent sample weight
normalization can be computed in parallel for each sample,
and the resulting weights αi are stored in the row vector α.

The new sample mean can now be obtained with the a
parallel matrix-vector multiplication x̂ = M · α⊤. A parallel
column-wise subtraction of M with x̂ is stored in a matrix D,
and yields the differences xi−x̂. A subsequent row-wise parallel
multiplication of α with D is stored in Dα. The parallelized
matrix-matrix multiplication C = Dα · D⊤ yields the new
sample covariance, and the next progression step begins.

Finally, after the while loop is completed, we transfer the
filtered state mean x̂e

k and covariance matrix Ce
k back to the

CPU. In summary, all the expensive computations are moved to
the GPU, and the data transfer between CPU and GPU during
the progression is reduced to an exchange of a few scalars,
namely lmin, lmax, and ∆.

IV. EXTENDED OBJECT TRACKING

In order to properly evaluate the GPU version of the PGF,
our goal is to do extended object tracking in real-time when
processing a large number of measurements. Here, we try to
estimate the position ck = [cxk, c

y
k, c

z
k]

⊤, the radius rk, and the
velocity νk = [νxk , ν

y
k , ν

z
k]

⊤ of a sphere in 3D (see Figures 1
and 2). Hence, the system state vector is given by

xk = [c⊤k , rk, ν
⊤

k]
⊤ .

In each time step, we receive a set of noisy point measure-
ments Yk in x-y-z-coordinates from one ore more depth

1041

cameras with known locations. That is, each measurement y
(i)
k

was observed by one of these cameras.

We assume that each single measurement y
(i)
k stems from a

source z
(i)
k on the sphere’s surface and is corrupted by additive

zero-mean Gaussian white noise v
(i)
k with covariance matrix

R
(i)
k ∈ R

3×3 according to

y(i)
k

= z
(i)
k + v

(i)
k .

For different measurements y
(i)
k , it is assumed that their mea-

surement noises v
(i)
k are mutually independent. Consequently,

the likelihood becomes a product of Nk independent likelihoods
(one for each measurement)

f(Yk |xk) =

Nk
∏

i=1

N (y(i)
k

− z
(i)
k ;R

(i)
k) . (8)

The corresponding log-likelihood required by the PGF can be
evaluated in closed-form to

log(f(Yk |xk)) =

Nk
∑

i=1

−(
3

2
log(2π) +

1

2
log(|R(i)

k |))

− 1

2
(y(i)

k
− z

(i)
k)⊤(R

(i)
k)−1(y(i)

k
− z

(i)
k) .

(9)

It is important to note that this likelihood penalizes state

estimates xk where measurements y
(i)
k and their associated

sources z
(i)
k are not close together (i.e., when they have a large

Mahalanobis distance). Also note that the inverse of R
(i)
k and

its determinant |R(i)
k | can be computed analytically.

Up to now, we have assumed that we know the source z
(i)
k

of each measurement y
(i)
k . Unfortunately, this is not true as

we do not use any type of unique markers allowing for a
correct association. We only have an unlabeled point cloud
of the sphere. However, in order to get the most probable
source for each measurement, we make use of the so-called
Greedy Association Model (GAM) [20]. To approximate the
true (but unknown) source, we do not only rely on the sphere
estimate xk but also on the measurement itself (hence the
term greedy). Additionally, we make also use of the known
camera location p to exploit the geometrical interaction between
camera, measurement, and sphere according to

z
(i)
k ≈ computeSource(xk, p, y

(i)
k
) .

Here, we roughly assume that the camera can only observe
points from one half of the sphere, namely the half between
the camera and the ”visibility plane” which is orthogonal to
the direction from camera location p to sphere center ck (see
Fig. 2). So only the points on this side of the sphere can
be a possible source for a measurement. To select the most

probable source z
(i)
k on the determined sphere side for the

measurement y
(i)
k , we have to distinguish between four possible

cases (a) – (d) depicted in Fig. 2:

(a) its projection line intersects the sphere, and the measure-
ment lies between camera and sphere,

(b) its projection line intersects the sphere, and the sphere
lies between camera and measurement,

Projection line

”Visibility plane”

ck rk

p

y
(a)
k

y
(b)
k

y
(c)
k

y
(d)
k

z
(a)
k

z
(b)
k

z
(c)
k

z
(d)
k

Figure 2: The used GAM with sphere center ck and radius rk,

camera position p, received measurements y
(i)
k (orange circles),

and their associated sources z
(i)
k (blue crosses).

