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Abstract—This paper presents a model for tracking of extended
targets whose extent cannot be described by a simple geometric
shape such as an ellipse or a rectangle. The extended target shape
is represented by a number Ns of elliptic subobjects, where Ns

is assumed known. Because an extended target is a rigid body,
the subobject positions must necessarily be estimated as a single
state with unified kinematics, and the full covariance matrix must
be estimated. In addition to the position and kinematics, for
each subobject the proposed model also estimates the number
of measurements generated by the shape, as well as a random
matrix as representation of the size and shape. A Gamma
Gaussian inverse Wishart implementation is proposed, and the
state prediction and update are given. A simulation study shows
the merits of the model compared to extended target modeling
without unified kinematics.

Index Terms—Target tracking, extended target, group target,
measurement rate, random matrix, gamma distribution, Gaus-
sian distribution, inverse Wishart distribution.

I. INTRODUCTION

Target tracking can be defined as the processing of a

sequence of measurements obtained from a target in order to

maintain an estimate of the target’s current state. In this context

an extended target is defined as a target that potentially gives

rise to more than one measurement per time step. Closely

related to an extended target is group target, defined as a

cluster of point targets that cannot be tracked individually, but

has to be treated as a single object. In extended target tracking

the multiple measurements make it possible to estimate not

only the target’s position and its kinematics (speed, heading,

etc), but also to estimate the target’s extent in the measurement

domain, i.e. to estimate the shape, the size and the orientation

of the target. To estimate the target’s extent requires a mea-

surement model that relates the multiple measurements to the

states that govern the extent.

Spatial distribution models in extended target tracking ap-

peared in [6], [7]. Under this model each extended target mea-

surement is a random sample from a probability distribution

that is dependent on the extended target state. A number of

different extended target models have been presented, where

the targets are modeled as sticks, ellipses, rectangles, or

general shapes, see e.g. [2], [9], [17], [20].

In the random matrix extended target model, originally

proposed in [17], the extended target state is the combination

of a kinematic state vector xk and an extent matrix Xk. The

vector xk represents the target’s position and kinematics, and

the matrix Xk represents the target’s size and shape, i.e. its
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Fig. 1. Examples in 2D of extended/group targets that are represented by
elliptic subobjects. Neither one of the examples has a shape that can be
described by a simple geometric shape.

spatial extent. The matrix Xk is modeled as being symmetric

and positive definite, which implies that the target shape is

approximated by an ellipse. The random matrix model was

modified in [5] to allow for a more general class of kinematic

vectors. Additional work on the measurement update and

prediction update can be found in [14], [18], [23]. Estimation

of multiple objects within the random matrix framework can

be found in [11], [19], [21], [24]–[26].

In this paper we consider state estimation for extended

targets whose extents cannot be approximated by a simple

geometric shape such as an ellipse or a rectangle. Multiple

ellipses are used to describe the shape and size of a single

extended target. Using multiple simple shapes alleviates the

limitations posed by the implied elliptic target shape1, and

also retains, on a subobject level, the simplicity of the random

matrix model [5], [17].

The extended target is modeled as a collection of elliptical

subobjects, see Fig. 1, and the positions and extents of the

subobjects are Gaussian inverse Wishart distributed. The scope

of the paper is limited by the assumptions that a) there is ex-

actly one target present; b) there are no clutter measurements;

and c) the number of subobjects is constant and known. To

handle multiple targets and clutter, the presented work can be

integrated into a multiple target framework, e.g. an extended

target PHD/CPHD filter [8], [10], [11], [21], [22]. Estimating

the number of subobjects is left for future work.

1As the number of ellipses grows, their combination can form nearly any
given shape.
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TABLE I
NOTATIONS

• Rn is the set of real column vectors of length n, Sn++ is the set of
symmetric positive definite n×n matrices, Sn+ is the set of symmetric positive
semi-definite n× n matrices, and N is the set of non-negative integers.
• Id is a d× d identity matrix, 1d×e is a d× e all-one matrix, and 0d×e

is a d× e all-zero matrix.
• | · | is absolute value, ‖ · ‖2 is Euclidean norm, and ‖ · ‖F is Frobenius
norm.
• A⊗B is Kronecker product for matrices A and B.
• PS (n; γ) denotes a Poisson probability mass function (pmf) over the
integer n ∈ N with rate parameter γ > 0.
• G (γ ; α, β) denotes a Gamma probability density function (pdf) over the
scalar γ > 0 with scalar shape parameter α > 0 and scalar inverse scale
parameter β > 0.
• N (x ; m, P ) denotes a multi-variate Gaussian pdf over the vector x ∈
Rnx with mean vector m ∈ Rnx , and covariance matrix P ∈ S

nx
+ .

