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Abstract - This paper introduces new concepts and 

methods in the analysis of group motions over 

extended periods of time, and applies it to an 

example from the maritime domain. Group motion 

analysis includes these challenges: (1) represent 

complex motion patterns of multiple entities as 

they execute group maneuvers and behavior 

patterns; (2) learn these group motion patterns in 

a qualitative fashion, invariant to the number of 

entities participating; (3) recognize such learned 

maneuvers and behaviors as they unfold in future 

group tracking data; and (4) detect in real-time 

deviations of an entity from a recognized group 

maneuver or behavior, as such motion anomalies 

may indicate a vessel emerging from a group. The 

approach adopts a linear field theory to represent 

the relative motions of objects, in combination 

with learning & recognition methods that self-

organize three evolving field parameters into 3D 

clusters that represent maneuver categories, and 

categories sequences that represent behaviors. 
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1 Introduction 

Motion activity analysis of single and multiple entities 

involves the exploitation of tracks, both fragmented and 

extended, derived from numerous detections over time of 

extended objects. Utilizing sensors of various modalities, 

the problems encountered involve uncertain, missed and 

latent detections, multiple and varied detections from 

extended objects, mis-associations of detections across 

multiple objects, and mis-associations of object detections 

across multiple sensors. The tools to address these 

challenges are now well developed [1-5]. To analyze object 

activity over time, it became necessary to build pure, long 

tracks. Various methods of feature-aided tracking [6,7] 

became tools that helped disambiguate mis-associations 

among close objects and crossing tracks.  

In order to make progress in activity analysis from the 

exploitation of object tracks, the maritime domain became a 

favorite, since vessels tend to be well separated, and their 

speeds tend to be slow, compared to sensor resolutions and 

revisit rates. Again, much progress was made and 

demonstration systems fielded [8-14]. These methods 

suffice for one or a few well-separated vessels, but do not 

generalize to the case of groups of many extended vessels 

(creating clusters of detections) executing maneuvers and 

complex behaviors. The community turned to investigating 

“group tracking” methods [15,16], which aim to estimate 

group boundaries and centroid position over time, robust to 

missed and multiple detections of individual entities. 

Sorting out the members of a group from other background 

entities, all generating sensor returns, is a huge challenge in 

itself, though motion activity analysis may help provide 

new insights to solving this association problem.  

Yet none of the tools in our tracking toolbox enables us to 

address groups of varying numbers of entities executing 

coordinated maneuvers and complex behaviors that may 

reveal intent. Such motion activity, by its nature, is 

qualitative. We must introduce new concepts and methods 

that steer clear of the above limitations in order to both 

represent group motion activity and analyze it, so that 

qualitative descriptors can be learned and recognized from 

real-time sensor data.  

1.1 Challenges and Concepts 

This paper introduces new concepts and methods in the 

analysis of group motions over extended periods of time, 

and applies it to an example from the maritime domain. 

Group motion analysis includes the following challenges: 

(1) represent complex motion patterns of multiple entities 

which evolve over time to execute coordinated maneuvers 

and behavior patterns; (2) learn these group maneuvers and 

behaviors in a qualitative fashion, invariant to the number of 

vessels participating or number of returns detected by the 

sensor system; (3) recognize such maneuvers and behaviors 

as they unfold in real-time in future data sets of short tracks 

(i.e., positions & velocities); and (4) detect deviations of a 

vessel from a recognized group maneuver or behavior in 
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real-time, as such motion anomalies suggest a suspicious 

situation emerging from a moving group, or an event that 

disrupts the normal movements of a group.  

Our approach uses a locally linear field theory to 

represent the short-time track of a group of vessels at each 

moment in time, whereby individual vessel tracklets serve 

to sample the evolving local velocity field. An extended 

group of vessel tracklets then determines the instantaneous 

field coefficients via linear least-squares estimation. This 

local vector field is then decomposed into basis motion 

fields and geometric invariants, rotation (R), expansion (E) 

and deformation (D), relative to a moving group centroid. 

As the group moves as a whole, the relative vessel motions 

can execute a maneuver or sequence of maneuvers (i.e., a 

behavior) over time that is realized as a single trajectory 

through a 3D parameter space of group quantities {R,E,D}. 

Thus, a complex set of extended tracks or fragmented 

tracklets of many vessels is reduced to a single track of the 

group centroid plus trajectory through 3D parameter space. 