(c) its projection line has no intersection with the sphere, and
the measurement lies in front of the ”visibility plane”,
and finally

(d) its projection line has no intersection with the sphere,
and the measurement lies behind the ”visibility plane”.

Algorithm 2 shows the source computation in detail, which has

to be individually performed for each received measurement y
(i)
k

and system state xk. The proposed approach does not simply
associate the nearest point on the sphere to a measurement
regardless if this point is even visible by the camera or not. More
precisely, it penalizes any estimate xk where measurements
would lie behind the estimated sphere, i.e., are physically
impossible to measure, by choosing a source that is far away
from the measurement, e.g., case (b).

So on the one hand, the proposed log-likelihood is rather
complicated and, paired with many measurements, its evaluation
requires a substantial amount of computational resources. But
on the other hand, its usage should result in a good estimation
performance due to its detailed modelling of the physical
background.

V. EVALUATION

We want to compare the GPU implementation of the PGF
with its CPU implementation by means of tracking a sphere
and its shape in 3D based on the model presented in Sec. IV.
For that reason, we simulate a sphere’s movement along a
nonlinear path observed by five virtual depth cameras that are
modeled to behave like Microsoft Kinect cameras (see Fig. 1).
Due to the high resolution of a Kinect camera (640 × 480
pixels) and the possibility that the sphere can be seen from
several cameras at a time, it is likely that we receive a large
number of measurements per time step, making this scenario a
demanding estimation problem.

A. System Model

We describe the temporal evolution of the sphere using a
nearly constant velocity model

xk = Axk−1 +Bw ,

1042

with matrices

A =

[

I3×3 0 T · I3×3

01×3 1 01×3

03×3 03×1 I3×3

]

and

B =

[

T · I3×3 03×1

01×3 1
I3×3 03×1

]

,

and time-invariant, zero-mean, and white Gaussian noise for
velocity and radius w = [wx, wy, wz, wr]⊤ with covariance

Q = diag(1, 1, 1, 10−5) .

The radius noise wr gives the state estimator the ability to
detect changes in the sphere’s extent over time. Here, the time
period T is set to 0.03 s which means we get a new set of
measurements approx. 33 times per second. As the system
model is linear and corrupted by Gaussian noise, and the PGF
maintains only a Gaussian distributed system state, we can
compute the time update optimally in closed-form.

B. Measurement Model

To incorporate measurements into the state estimate, we
utilize the likelihood function (8). The measurement noise

covariance matrices R
(i)
k are obtained according to the Kinect

sensor model proposed in [21]. The result is a more demanding
but realistic non-isotropic measurement noise allowing for an
adequate simulation.

C. GPU Implementation Details

In Sec. III, we already discussed the GPU implementation
of the PGF itself. What is still missing is an efficient implemen-
tation of the required log-likelihood (9). First of all, the inverse

and determinant of the Nk measurement noise covariances R
(i)
k

are required in order to evaluate the log-likelihood for a given
set of measurements. This can be perfectly done in parallel
for each noise covariance on the GPU, resulting in a reduced
runtime of the measurement update.

Generally, the log-likelihood can be evaluated completely
independent for each state sample xi. However, compared to
PFs with its many particles the PGF uses only a very small
number of samples M per progression step. Additionally, we
focus on situations in which the number of measurements Nk

is very large, i.e., in the order of several thousands. When now
simply evaluating the log-likelihood (9) for each of the M state
samples xi in parallel, we could only schedule a very small
number of threads on the GPU. Moreover, each thread has to
compute the large sum of Nk terms. Hence, the GPU cannot
fully exploit its resources, and thus, this approach is inadvisable.
We tackle this problem by evaluating each part of the log-
likelihood sum in parallel. That is, we schedule Nk threads
where each thread evaluates one term of the log-likelihood sum
M times (once for each state sample xi). The results of all
threads are collected in a large matrix E of dimension Nk×M .
Subsequently, we perform a parallel sum reduction along each
column of E to obtain the final log-likelihood evaluation for
each state sample xi. Although this approach involves more
memory accesses (the entries of E first have to be written to
the memory and subsequently read step by step to perform the

Algorithm 2 computeSource

Input: State xk, camera position p, and measurement y
(i)
k

d = normalize(y
(i)
k − p) e = y

(i)
k − ck

// Check for line-sphere-intersection
a = d⊤ · e b = a2 − (e⊤ · e− r2k)
if b < 0 then