• IWd (X ; v, V ) denotes an inverse Wishart pdf over the matrix X ∈ Sd++

with scalar degrees of freedom v > 2d and parameter matrix V ∈ Sd++, see,
e.g. [16, Definition 3.4.1].
• Wd (X ; w,W ) denotes a Wishart pdf over the matrix
X ∈ Sd++ with scalar degrees of freedom w ≥ d and

parameter matrix W ∈ Sd++, see, e.g. [16, Definition 3.2.1].

The rest of the paper is outlined as follows. The next

section presents the proposed extended target model, and

gives a gamma Gaussian inverse Wishart implementation.

In Section III some implementation issues are presented. A

simulation study is presented in Section IV, and the paper is

concluded in Section V.

II. PROPOSED MULTIPLE ELLIPSE MODEL

In this section we introduce the new extended target model.

Some notation is given in Table I.

A. Extended target state

The extended target is made up of a combination of Ns

d-dimensional subobjects, where Ns is constant and known.

Each subobject i is described by a position p
(i)
k ∈ R

d, a

measurement rate2 γ
(i)
k > 0 and an extent state X

(i)
k ∈ S

d
++,

where sub-index k refers to discrete time step tk. The number

of measurements per time step from a subobject is modeled as

Poisson distributed with measurement rate γ
(i)
k > 0 [6], [7].

The extent describes the size and the shape of the subobject;

within the random matrix framework the shape is an ellipse.

Because extended targets in most cases can be assumed to

be rigid bodies the subobjects have unified dynamics, by which

we mean that all subobjects move forward with the same speed

and the same heading, turn with the same turn-rate, etc. The

unified dynamics vector is ck =
[

vT

k ωk

]T
∈ R

nc , where

vk ∈ R
d is the Cartesian velocity vector and ωk is the turn-

rate. The turn-rate is defined w.r.t. the extended target’s center

of mass pc
k,

pc
k =

1

Ns

Ns
∑

i=1

p
(i)
k . (1)

2In this paper the term measurement rate denotes the number of measure-
ments generated by the subobject.

Note that ck can be extended to also include parameters for

individual subobject dynamics. This would be useful for group

tracking, where the individual targets in the group may shift

their positions within the group.

Because the extended target is a rigid body, a detection

from one of the subobjects will contain information not only

about that subobject but also about all other subobjects. It is

therefore important to model the subobject positions p
(i)
k and

unified dynamics as a single state, such that the correlations

between the positions and the kinematics can be estimated.

In this work the positions and dynamics of all subobjects are

jointly described by a kinematic state xk ∈ R
nx ,

xk =
[(

p
(1)
k

)T

. . .
(

p
(Ns)
k

)T

cT

k

]T

. (2)

For brevity the measurement rates, kinematic state and extent

states are abbreviated as follows

ξk =
(

γ
(1)
k , . . . , γ

(Ns)
k ,xk, X

(1)
k , . . . , X

(Ns)
k

)

(3)

where ξk is referred to as the extended target state. Let Zk

be a set of target generated measurements Zk = {z
(j)
k }

nz,k

j=1 ,

where nz,k is the number of measurements, z
(j)
k ∈ R

d, ∀j,

and let Zk be a sequence of measurement sets from time t0
to time tk.

The distribution of the extended target state ξk, conditioned

on the history of measurement sets, is represented by a

distribution mixture

p
(

ξk
∣

∣Zk
)

=

Jk|k
∑

ℓ=1

w
(ℓ)
k|kGGIW

(

ξk ; ζ
(ℓ)
k|k

)

, (4)

where Jk|k is the number of mixture components,
∑

ℓ w
(ℓ)
k|k =

1 and GGIW ( · ; · ) denotes the Gamma Gaussian inverse

Wishart density,

GGIW
(

ξk ; ζk|k
)

= N
(

xk ; mk|k, Pk|k

)

(5)

×
Ns
∏

i=1

(

G
(

γ
(i)
k ; α

(i)
k|k, β

(i)
k|k

)

IWd

(

X
(i)
k ; v

(i)
k|k, V

(i)
k|k

)

)

ζk|k is an abbreviation of all the parameters involved.

B. Prediction

To handle different types of motion Mk different motion

models are used. With a posterior distribution of the form (4)

the predicted distribution is

p
(

ξk+1

∣

∣Zk
)

=

Mk
∑

m=1

Jk|k
∑

ℓ=1

πm,m′(ℓ)w
(ℓ)
k|kGGIW

(

ξk ; ζ
(m,ℓ)
k+1|k

)

,

(6)

where πm,m′(ℓ) is the probability of a transition to the current

mode m from the previous mode m′(ℓ) that component ℓ was

in.