Real-time online learning methods are then employed to 

cluster the triplet values of {R,E,D} into self-organized 

categories that represent group internal maneuvers. A 

sequence of maneuver categories represents a group motion 

behavior that can also be learned as a category pattern. To 

learn and recognize both categories and sequences, we 

make use of neural pattern learning and recognition 

methods in combination with complex event processors. A 

maritime example is illustrated using OceanWatch data of 

the 2010 hijacking of a chemical tanker in the Gulf of Aden 

by Somali pirate vessels. 

2 Technical Approach 

The approach can be summarized in a few steps, which 

will be elaborated on and illustrated below. We focus here 

on a two-dimensional spatial domain, that of surface vessels 

forming a moving group, executing complex behaviors. 

• Vessel motions are taken relative to the group centroid; 

• Vessels velocities sample a locally linear vector field; 

• The instantaneous linear vector field can be 

decomposed into a sum of independent characteristic 

motions patterns: rotation, expansion, and deformation; 

• The 3 geometric invariant parameters of rotation (R), 

expansion (E) and deformation (D) are determined by 

least-squares fit of the vessel tracklets to a linear model 

of the vector field; 

• Evolving motion patterns lead to time-varying values of 

the parameters {R,E,D} which trace a trajectory in a 3-

dimensional parameter space, i.e., the RED-space; 

• Similar triples of {R,E,D} are clustered into categories 

that quantize the RED-space, with each motion 

category representing a characteristic “maneuver;” 

• A trajectory through RED-space corresponds to a 

temporal sequence of maneuvers, or a “behavior;” 

• Maneuvers and behaviors describe complex relative 

motion activity among a group of vessels, independent 

of the number of vessels, their absolute location, and 

their absolute heading (e.g., relative to North); 

• Once learned, group maneuvers can be recognized in 

future data in both real-time and forensic modes using 

pattern recognition in the quantized RED-space; 

• Once learned, group behaviors can be recognized in 

future data in both real-time and forensic modes using 

sequence recognition, i.e., evidence accumulation based 

on the transitions between motion categories over time; 

• The complete behavior of a vessel group is described 

by the behavior of its centroid and its internal activity 

sequence of behaviors; 

• Deviations by one or several vessels from a group 

maneuver can be detected by a sudden increase in the 

residual of its state vector relative to the least-squares 

fit to the instantaneous linear motion field. The quality 

of input track-level data will therefore affect the ability 

to detect deviations, by its affect on the residuals. 

Recognizing group behaviors and detecting deviations, can 

be combined with context to reason about possible intent.  

2.1 Vector Field Decomposition and      

Linear Motion Models 

By replacing group vessel positions and velocities with a 

vector field model relative to a moving centroid, we remove 

dependency of motion analysis on the number of vessels or 

number of sensor returns from multiple extended objects. 

The simplest velocity field model relative to a moving 

centroid is a zero velocity field, implying the group is 

moving in a rigid formation, and all behavior is described 

by the track of the group centroid. The fixed spatial pattern 

of vessels around the centroid may provide additional 

information as to intent. The simplest velocity field model 

that can represent motion of vessels internal to the group is 

a linear vector field. Higher order polynomial vector fields 

can describe more complex local motion patterns. But the 

underlying assumption is that the internal motion field is 

analytic and continuous in space and time.  

A linear vector field is often used to describe the local 
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Fig. 1 – A 6-dot motion pattern in 2-D is decomposed as a sum 

of 3 characteristic linear fields plus its centroid motion. 
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kinematics of continuous media (fluids, elastics, plastics), 

and its decomposition into anti-symmetric, and symmetric 

(both with and without trace) elements of the velocity 

gradient tensor is attributed to Cauchy and Stokes [17,18]. It 

has a simple and intuitive graphical interpretation, as shown 

in Figure 1 for the 2-D motion pattern of 6 colored dots (and 

their centroid) as they move for a short time. The Cauchy-

Stokes decomposition theorem applies to 3-D motion fields 

as well as 2-D motion fields, resulting in the same 3 

geometric invariant parameters {R,E,D}. However, there 

will result two angles (instead of only one here) to describe 

the orientation of the deformation axis (see Fig.1). These 

geometric invariants are simply the eigenvalues of the 

decomposed velocity gradient tensor, and the angles orient 

the eigenvectors of the traceless symmetric gradient tensor. 