// No line-sphere-intersection
n = normalize(ck − p) // ”Visibility plane” normal

if e⊤ · n < 0 then

// In front of ”visibility plane”
// Project measurement on sphere

z
(i)
k = ck + rk · normalize(e) // Case (c) in Fig. 2

else

// Behind ”visibility plane”
// Intersection of projection line and ”visibility plane”

l = y
(i)
k − (e⊤ · n/d⊤ · n) · d

// Project intersection on sphere

z
(i)
k = ck + rk · normalize(l− ck) // Case (d) in Fig. 2

end if

else

// Line-sphere-intersection
d1 = −a+

√
b d2 = −a−

√
b

// Choose intersection closest to the camera position
if d1 < d2 then

z
(i)
k = y

(i)
k + d1 · d // Case (a) in Fig. 2

else

z
(i)
k = y

(i)
k + d2 · d // Case (b) in Fig. 2

end if

end if

Output: Measurement source z
(i)
k

reduction), it requires only M · log(Nk) sum operations instead
of M ·Nk. Combined with the much better utilization of the
GPU (consider the thousands of threads operating in parallel)
it is much faster compared to the naı̈ve approach where only
M threads would be executed in parallel.

D. Setup

The tracking setup is as follows. The sphere has an initial
radius of 15 cm and moves, in total, for 5 s along a nonlinear
path observed by the five Kinect cameras as shown in Fig. 1.
After 2 s, the sphere radius increases over the next 0.75 s from
15 cm to 40 cm. At 4 s, the sphere radius shrinks abruptly back
to 15 cm. This allows for more changes in the number of
available measurements and to investigate how well the PGF
implementations can handle such shape changes.

An initial state estimate is computed using the first set
of available measurements. That is, the position mean and
covariance are set to the sample mean and sample covariance of
the measurements, the radius mean and variance is obtained by
computing sample mean and variance of the norm between the
initial position and each measurement. The initial velocity mean
is set to zero and its covariance matrix to the identity. Moreover,
position, radius, and velocity are initially uncorrelated.

The CPU implementation of the PGF in C++ is based on
the Eigen linear algebra library [22] that makes heavy use of

1043

SIMD instructions via SSE. Additionally, the evaluation of
the log-likelihood is effectively parallized using OpenMP. The
evaluation is performed on an Intel Core i7-3770 (3.4 GHz, 4
cores, 8 threads).

The GPU implementation is based on OpenCL 1.2 and
is executed on an AMD Radeon R9 280X graphics card, a
mid-class GPU for about $250 that, however, offers a great
double-precision performance compared to other GPUs. The
linear state prediction is executed on the CPU.

Both the CPU and the GPU implementation use double-
precision arithmetics and the same set of M = 51 samples si
approximating the standard normal distribution. We perform
50 Monte Carlo runs.

E. Results

To get fair results, the GPU runtimes comprise the entire
state estimation procedure, not only the parts executed on the
GPU, that is,

1) the state prediction on the CPU,
2) the time needed to transfer the predicted state estimate

as well as the measurements and their associated camera
positions and noise covariance matrices to the GPU,

3) the measurement update itself, and
4) the time needed to copy the filtered state estimate back

to the CPU.

The minimum runtime (lower bound of a curve) and maximum
runtime (upper bound of a curve) of the PGF implementa-
tions are depicted in Fig. 3. It can be seen that the GPU
implementation has a much lower runtime than the CPU
implementation. The GPU variant required 110 ms at most,
whereas the CPU required up to 1.6 s. Moreover, the GPU has
a much smaller runtime variance, especially for a larger number
of measurements. To be real-time capable in this scenario, a
maximum runtime of 30 ms is allowed. Here, the CPU is often
far away from that. More precisely, the CPU is only 8% of
the time below the real-time limit. On the contrary, the GPU
achieves this 68% of the time. Although the GPU variant has
to exchange data with the CPU, the overall minimum runtime
is only 5 ms compared to the CPU with a minimum runtime
of 16 ms.

Fig. 3 also shows the number of the processed measurements
over time. The number of measurements ranges from 1,000 up
to 42,000. More precisely, when the sphere radius increases
after 2 s, we receive an increasing number of measurements
as the sphere’s surface gets larger and larger. Note also the
radical drop at 4 s when the sphere shrinks back to its initial
radius. Due to the varying distance to each camera, the number
of measurements changes even when the size of the sphere
is constant, e.g., between 0 s and 2 s, or 3 s to 4 s. It can
be seen that the CPU runtime and the number of processed
measurements is highly correlated. This is due to the fact that
1k measurements already keep all cores of the CPU busy. The
GPU, however, is rather unaffected by those changes, as it has
still many computational resources. Keep also in mind that
processing 42k measurements at once with a KF is intractable
as the measurement covariance matrix would require several
gigabytes of data, not to mention the time to process it.

