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Abstract—An extended object gives rise to several measure-
ments that originate from unknown measurement sources on the
object. In this paper, we consider the tracking and parameter
estimation of extended objects that are modeled as a curve in 2D
such as a circle or an ellipse. A standard model for such extended
objects is to assume that the unknown measurement sources are
uniformly distributed on the curve. We argue that the uniform
distribution may not be the best choice in scenarios where the
true distribution of the measurements significantly differs from
a uniform distribution. Based on results from curve fitting and
errors-in-variables models, we develop a partial likelihood that
ignores the distribution of measurement sources and can be
shown to outperform the likelihood for a uniform distribution
in these scenarios. If the true measurement sources are in fact
uniformly distributed, our new likelihood results in a slightly
slower convergence but has the same asymptotic behavior.

I. INTRODUCTION

Tracking an extended object based on noisy measurements
of its boundary is an instance of errors-in-variables (EIV)
problems, as we do not know their originating measurement
sources on the boundary. Besides, EIV occur in many other
tasks, such as estimating the parameters of a geometric curve
[1], the fundamental matrix [2], or even the optical flow [3].

To explain the basic problem structure, we consider the
familiar example of fitting a line to noisy data, where we
want to estimate slope and intercept parameters, encoded in
the vector x, of a linear constraint from noisy points y. In
classical regression, as illustrated in Fig. la, the abscissa can
be measured exactly, while the ordinate is subject to noise.
The estimator would adjust the parameters, so that the error
between line and measurements along the ordinate is minimized.
In doing so, the measurements are correctly associated to their
generating sources z on the line.

In contrast, in EIV problems, all dimensions of a measure-
ment y are subject to noise, as illustrated in Fig. 1b. This
makes the association of a measurement to its source on the
line ambiguous. In consequence, we have to make assumptions
on the measurement source z for each y to design an estimator.
To make things worse, each additional measurement introduces
another unknown measurement source that, in turn, requires an
additional assumption. In statistics literature, this association
problem is sometimes referred to as the Neyman-Scott problem
[4] and z is called a nuisance parameter [5]. This work is
about dealing with the association problem in the context of
extended object tracking.
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(a) Classical regression. (b) EIV regression.

Figure 1: In classical regression (a), each measurement y can
be exactly associated to its originating source z, where in EIV
regression (b), this is not possible.

A. Problem Statement

We consider objects, whose boundary can be modeled as a
geometric constraint such as an ellipse in 2D. Then, given a
set of noisy measurements Yyl of the object boundary,
the task is to find the state parameter "Vector x that best fits the
constraint to the noisy data accordlng to the following implicit
model. Each measurement Y, is a noisy observation of a true
value z;, denoted as the measurement source, which is distorted
by additive noise v, ~ p(v;) according to

Y, =2+ (1

The measurement source in turn lies on the object boundary
and fulfills the implicit and typically nonlinear relationship

9(z,z;)=0. 2)

For convenience, we will write g,(z;) := g(z, z;). Note that
due to the noise, the measurements y_, Y, themselves
generally do not fulfill the constraint angi thus Measurements
and state are only related via the unknown measurement sources.
The challenging aspect is that in order to infer the state
parameters x, we need to additionally make assumptions about
the measurement sources. In addition, as we consider extended
objects, we also have a dynamic component, which means that
i) packages of measurements sequentially arrive over time and
ii) state parameters may change between the measurements.
However, for our derivations, it is sufficient to consider a single
time instance of this process, such that we can omit all potential
time indices.

B. Related Work

In the context of extended object tracking, a straightforward
way to deal with the association problem is the Spatial
Distribution Model (SDM), where each point on the object
boundary is assigned a probability to be measured [6], [7].