1008



1) Measurement rates: For the mth motion mode the

parameters are predicted as

α
(m,ℓ,i)
k+1|k =

α
(ℓ,i)
k|k

η
(m)
k

, β
(m,ℓ,i)
k+1|k =

β
(ℓ,i)
k|k

η
(m)
k

, (7)

which corresponds to keeping the expected value of γ
(i)
k

constant, while increasing the variance with a factor η
(m)
k [12].

This prediction is a type of exponential forgetting with an

effective window length of we =
η
(m)
k

η
(m)
k

−1
, where 1

η
(m)
k

< 1 is

the forgetting factor.

2) Kinematic state: For the mth motion mode the kinematic

state transition density is modeled as

p(xk+1|xk) =N
(

xk+1 ; f
(m)(xk), Q

(m)
k+1

)

(8)

The motion model describes a coordinated turn for the ex-

tended object,

f (m)(xk) = g(m)(ωk)xk +w
(m)
k (9a)

g(m)(ωk) =





L(ωk) 1Ns×1 ⊗ U(ωk) 02Ns×1

02×2Ns
R(ωk) 02×1

01×2Ns
01×2 e−α(m)T



 (9b)

L(ωk) =
1Ns×Ns

⊗ Id

Ns

+

(

INs
−

1Ns×Ns

Ns

)

⊗R(ωk) (9c)

R(ωk) =

[

cos(Tωk) − sin(Tωk)
sin(Tωk) cos(Tωk)

]

(9d)

U(ωk) =

[

sin(Tωk)
ωk

− 1−cos(Tωk)
ωk

1−cos(Tωk)
ωk

sin(Tωk)
ωk

]

(9e)

where T is the sample time. The process noise w
(m)
k is zero

mean Gaussian with covariance

Q
(m)
k =







Υ
(m)
1 Υ

(m)
2 02N×1

(Υ
(m)
2 )T υ

(m)
xy T 2I2 02×1

01×2N 01×2 υ
(m)
w






(10a)

Υ
(m)
1 =1N×N ⊗

υ
(m)
xy T 4

4
I2 +Q

(m)
d (10b)

Υ
(m)
2 =1N×1 ⊗

υ
(m)
xy T 3

2
I2 (10c)

Using the extended Kalman filter prediction formulas the

predicted mean m
(m,ℓ)
k+1|k and covariance P

(m,ℓ)
k+1|k are

m
(m,ℓ)
k+1|k = f (m)(m

(ℓ)
k|k), (11a)

P
(m,ℓ)
k+1|k = F

(m,ℓ)
k|k P

(ℓ)
k|k

(

F
(m,ℓ)
k|k

)T

+Q
(m)
k+1 (11b)

where F
(m,ℓ)
k|k = ∇xf

(m)(x)
∣

∣

x=m
(ℓ)

k|k

is the gradient of

f (m)( · ) evaluated at the mean m
(ℓ)
k|k.

3) Random matrices: For the mth motion mode we use the

transition density

p(X
(i)
k+1|xk, X

(i)
k ) (12)

= Wd

(

X
(i)
k+1 ; n

(m)
k+1,

(

n
(m)
k+1

)−1

R(ωk)X
(i)
k R(ωk)

T

)

,

where n
(m)
k+1>d−1 is a scalar design parameter and the matrix

transformation M
(m)
xk

, is a rotation matrix. Details on how

the parameters v
(m,ℓ,i)
k+1|k and V

(m,ℓ,i)
k+1|k are computed are given

in [14].

C. Update

Let θ denote a possible measurement-to-subobject associa-

tion event, and let Θ denote the set of all possible association

events. For measurement generation, we assume the following:

Assumption 1: The subobjects generate measurements in-

dependently of each other. For each subobject, the gener-

ated measurements are independent. Each measurement is

generated by exactly one subobject. Measurement origin is

unknown. �

Remark: These assumptions are analogous to standard assump-

tions in multiple target tracking, see e.g. [1]. �

Under an association event θ the measurement set Zk can be

partitioned into Ns (possibly empty) subsets that correspond

to the association events θ,

Zk =

Ns
⋃

i=1

Z
(θ,i)
k , Z

(θ,i)
k =

{

z
(θ,i,j)
k

}n
(θ,i)
z,k

j=1
, (13)

where the ith subset Z
(θ,i)
k was generated by the ith subobject.