0 1 2 3 4 5
0

200

400

600

800

1000

1200

1400

1600

Time in seconds

R
u
n
ti

m
e
 i

n
 m

il
li

s
e
c
o
n
d
s

0 1 2 3 4 5
1k

8k

16k

24k

32k

40k

N
u
m

b
e
r

o
f

m
e
a
s
u
re

m
e
n
ts

Runtime CPU

Runtime GPU

Real−Time Limit

Number of measurements

Figure 3: Minimum and maximum PGF runtimes as well as
the number of processed measurements.

Fig. 4 depicts the speedup of the PGF over the number
of processed measurements. The speedup shows a logarithmic
characteristic and reaches already an average value of 10 when
processing 10k measurements. The GPU is always faster than
the CPU and speedups over 20 are possible. Hence, the PGF
delivers the same speedups as for the Particle Filters, if not
better.

The estimation accuracy of the PGF implementations is also
of interest. For position and radius the Root Mean Square Errors
(RMSEs) are shown in Fig. 5. First of all, the errors in general
are very small due to the large number of measurements. Only
the sphere’s abrupt shrinking at 4 s causes a significant jump in
the errors. Moreover, one can see that both variants, CPU and
GPU, offer nearly identical estimation errors (besides roundoff
errors due to the different order of the arithmetic operations).
This is expected, and hence, both implementations are assumed
to work properly. Thus, regarding numerical issues, it should
be no problem to switch to the GPU-accelerated variant of the
PGF in other applications.

VI. CONCLUSIONS

In this paper, we presented a powerful GPU implementation
of the PGF allowing for real-time extended object tracking. First,
we motivated the use of nonlinear state estimators which rely
on likelihood functions to process multiple measurements in a
single filter step in order to increase the estimation performance.
After that, we briefly described the PGF with its particle flow
approach as a serious alternative to the classical Particle Filters.

1044

1k 8k 16k 24k 32k 40k
0

5

10

15

20

25

Number of measurements

P
G

F
 S

p
ee

d
u

p

Figure 4: Minimum, maximum, and average speedup of the
GPU-accelerated PGF.

0 1 2 3 4 5

10
−3

10
−2

10
−1

Time in seconds

R
M

S
E

 s
p
h
er

e
p
o
si

ti
o
n

GPU

CPU

0 1 2 3 4 5

10
−3

10
−2

10
−1

Time in seconds

R
M

S
E

 s
p
h
er

e
ra

d
iu

s

GPU

CPU

Figure 5: Sphere estimation errors.

Like other estimators, also the PGF can be boosted by
executing it on a GPU, so we gave an overview of how
to port it effectively to a GPU. Moreover, we proposed a
likelihood to estimate pose and extend of a sphere in 3D
based on noisy point measurements. This likelihood was then
used to evaluate the GPU variant of the PGF in a real-
world tracking scenario. The evaluation showed that the CPU
implementation is far from being real-time capable, whereas
the GPU implementation almost is, even when processing tens
of thousands of measurements at a time.

Of course, the PGF and its GPU-accelerated variant are
not limited to the application of extended object tracking. For
example, they can be used to get a maximum a posteriori (MAP)
estimate by omitting any prediction and executing only one
measurement update but with maybe millions of measurements
at once (i.e, batch processing). This can be a way to replace the
classical maximum likelihood (ML) approach to do parameter
estimation with the advantages of providing prior information
and getting the uncertainty of the parameter estimate.

REFERENCES

[1] Licong Zhang, Jürgen Sturm, Daniel Cremers, and Dongheui Lee,
“Real-Time Human Motion Tracking Using Multiple Depth Cameras,”
in Proceedings of the 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, Oct.
2012, pp. 2389–2395.

[2] Marcus Baum and Uwe D. Hanebeck, “Extended Object Tracking with
Random Hypersurface Models,” IEEE Transactions on Aerospace and

Electronic Systems, vol. 50, no. 1, pp. 149–159, Jan. 2014.