Usually, the distribution is assumed to be either uniform or is
extracted from the sensor to object geometry [8], [9]. However,
due to occlusions and unpredictable factors such as sensor
artifacts, assuming a distribution of measurement sources is not
always reasonable. Furthermore, SDMs involve computationally
demanding integrals. An alternative approach to address the
association problem is greedily associating a measurement to a
specific source on the object. In doing so, some sort of distance-
related expression is minimized by the estimator as shown in
[10]. These Greedy Association Models (GAMs) tend to be
biased in the presence of noise. Other approaches [11], [12]
consider constraints in the form of g.(z;) € [a, b] which occur,
e.g., when a region is to be tracked in a 2D image. Recently,
there has also been great effort in studying errors-in-variables
problems in a more general scope, but mostly focused on static
problems [13-15].

C. Contribution

Our main contribution is a partial likelihood for extended
objects, which is partial in the sense that it puts ignorance on the
association problem instead of incorporating a potentially im-
proper heuristic. Specifically, we propose a re-parametrization
of the measurements that decouples their encoded information
into “how well” they fit to the object boundary and “where”
on the boundary they are related to. Ignoring the second type
of information we develop an estimator that

1)  can handle occlusions and does not rely on a proba-
bility distribution along the boundary,

2)  can naturally deal with anisotropic measurement noise,

3) is unbiased by design,

4) and can be implemented using common recursive
Bayesian estimation techniques such as, e.g., a non-
linear Kalman filter.

Specifically, we derive a measurement equation with additive
noise and propose a sampling-based approach to evaluate the
likelihood.

D. Outline

In Sec. II, we briefly discuss the considered estimation
techniques and then, in Sec. III, we derive a general likelihood
for extended objects. Sec. IV summarizes two traditional models
to evaluate this likelihood before we introduce the new model
and propose a sampling-based approach for its implementation
in Sec. V. Finally, in Sec. VII we evaluate the new model
in a recursive ellipse-estimation task and draw conclusions in
Sec. VIIL

II. RECURSIVE BAYESIAN ESTIMATION

In extended object tracking, the relationship between object
parameters  and measurements y/ , . . ., Y, is usually expressed
in terms of a likelihood p(y,, ...,y |{L) "The likelihood then
can be used to update a prior distribution p(z) on the parameters
by applying Bayes’ rule

plaly,,--y,) <p(y,-- -y, lz) pla) . 3)

This allows for developing a recursive Bayesian estimator
by using the posterior distribution as the prior for the next
update. A recursive Bayesian estimator [16], in turn, can

1023

© ©

Figure 2: Probabilistic graphical model for EIV.

be employed to design a tracking algorithm by alternating
between two steps. First, the prediction step lets the distribution
p(z) evolve over time according to a system model. Second,
the measurement update step incorporates new measurements
YooY according to (3). Next, we show how a likelihood
for extended objects can be derived.

III. A LIKELIHOOD FOR EXTENDED OBJECTS

We want to derive a likelihood p(y .. ..,y |z) for extended
objects. Specifically, given a set of measurements y RERRRY/]
obtained according to (1), where the noise terms v, are assume
to be mutually independent and Gaussian distributed according
to v; ~ N(0,C, ;) with known, but not necessarily identical,
covariance matrices. In addition, it is known that the state
parameters z and the sources z; are related through the
nonlinear constraint (2) that describes the object boundary.

The independence between the measurements lets us
factorize the likelihood as

Py, -y, lz) = [ py,lz) - 4
=1

As a result of this factorization, we can exclusively consider
the likelihood p(y, \x) for a single measurement y, which lets
us drop the index i for readability. Nevertheless, deﬁmng the
likelihood p(y|z) is not trivial, as measurement y and state
z are only connected via the unknown source z through the
constraint g.