For a group detected as N tracklets, the group centroid 

motion VC and vessel relative velocity ν i is given by 
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The local motion model is a linear velocity field, its spatial 

derivatives form the elements of the velocity gradient tensor 
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The derivatives are estimated from the x and y moments of 

the relative velocities with respect to the centroid (as 

follows from the least-squares fit to a linear vector field). 

We decompose (2) into the sum of three matrixes, the 

anti-symmetric rotation and the symmetric expansion that 

are both isotropic, plus the symmetric deformation which is 

traceless and has its major axis oriented at an angle Θ 

relative to the x-axis (see Fig.1) as determined by its single 

eigenvalue D. We can write this decomposition most simply 

in the local reference frame of the deformation eigenvectors 
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Here, R is the group Rotation/Circulation Rate (Curl), E is 

the group Expansion/Contraction Rate (Div), and D is the 

group Deformation Rate (Def). The geometric invariant 

parameters {R,E,D} and orientation angle Θ are obtained 

from the estimated velocity gradients as follows: 

R = vy, x − vx, y( )
                                     

(4a)
 

 
E = vx, x + vy, y( )

                                      
(4b)

 

D = {(vx, x − vy, y)
2
+ (vx, y+ vy, x)

2
}
1/2

     (4c) 

    

tanΘ =
D− (vx, x − vy, y)

(vx, y+ vy, x)                     (4d) 

2.2 Group Behaviors as Parameter-Space 

Trajectories and Category Sequences  

With each (possibly asynchronous) update of sensor 

reports, tracklets are formed and temporally interpolated 

back to a common point in time, whereby the estimated 

positions and velocities are used to determine a linear 

motion field model according to equations (1-4). This 

model is described by its three parameters {R,E,D} that  

evolve over time as the vessel group maneuvers. Thus, the 

group internal motions trace a trajectory through the 3-

dimensional RED-space. The triplet of values at each update 

can be used as an input vector to an unsupervised clustering 

algorithm that quantizes the parameter space in real-time, 

i.e., it forms categories and adapts category boundaries as 

the triplet values are formed online. A very effective and 

simple method for such adaptive online pattern learning, 

recognition and adaptation of categories, is known as the 

Fuzzy ARTMAP algorithm [19,20] based on the Adaptive 

Resonance Theory (ART) of neural pattern learning.  We 

have used Fuzzy ARTMAP extensively for live, real-time, 

and forensic target and motion pattern learning and 

detection [6-11]. Figure 2 illustrates the quantization of 

motion pattern parameters by a Fuzzy ARTMAP learning 

network, creating categories in the form of hyper-boxes in 

parameter space. Multiple categories can be learned that 

become associated with the same class of maneuver, as 

illustrated in Figure 2, and class names may be assigned by 

a naval analyst. However, the data clusters/categories 

themselves form automatically by the learning network.  

Figure 3 illustrates the trajectory (red curve linking 81 

{RED-triplets) traced through motion RED-space by a 

simulated set of 5 maneuvering pirate vessels (described in 

Section 3) as they head towards an oil tanker transiting the 

Gulf of Aden. The learning network quantizes the sampled 

volume of parameter space into only 7 discrete maneuver 

categories, each containing subsets of the 81 RED-triplets. 

 

 

 

Fig. 2 - Motion RED-triplets are quantized by a Fuzzy 

ARTMAP learning network, forming categories that 

correspond to hyper-boxes in RED-parameter space. 

 

Learned categories as 

clusters in RED-space 

RED-Feature Vector 
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3 Example from OceanWatch Tanker 

Data + Simulated Pirate Vessels 

To illustrate the concepts and methods introduced here, 

we turn to an example based on the hijacking of the tanker 

MV Panega while transiting the Gulf of Aden on May 11, 

2010 [21]. A fleet of pirate vessels departed from the 

Somali coast, intercepting the vessel as it took evasive 

action, and took the crew hostage for 4 months! This event 

involved two groups of vessels; the Panega itself was 

sailing as part of a guarded convoy, and the group of pirate 

vessels that departed from the coast of Somalia. AIS reports 

were logged from the legitimate maritime traffic in the Gulf 

of Aden, and that data is available from the unclassified 

NOAA Ocean Watch database
‡
. We simulated track data for 

a group of 5 pirate vessels sailing from the coast of Somalia 

to the Panega’s location where it was hijacked. Each of the 

5 pirate vessels was assigned a parameterized sinusoidal 

trajectory, beginning on the Somali coast at the Horn of 

Africa, and ending at the location of the hijacking event (see 

the group of colored trajectories at the top of Fig. 6). We 

will analyze the two vessel groups separately, to illustrate 

both pirate vessel group behavior learning, and tanker 

motion anomaly detection.  