[3] Michael Feldmann, Dietrich Fränken, and Wolfgang Koch, “Tracking of
Extended Objects and Group Targets Using Random Matrices,” IEEE

Transactions on Signal Processing, vol. 59, no. 4, pp. 1409–1420, Apr.
2011.

[4] K. Gilholm and D. Salmond, “Spatial Distribution Model for Tracking
Extended Objects,” IEE Proceedings Radar, Sonar and Navigation, vol.
152, no. 5, pp. 364–371, Oct. 2005.

[5] Yaakov Bar-Shalom, X. Rong Li, and Thiagalingam Kirubarajan,
Estimation with Applications to Tracking and Navigation. New York
Chichester Weinheim Brisbane Singapore Toronto: Wiley-Interscience,
2001.

[6] Dan Simon, Optimal State Estimation, 1st ed. Wiley & Sons, 2006.

[7] Simon J. Julier and Jeffrey K. Uhlmann, “Unscented Filtering and
Nonlinear Estimation,” in Proceedings of the IEEE, vol. 92, Mar. 2004,
pp. 401–422.

[8] Jannik Steinbring and Uwe D. Hanebeck, “LRKF Revisited: The Smart
Sampling Kalman Filter (S2KF),” Journal of Advances in Information

Fusion, vol. 9, no. 2, pp. 106–123, Dec. 2014.

[9] Branko Ristic, Sanjeev Arulampalam, and Neil Gordon, Beyond the

Kalman Filter: Particle Filters for Tracking Applications. Artech House
Publishers, 2004.

[10] Arnaud Doucet and Adam M. Johansen, “A Tutorial on Particle Filtering
and Smoothing: Fifteen Years Later,” in Oxford Handbook of Nonlinear

Filtering, 2011, pp. 656–704.

[11] Jayesh H. Kotecha and Petar M. Djuric, “Gaussian Particle Filtering,”
IEEE Transactions on Signal Processing, vol. 51, no. 10, pp. 2592–2601,
Oct. 2003.

[12] Uwe D. Hanebeck, “PGF 42: Progressive Gaussian Filtering with a Twist,”
in Proceedings of the 16th International Conference on Information

Fusion (Fusion 2013), Istanbul, Turkey, Jul. 2013.

[13] Jannik Steinbring and Uwe D. Hanebeck, “Progressive Gaussian Filtering
Using Explicit Likelihoods,” in Proceedings of the 17th International

Conference on Information Fusion (Fusion 2014), Salamanca, Spain,
Jul. 2014.

[14] Gustaf Hendeby, Rickard Karlsson, and Fredrik Gustafsson, “Particle
Filtering: The Need for Speed,” EURASIP Journal on Advances in Signal

Processing, vol. 2010, Feb. 2010.

[15] Matthew A. Goodrum, Michael J. Trotter, Alla Aksel, Scott T. Acton,
and Kevin Skadron, “Parallelization of Particle Filter Algorithms,” in
Computer Architecture, ser. Lecture Notes in Computer Science Volume
6161, 2012, pp. 139–149.

[16] NVIDIA Corporation, “cuRAND library,” Mar. 2015. [Online].
Available: http://docs.nvidia.com/cuda/curand/

[17] Jorge Nocedal and Stephen J. Wright, Numerical Optimization, 2nd ed.,
ser. Springer Series in Operations Research and Financial Engineering.
Springer, 2006.

[18] Uwe D. Hanebeck, Marco F. Huber, and Vesa Klumpp, “Dirac Mixture
Approximation of Multivariate Gaussian Densities,” in Proceedings of the

2009 IEEE Conference on Decision and Control (CDC 2009), Shanghai,
China, Dec. 2009.

[19] Wolfgang Härdle and Léopold Simar, Applied Multivariate Statistical

Analysis, 2nd ed. Berlin Heidelberg: Springer, 2008.

[20] Florian Faion, Antonio Zea, and Uwe D. Hanebeck, “Reducing Bias in
Bayesian Shape Estimation,” in Proceedings of the 17th International

Conference on Information Fusion (Fusion 2014), Salamanca, Spain,
Jul. 2014.

[21] Florian Faion, Simon Friedberger, Antonio Zea, and Uwe D. Hanebeck,
“Intelligent Sensor-Scheduling for Multi-Kinect-Tracking,” in Proceed-

ings of the 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2012), Vilamoura, Algarve, Portugal, Oct.
2012, pp. 3993–3999.

[22] “Eigen C++ linear algebra library,” Mar. 2015. [Online]. Available:
http://eigen.tuxfamily.org/

1045