A. Probabilistic Graphical Model

For a more intuitive treatment, we encode the dependencies
between all involved variables visually using a Probabilistic
Graphical Model, as seen in Fig. 2. In this model, y, ¢
are observable variables, while z, z, v are latent variables
that are not directly accessible. Specifically, g represents
the constant pseudo-measurement 0, which arises from the
relationship ¢,(2) = ¢ := 0 as seen in (2). From the
dependency structure in Fig. 2 we obtain the joint probability
distribution p(z, z,v,9,y), which leads to an intermediate
likelihood p(y, g|z) by marginalizing out z,v and dividing
by p(z), in the form of

p(y, glz) = p(ylz,v) - p(v) dv- p(glz, z) - p(2) dz .
Rd Rd
p(ylz)
(5)
The inner integral is given by the additive noise model (1) as
p(ylz) = N(y;2,Co) - (6)

For evaluation of the remainder of (5), we have to define
p(g|z, z) and p(z). The first term p(g|z, 2) is the probability
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Figure 3: Sketch of the Cartesian (left) and the constraint-induced (right) parametrization. For [ = 0, the s-component lets us

iterate in the constraint (black curve).

that z and z are bound through the constraint in (2) which
is 1 if g;(z) = 0 holds and 0 else. The second term p(z)
is the probability distribution over the domain that rates

how likely a point z in space generates a measurement.

Technically, to evaluate the likelihood (5), we must integrate
a Gaussian, centered on the measurement, over the object
boundary, where each point is weighted by its probability to be
the measurement source. However, parameterizing the boundary
is not straightforward in Cartesian coordinates. Thus, we will
instead change z to a more convenient parameterization.

B. Constraint-induced Parametrization

Specifically, we want to represent a point z in a coordinate
system in the form of [I,s]T € L x S C R?, where the scalar
I := g,(2) specifies how well z € R? fulfills the constraint,

and the vector s determines the remaining degrees of freedom.

This can be visualized in Fig. 3 (right). For [ = 0 (black line),
it follows that s iterates in all points 2z that satisfy the constraint
(2). To make the following considerations easier to follow, we
focus on measurements and sources in R2, i.e., where both
| and s are scalars. Thus, we introduce the transformation
function ¢, : L x S — R2, in the form

¢z(l,8) =2, %)

which is bijective almost everywhere and maps parameters [, s
to their corresponding Cartesian coordinates. To demonstrate
this concept, let us consider a circular constraint.

Example 1 (Circle)

A circle allows for a comfortable treatment in terms of a polar
representation. Mathematically, the constraint can be defined
as g.(z) = ||z|| = 7. Then, the parametrization for a circle
with radius x = r that is centered on the origin yields

cos(s)}

sin(s)

o (l,8) = (r+1)- ®)

where [ is the signed distance in L = (—r,00) and s is an angle
in S =10,2x]. It can be seen that for | = 0, the parameter s
lets us iterate through all points ¢(0,s) on the circle. O

C. Changing Variables

In order to change the variable 2z in the integral (5) from
Cartesian coordinates to the constraint-induced parametrization
[1,s]T, we can apply the following lemma.

Lemma 1 (Change of Variables)
Let p(a) and p(b) be probability distributions where a, b
describe equal events in a different parametrization and A, B,
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Figure 4: Probabilistic Graphical Model for the SDM.

represent identical regions in their respective parametrization.
Then, it holds that

/ pl(a) da = / p(b) db ©)
A

B

With (9), we can rewrite the integral in (5) as

p(yle) = / N(y:6(0.5),C) plslz) ds . (10)

S :p(g|¢>m(075)>

which is the likelihood of the Spatial Distribution Model [6],
and well-known in extended object tracking. Its probabilistic
graphical model is shown in Fig. 4. At this point, we are left
with the task of specifying p(s|a), which is an instance of the
association problem where s acts as the nuisance parameter.

IV. Two TRADITIONAL MODELS

In the following, we discuss two approaches to address the
association problem for extended objects.

A. Spatial Distribution Model (SDM)

The Spatial Distribution Model [6], [7] is a widely used
model in extended object tracking and requires that p(s|z)
is known in the likelihood (10). Technically, this distribution
specifies how likely it is that a point ¢,.(0, s) in the constraint is
measured, and is generally modeled as a uniform distribution.
Recent approaches [8], [9] also incorporate heuristics, e.g.,
when the sensor observes one side of the object, they model
p(s|lz) as a uniform distribution over the visible part only.
When incorporating the correct distribution, it was shown in
[6] that the SDM yields an unbiased estimator. However, wrong
assumptions about p(s|z) generally cause biased estimates [10].
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Figure 5: Finding the most likely source on the constraint for
a given measurement.