3.1 Normalcy and Hijacking in the Gulf 

Figure 4 illustrates a large number of AIS vessel tracks in 

the Gulf of Aden, transiting both easterly and westerly 

along primarily two opposing traffic corridors. Yemen is to 

the north of the Gulf, the Somai coast is to the south, 

Djibouti is due west, and the Red Sea to the northwest. 

Some tracks between ports along the Yemeni and Somali 

coasts are also apparent. 

                                                
‡ We thank Brian Sandberg of CONARCH, LLC, for 

providing us the AIS data used in this example. 

Figure 5 focuses around the time interval of the hijacking, 

at 15:36 UTC on May 11, 2010. The location of the 

hijacking event is shown highlighted and zoomed-in, and 

the AIS reports of the Panega are visible while it is sailed to 

the tip of the Somali coast where the crew is taken hostage. 

Of course, the pirate ships weren’t transmitting AIS reports, 

but had there been airborne video surveillance at the time, 

their small boats might have been detected and tracked [11].  

3.2 Pirate Group Maneuvers & Behavior 

Figure 6 (top) illustrates a simulated set of 5 Somali pirate 

vessel tracks that have departed from the tip of the Horn of 

Africa and are closing in on the Panega as it transits the 

Gulf of Aden in a heavy fog. The simulated vessel group 

tracks are superimposed on the real AIS data set. The red 

reports (circles) correspond to the westerly lane of vessel 

traffic. The purple reports (circles) are the vessels heading 

east including the Panega and its convoy of vessels. Figure 

6 (lower left) shows the configuration of the pirate vessels 

relative to their group centroid (CG) in an evolving lat/long 

 
Fig. 4 – Normal vessel traffic in the Gulf of Aden on 

March 11, 2010 as shown by their AIS reports. 

 

Fig. 3 - A trajectory through motion parameter space is 

generated by 5 maneuvering vessels. The 81 {R,E,D} 

triplets are quantized into 7 motion pattern categories. 

 

 

 

Fig. 5 – The hijacking event occurs when vessel traffic 

in the Gulf is sparse due to a fog. The Panega sends 

AIS reports as it is sailed towards the Somali coast. 
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coordinate system. This picture corresponds to frame 75 of 

81 frames in a motion sequence. For each frame of the 

sequence, the motion pattern analysis described in Section 2 

has been applied to the simulated group of 5 pirate vessels, 

and the group internal motion is represented by its trajectory 

in RED-space as shown in Figure 6 (lower right). Thus, 

while the group centroid motion is a fairly straight track 

from the Somali coast to the location of the Panega, the 

swarming behavior of the pirate vessels is revealed as the 

looping trajectory of the group in RED-space.  

 

The trajectory in Figure 6 (lower right) is the same one 

shown in Figure 3, where we found the trajectory could be 

represented as a sequence of 7 learned maneuver categories. 

A very similar trajectory, and the same category sequence 

would likely occur had their been 6 instead of 5 pirate 

vessels, or only 4, or possibly a varying number of vessels 

due to noisy object detections and tracks. The point is, that 

the pirate vessel group exhibits a qualitative behavior that 

an analyst (or Panega crew member) might characterize as 

swarming.  

3.3 Tanker Behavior & Anomaly Detection 

We can also analyze the motion of the group of vessels 

traveling in the vicinity of the Panega, including its 

guarding convoy. We focus in on those vessels within 20km 

of the Panega and consider their AIS reports within a 3 hour 

window around each of the Panega’s reports. We also 

distinguish between those vessels heading west and those 

heading eastward along with the Panega. Figure 7 (top) 

shows three temporal frames (time index = 8, 12, 21) that 

precede the hijacking event. The blue dots indicate the 

actual lat/long coordinates reported by the Panega’s AIS. 

The open red squares are the interpolated locations of the 

vessels traveling in the vicinity of the Panega, shown at the 

corresponding time index. They form a group moving in the 

easterly lane of vessel traffic. However, the Panega is 

falling behind its group, and by time index 21 it is rather 

isolated from the other vessels. (The filled red squares 

visible in the frame at time index 21 are the AIS reports of a 

vessel that was heading west.) This progression of vessel 

motion around the Panega is quite obvious when watching 

the AIS reports play out as a moving sequence, as was 

shown at the Fusion 2015 conference.  

Figure 7 (middle) shows the evolution of the RED-

parameters derived from the AIS reports for the group of 

vessels traveling in proximity of the Panega, and includes 

the Panega itself. Rather than plotting this as a trajectory 

through RED-space, we show each of the invariant motion 

parameters as a function of the time index for the group. 

The group motion parameters evolve smoothly, though at 

time index 15 there is a sudden jump due to the lack of AIS 

reports around that time (as is evident when viewing the 

AIS movie).  The bottom panel of Figure 7 graphs the RMS 

error associated with the least-squares fit of the AIS track 

data to the linear velocity field model (blue curve) as well 

as the maximum error between each AIS derived data point 

and the estimated motion field model (blue asterisks). We 

see that the group RMS error remains below 1, while the 

max data point error starts to grow around time index 19, at 

which time the maximum vessel error exceeds, by a factor 

of 3X, the field RMS error. If we remove the vessel with 

this maximum error, and then re-compute the linear model 

for the remaining vessels, the RMS error drops to about 1/2 

(red squares) and the deviation of that max error vessel from 

the new linear model exceeds by 6X or 12X the new RMS 

value. The vessel producing this very high deviation from 

the remaining group motion field is, indeed, the Panega. Its 

motion has become anomalous with respect to the group it 

had been traveling with. Having fallen behind its group, 

once it saw the approaching pirate vessels, it began to take 

evasive action. This maneuver stood out as different from 

 

 

Fig. 7 – Detection of the Panega deviating from 

its group motion as it tries to evade pirate 

vessels approaching. 

Fig. 6 – Simulated pirate vessel tracks are combined 

with real AIS data of vessels in the Gulf of Aden at the 

time of the Panega hijacking. Pirate vessel motions are 

shown in their centroid frame of reference along with 

the group trajectory in parametric RED-space. 
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the rest of the group in its convoy, and could have been 

detected in real-time using this new approach. 

This example illustrates the potential of our new velocity-

field motion-modeling approach to detect anomalous vessel 

motions among a group of moving vessels. It is relevant to 

detection of a smuggling vessel breaking away from a 

nearby fishing fleet, or a terrorist vessel hiding in the 

presence of pleasure boats in the vicinity of a harbor. 

Unfortunately, due to a lack of ongoing financial support 

(aka, “US Congressional sequestration”), this research was 

terminated prior to conducting further assessment of 

anomaly-detection performance on this or any other data 

sets. As implied by the comments of one of our manuscript 

anonymous reviewer’s, we can expect trade-offs between 

input track-level data quality and anomaly-detection 

performance. More thorough study should enable the 

construction of performance ROC curves to help reveal 

capabilities and limitations of this approach. 

4 Conclusion 

We have introduced several new concepts and methods 

for analyzing the motion of multiple entities as they 

maneuver and execute coordinated group behaviors. We 

utilize short-time tracks of multiple detections to estimate a 

locally linear vector field that evolves in time. Thus, long-

term group motion is represented, independent of the 

number of object detections, by an extended track of the 

group centroid and a single trajectory of the group’s relative 

motion parameters through a 3-dimensional parameter space 

of group rotation (R), expansion (E), and deformation (D). 

Learned clusters in this RED-space correspond to categories 

that represent group maneuvers, and temporal sequences of 

categories represent behaviors. These maneuvers and 

behaviors can be learned and recognized in real-time using 

fuzzy pattern recognition (e.g., Fuzzy ARTMAP) in 

combination with a complex event processor like Seer or 

Semantic Seer [22]. Importantly, anomalous motions of 

even a single entity with respect to the group can be easily 

detected from the residuals between individual vessel 

velocities and the instantaneous linear field model at each 

vessel’s location. We have illustrated these methods using 

OceanWatch AIS data in the context of a tanker hijacking 

by pirates in the Gulf of Aden in 2010. 
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