B. Greedy Association Model (GAM)

Another widely-used model that we will denote as the
Greedy Association Model, does not require any knowledge
about p(s|z). Instead, it uses the measurement y to derive a
greedy estimate of its source and, in doing so, the estimator
will minimize some sort of distance. For a measurement y, a
maximum likelihood estimate for s can be calculated by

Wx(y) ‘= argimax N(ﬂ: $2(0,),Cy) , (11)

seS

where 7, (y) refers to the most likely source ¢, (0,7, (y)). See
Fig. 5 for an illustration. Based on (11), we can approximate
the spatial distribution by the Dirac d-distribution

p(slz,y) = (s — ma(y)) 12)

which now additionally depends on the measurement y. Then,
by plugging (12) into (10) for p(s|z) we obtain

p@g@:/N@f%@@@cnw@fm@»m
S

:N(g§ ¢x(07 ﬂ'm(y))vcv) ) (13)
which is a corrupt expression in the sense that it has a cyclic
dependency between measurement and its originating source.
Thus, we intentionally abuse the notation p(y|z, y) to emphasize
this issue. It is well-known that (13) produces biased estimates
for nonlinear constraints in the presence of noise. Effort has
been made to understand this bias and to re-engineer it in order
to reduce its effect [10], [15].

V. PARTIAL LIKELIHOOD FOR EXTENDED OBJECTS

In this section, we propose a mathematically sound like-
lihood for extended objects based on the concept of partial
likelihood [17], [18]. This likelihood yields an unbiased estima-
tor while neither requiring assumptions about the measurement
sources, nor requiring artificial re-engineering.

A. Key Idea

Let us now apply the constraint-induced parametrization as
in Sec. III-B to the measurements ¢ (1, s,) = y, too. Then [,
and s, encode two types of measurement information, where the
first is related to “how well” the measurement fits to the object
boundary and the second refers to “where” on the boundary it is
related to. Actually, designing the likelihood p(y|z) is difficult
as we need a heuristic for the second type of information, e.g.,
spatial distribution (SDM) or greedy association (GAM). The
key idea of our approach is using only the I, information of a
measurement for the Bayes update while putting ignorance on
the critical s, information.
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(a) Desired Probabilistic Graphical Model.
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Figure 6: Ideal case, where the constraint-induced parametriza-
tion makes the [, and s, dimensions (gray grid) independent.

Mathematically, this refers to the statistical concept of partial
likelihood, which is an approximation of the full likelihood

p(ly, sylz) = p(ly|z, sy) - p(sy|x)
~ p(lylz, sy) - (14)

By dropping p(s,|z) we put ignorance on the association
heuristics. Of course, we have to trade this ignorance for the
amount of measurement information encoded in s,,. The effect
of this trade-off will be discussed in Sec. VII.

In addition, as the partial likelihood p(l,|z, s,) still relies
on s, to some degree, [, preferably should become independent
of the critical measurement dimension

p(lylz, sy) = p(lylz) - (15)

Hence, our tasks are i) finding a parametrization ¢,(1,, s,)
for the measurement y, such that l, and s, are mutually
independent and ii) deriving the partial likelihood p(I,|z).

B. Finding the Parameterization

Measurements y of a source ¢, (0,s) on the constraint
follow the additive noise model from (1) according to

y=0¢s(0,5)+v, (16)

When expressing these measurements in constraint-induced
parametrization ¢,(l,,s,) = y, their I, and s, component
are statistically independent if the measurement noise v is
independent in their parametrization. The following example
explains what that means.

Example 2 (Linear Constraint)

In Fig. 6b, a linear constraint is shown together with its
constraint-induced parametrization and a specific source. Then,
measurements, which originate from this source according to
isotropic Gaussian noise with C,, = o2 - 1 are independent in
their l, and s, component and we can write

p(ly|z) = N(1y;0,0%) a7
with 1, = g, (y), and

mmg=/Nw—amﬂmw@m. (18)
S

Note that all information about s is isolated in the second
term (18) Thus, by using the partial likelihood (17), we do not
need to explicitly model s anymore. For this ideal case, the
probabilistic graphical model from Fig. 4 changes to the one
in Fig. 6a. As a remark, maximizing the partial likelihood (18)
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Figure 7: Competing designg properties for the desired
parametrization.

corresponds to orthogonal least squares as the distance along
the normals to the constraint is minimized. [19] O

While for the case of a linear constraint (and isotropic
noise), full independence could be achieved, for a nonlinear
constraint (and/or isotropic noise), we find us in a dilemma. On
the one hand, the constraint-induced parametrization dictates
the coordinate axes to lie parallel and normal to the constraint,
as indicated in Fig. 7a. On the other hand, the noise will only
be independent for the case that the axes coincide with the
principal components of the Gaussian measurement covariance
C, (see Fig. 7b). However, these noise-induced axes no longer
have a meaningful interpretation of [, and s, in terms of “how
well” and “where” measurements are related to the boundary.

As a compromise, we propose to sacrifice orthogonality
of the coordinate system, in order to come up with the
parametrization in Fig. 7c, which is still meaningful as the
one in Fig. 7a yet less correlated as the one in Fig. 7b.
Technically, the proposed parametrization is based on the signed
Mabhalanobis distance to the constraint

9:(y) = £e"C e 1* (19)

with e = y — ¢,(0,7,(y)) and the sign indicates on which
side of the constraint the measurement lies. Note that 7, (y),
as defined in (11), specifies the most likely point ¢, (0, 7 (y))
on the constraint for a measurement y, which essentially is the
point with the smallest Mahalanobis distance. Then, we define

the desired parametrization in Fig. 7c as

by| _ |92(y)
H - [mw)} | =

That is, all points in the lines parallel to the constraint have
equal Mahalanobis distance /,, and all points in the lines skewed
to the constraint correspond to equal points ¢ (0, s,) on the
constraint. Fig. 8 shows this for several examples where the
measurement covariances C, are indicated as shaded blue
ellipses/circles.

Note that, due to the skewness of the coordinate system
and potential nonlinearities in the constraint, the proposed
parametrization (20) still retains a degree of correlation between
ly and s, that must be considered in the partial likelihood.

C. Deriving the Partial Likelihood

The remaining correlation between /,, and s,, in the proposed
parametrization causes that p(l,|z,s,) generally cannot be
simplified to p(l,|z). In consequence, taking the s, component
of a measurement as a given parameter refers to the point
¢,(0, s,) on the constraint, marked as black circles in Fig. 8.

1026

(a) anisotropic noise

(b) nonlinear constraint

Figure 8: Proposed parametrization applied to anisotropic noise
(a) and nonlinear constraint (b).

Our next step is to investigate how likely it is to measure
l,, for measurements § that are produced by ¢,(0, s,,). For this
purpose, we again apply the additive noise model from (1)
¥ = ¢4(0,sy) + v, which refers to

p(Flz, sy) = N (5 ¢2(0,54),Cy) . 1)

However, within the proposed parametrization j = qﬁz(iy, 5y),
we are only interested in the probability of measurements
fulfilling I, = I,,. In Fig. 8 this corresponds the probability of
measurements lying in the dashed [, line.

Deriving this probability requires integrating p(y|z, s,) over
the [,-line. After applying a change of variables from ¥ to [,
and 5, as explained in Lemma 1, we obtain

p(lNy’ §y|§7 Sy) (22)
= p(glz,s,) | det (34,(y,5,)) |
= N (62(0,5); 62(0,5,), C ) - | det (I, (15,5,) ) |

where J_(ly, 5,) is the Jacobian matrix of the transformation
¢, according to

Ay dou(ly.3,)
dl, ds, dl, ds,
and takes into account the skewness of the proposed coordinate

system. Finally, integrating 5, out of (22), we arrive at the
desired partial likelihood that defines the new model.

Ty, (1, 5y) = : (23)

Definition 1 (Partial Likelihood for Extended Objects)
For a given state x and a given measurement y = ¢5(ly, Sy)
parametrized in terms of its Mahalanobis distance (20) to the
object boundary with respect to the noise covariance matrix
C,, the partial likelihood for 1, is

p(ly@, Sy) = (24)
/ N (bally 5,): 620, 5,), Co) - [ det (T (1, 5,)) | 3, -
S

g

Conceptionally, partial likelihood p(ly|z,s,) is somewhat
related to the traditional GAM p(y|z,y) from (13). However,
while the traditional GAM derives the likelihood of a mea-
surement producing itself (roughly speaking), the new model
derives the likelihood of one dimension of a measurement
producing another dimension. In order to demonstrate the new
model let us look again at the circle from Example 1.



Example 3 (Circle)

For this example, let us assume isotropic measurement noise
with C, = 02 -1 Then, ¢ (l,,s,) can be specified by (8). The
determinant of the Jacobian of ¢,(l,, s,) evaluates to

det (Jo(ly, sy)) = det <[ *(irjl j)ﬂ c?:l((sf,’))} )
=r+l,. 25)
Then, plugging (8) and (25) into (24) yields
p(lylz, sy) = 26)

/N < r+1y) COS(SQ)} T [COS(Sy) ,Cv> (r+1,)ds, .

sin(5,) sin(sy)
It is interesting to note that this likelihood actually is the line
integral along a circle with radius v + l, over an isotropic
Gaussian centered on a circle with radius r at angle s,. Due to
the isotropic character of the noise, this integral is independent
of the specific instance of s,, which allows us to set s, =0
and to obtain p(ly|x).

cos(sy)

sin(sy)

However, analytic solutions of the integral in (24) generally
cannot be found, not even for the circle and the case of isotropic
noise (26), which raises the need for approximation techniques.

VI. IMPLEMENTATION

In this section, we show how to implement the new model.
Specifically, we derive i) a measurement equation with non-
additive noise, and ii) its approximation as a measurement
equation with additive noise, and iii) its explicit sampling-based
representation as a likelihood.

A. Measurement Equation with Non-additive Noise

Roughly speaking, given a measurement y = ¢, (I, sy)
in the proposed parametrization (20), we want to know the
probability of the point ¢2(0, sy) on the object boundary to
produce a measurement §j = ¢ (0, s, )+v with g (7) = I,,. This
equation, in turn, can be rearranged to a generative measurement
model with non-additive noise in classical notation

0=h(z,v,y) =1, — 9:(3)
= 92(¥) — 92(02(0,m(y)) +2) ,  (27)

where z is the state, v is the non-additive Gaussian noise, y
acts as a model parameter, and 0 is a pseudo-measurement.

B. Measurement Equation with Additive Noise

Assume we would know the probability distribution of
9 (y) in (27). Then, we could define a Gaussian noise variable
w ~ N(E{g.(%)}, Var{g.(4)}) which, in turn, would let us
define a generative measurement model with additive noise in
classical notation

0=h(z,w,y) =1, —w
=g.(y) —w, (28)

where z is the state, w is the additive Gaussian noise, y acts as
a model parameter, and 0 is a pseudo-measurement. Note that
w actually depends on the state parameters x. Thus, a point
estimate for x is to be used in order to derive its moments.
Next, we propose a sampling-based approach for this task.
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Figure 9: Sampling-based approximation of the new model.

C. Sampling-based Gaussian Approximation

The measurement equation with additive Gaussian noise
from (28) immediately refers to the likelihood

p(lylz, sy) = N (92(y); E{92(9)}, Var{g.(9)}) . (29

We now propose an approach to derive the mean E{g..(9)} and
variance Var{g, ()} based on sampling. The idea, as shown in
Fig. 9, is to simulate K measurements § of the point ¢, (0, s,)
and then derive the sample mean and variance of g, (7). This
approach boils down to four steps.

1) calculate s, = 7, (y) using (11)

2) draw K samples {v;,...,v;} from N (v;0,C,)

3) generate K measurement samples in the form of
gk = ¢r(07 Sy) + Vg

4)  calculate sample moments according to

K
E{g.(§)} ~ %Zgz(gk) : (30)
k=1

K

Varlgo ()} & = D (9:(3,)° ~ Bloe(@))?)

k=1

As a remark, we recommend drawing the noise samples
deterministically (e.g., by using [20]) as this allows for
reproducible results while keeping the numbers of samples
low (we used only K = 5 samples for 2D measurements).

VII. EVALUATION

Let us now study the estimation quality of the new model.
For this purpose, we i) show that using the model theoretically
yields an unbiased estimator and ii) evaluate its performance
in two recursive ellipse estimation experiments against the
common models that either assume a uniform distribution or
perform a greedy association.

A. Unbiasedness

Godambe and Thompson [5] defined that an estimating
equation g(y) is unbiased, if

E{g:(y)} =0 3D

holds for the true parameters x. This definition was motivated
by the fact that the likelihood A(g%(y);0,02) then has a
maximum for the true parameters. In addition, they found that
an estimating equation g, (y) that includes a nuisance parameter
s can be modified according to ¢} (y) = g.(y) — E{9.(D)}.
where the nuisance parameter is set to its max1mum llkellhood
estimate, in order to make it unbiased in the sense of (31).



With this in mind, (29) can be interpreted as containing the
unbiased estimating equation

9:(¥) = 92(y) — B{9x(9) }
= gx(g) - E{gx(¢x(07 WL(Q)) + 2)} ’ (32)

where the nuisance parameter s also has been set to its
maximum likelihood estimate 7, (y). In consequence, g;(y) is
theoretically unbiased according to (31).

B. Ellipse Experiment

We consider recursively estimating a static ellipse z =
[a,tT, a,b]" with angle o = Z, center tT = [, ], and axes
a = 2, and b = 1 based on 750 noisy point measurements
of its boundary, which arrive sequentially in packages of five
measurements. In a first experiment (E1), the measurement
sources were uniformly drawn from the true ellipse and distorted
by Gaussian noise with C, = diag(.2,.02). In a second
experiment (E2), the sources were uniformly drawn from
only a fraction of % and distorted by Gaussian noise with
C, = diag(.1,.01). We implemented an estimator based on
our model against estimators based on the commonly used

models (in the presence of anisotropic noise) from Sec. IV.

Even though these experiments could be easily extended to
a dynamic tracking task by moving the ellipse between the
measurements, we decided to leave this component out, in
order to fully concentrate on the measurement updates.

Modeling an Ellipse: Ignoring its position and orientation,
an ellipse can be characterized by its semi-major axes a, and
b. Each source on the ellipse then can be reached according
to0 ¢,(0,8) = [a - cos(s), b - sin(s)]T, where s is an angle from
the interval [0, 2].

1) Spatial Distribution Model: For reference, we set up an
SDM (10), where p(s|z) was modeled by a uniform distribution
over the entire ellipse boundary. Note that this uniform model is
indeed true for E1, but not for E2. The integral was numerically
evaluated, using a polygon approximation [10] for the ellipse
with 72 vertices.

2) Proposed Model: For the proposed model (29), both
components I, = g,(y), and s, = m,(y) of the proposed

parametrization were calculated according to (11) and (19).

However, as both equations require finding the most likely
point on an ellipse, we also used a polygon approximation
for speed-up. Mean E{g. (%)}, and variance Var{g. ()} were
calculated using the sampling-based approach from (30) with
5 deterministic samples [20].

3) Traditional GAM: Finally, a GAM (13) was set up as a
representative model for distance minimizing approaches.

Estimators: The measurement update step for the proposed
model and the traditional GAM were implemented using a
common Unscented Kalman Filter (UKF) [20] while the SDM
required a more advanced likelihood-based filter, where we
decided for a Progressive Gaussian Filter (PGF) [21]. Between
the measurement update steps, we added prediction steps which
inflate the state covariance according to a random walk model,
in order to recover from local minima. The inflating covariance
matrix was set to v - I, where the factor + logarithmically
decreased from 102 to 10~ from the first to the last prediction
step. The ellipse state = was initialized as a circle from the first
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five measurements. The center ¢ was set to their mean and a, b
were both set to the maximum distance from the measurements
to the center.

Results: Fig. 10 visualizes the ellipses for the average
parameters over 100 runs for both experiments. These ellipses
are representative, as their standard deviation through all runs
and parameters was in a magnitude of 1072,

As can be seen, the new approach converges to the true
ellipse in both experiments with an average systematic error
in the magnitude of 10~2 through all parameters. In contrast,
the SDM approach finds the true ellipse in El, yet in E2 it
produces a systematic error for position and semi-major axis
in the magnitude of 10~!. Conversely, the GAM approach
manages to find the ellipse in E2, but in E1 it produces a
systema}tic error for the semi-major axis also in the magnitude
of 107-.

These behaviors have an intuitive interpretation: The SDM
bias boils down to the correct (E1) and incorrect (E2) assump-
tions about p(s|z), and the GAM bias is a result of its corrupt
likelihood (see Sec. IV). As our approach neither requires
assumptions on p(s|z), nor builds upon a corrupt probabilistic
model, it is not affected by these systematic errors.

However, in E1, the proposed approach has a slightly slower
convergence compared to the SDM approach. We suspect this
issue to be the price of ignoring the source distribution. In
numerical terms, where the SDM approach finds the true ellipse
right after ten update steps (Fig. 10a), our approach takes
~ 25 updates until convergence. Even though this drawback
practically should be of minor importance, it must be kept in
mind when designing the initialization procedure.

VIII. CONCLUSIONS

In this work, we proposed a partial likelihood for extended
objects that can be used in situations when there is no
knowledge about the distribution of the measurement sources.
For this purpose, we developed a re-parametrization of the
measurements to decouple their encoded information into “how
well” they fit to the object boundary and “where” on the
boundary they are related to. Then, ignoring the second type
of information allowed us to design a partial likelihood that
does not require incorporating a probability distribution on the
measurement sources. The resulting model was shown to be
theoretically unbiased and to outperform the state-of-the-art in
Monte Carlo experiments.

Specifically, we considered the common task of recursively
estimating the parameters of an ellipse based on sequentially
arriving measurements with anisotropic Gaussian noise char-
acteristics. We observed that our approach converges to the
true ellipse, regardless of whether measurements originate only
from a part of the ellipse boundary or whether they were
affected by high anisotropic noise. In contrast, the common
approaches of 1) using a spatial distribution and ii) minimizing
a distance to the boundary were either biased when applied to
a non-uniform source distribution or biased in the case of high
noise. In numerical terms, the systematic error in the estimated
parameters could be reduced by a full order of magnitude
compared to both traditional approaches.



== Spatial Distribution Model (PGF)
== Greedy Association Model (UKF)

Proposed Model (UKF)

(a) El: after 10 updates.

(d) El: after 150 updates.

== Spatial Distribution Model (PGF)
= Greedy Association Model (UKF)
Proposed Model (UKF)

(e) E2: after 10 updates. (f) E2: after 25 updates.

(g) E2: after 50 updates.

(h) E2: after 150 updates.

Figure 10: Results of the ellipse experiments over 100 runs. While in experiment E1, measurements originate from the entire
ellipse boundary, in E2, measurements originate only from % of the boundary. Note the anisotropic character of the noise.
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