Conditioned on θ the measurement likelihood is

p (Zk |ξk, θ ) =
Ns
∏

i=1

p
(

Z
(θ,i)
k

∣

∣

∣γ
(i)
k ,xk, X

(i)
k

)

. (14)

If the ith subset is empty (i.e. n
(θ,i)
z,k = 0) the subset likelihood

is simply the likelihood of an empty set of measurements,

p
(

Z
(θ,i)
k

∣

∣

∣γ
(i)
k ,xk, X

(i)
k

)

= PS
(

0; γ
(i)
k

)

. (15)

If n
(θ,i)
z,k > 0 the subobject likelihood is

p
(

Z
(θ,i)
k

∣

∣

∣γ
(i)
k ,xk, X

(i)
k

)

(16)

=n
(θ,i)
z,k !PS

(

n
(i)
z,k; γ

(i)
k

)

n
(θ,i)
z,k
∏

j=1

N
(

z
(i,j)
k ; H

(i)
k xk, X

(i)
k

)

.

where the measurement models H
(i)
k are

H
(i)
k =

[

0d×(i−1)d Id 0d×(Ns−i)d 0d×nc

]

, (17)

for i = 1, . . . , Ns.

Let the predicted mixture distribution be

p
(

ξk
∣

∣Zk−1
)

=
J
∑

ℓ=1

w(ℓ)p(ℓ)
(

ξk
∣

∣Zk−1
)

. (18)

By the total probability theorem the density p
(

ξk|Z
k
)

is

p
(

ξk|Z
k
)

=
∑

θ∈Θ

p
(

ξk|Z
k, θ

)

P
(

θ|Zk
)

, (19)

where p
(

ξk|Z
k, θ

)

is the Bayes updated distribution for the

association event θ, and P
(

θ|Zk
)

is the probability of the
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association event θ. Without any prior information the as-

sociation events can be assumed to be equally likely, i.e.

P
(

θ|Zk−1
)

= |Θ|−1. In this case we have

P
(

θ|Zk
)

=

∑J
ℓ=1 w

(ℓ)p(ℓ)
(

Zk|θ,Z
k−1

)

∑

θ′∈Θ

∑J
ℓ′=1 w

(ℓ′)p(ℓ′) (Zk|θ′,Zk−1)
, (20)

where we have again used the total probability theorem. For

the association event θ the Bayes updated distribution is

p
(

ξk
∣

∣Zk, θ
)

=

∑J
ℓ=1 w

(ℓ)p(ℓ)
(

Zk

∣

∣θ,Zk−1
)

p(ℓ)
(

ξk
∣

∣Zk, θ
)

∑J
ℓ=1 w

(ℓ)p(ℓ) (Zk |θ,Zk−1 )
.

(21)

Combining (18), (19), (20) and (21) gives the posterior distri-

bution

p
(

ξk|Z
k
)

=
∑

θ∈Θ

J
∑

ℓ=1

w(ℓ) (θ) p(ℓ)
(

ξk
∣

∣Zk, θ
)

, (22)

w(ℓ) (θ) =
w(ℓ)p(ℓ)

(

Zk|θ,Z
k−1

)

∑

θ′∈Θ

∑J
ℓ′=1 w

(ℓ′)p(ℓ′) (Zk|θ′,Zk−1)
, (23)

where, following the assumption that the subobjects generate

measurements independently, for the predicted pdf of Zk we

have

p(ℓ)
(

Zk|θ,Z
k−1

)

=

Ns
∏

i=1

p(ℓ)
(

Z
(θ,i)
k

∣

∣

∣Z
k−1

)

. (24a)

p
(

Zk|Z
k−1

)

=
1

|Θ|

∑

θ∈Θ

J
∑

ℓ=1

w(ℓ)p(ℓ)
(

Zk|θ,Z
k−1

)

, (24b)

The predicted pdf p
(

Zk|Z
k−1

)

is useful in a multiple target

tracking scenario, e.g. if the presented extended target model

is used in an implementation of an extended target PHD or

CPHD filter [21], [22].

For an association event θ ∈ Θ the centroid measurement

and scatter matrix are defined as follows,

z̄
(θ,i)
k =

1

n
(θ,i)
z,k

n
(θ,i)
z,k
∑

j=1

z
(θ,i,j)
k , (25a)

Z
(θ,i)
k =

n
(θ,i)
z,k
∑

j=1

(

z
(θ,i,j)
k − z̄

(θ,i)
k

)(

z
(θ,i,j)
k − z̄

(θ,i)
k

)T

. (25b)

The same measurement model is used for all motion models.

With a predicted distribution

p
(

ξk
∣

∣Zk−1
)

=

Jk|k−1
∑

ℓ=1

w
(ℓ)
k|k−1GGIW

(

ξk ; ζ
(ℓ)
k|k−1

)

(26)

the corrected distribution is

p
(

ξk
∣

∣Zk
)

=
∑

θ∈Θ

Jk|k−1
∑

ℓ=1

w
(θ,ℓ)
k|k GGIW

(

ξk ; ζ
(θ,ℓ)
k|k

)

(27)

Next we give the measurement updated parameters and pre-

dicted likelihood for the measurement model described above.

Due to page length restrictions the details of the proof are not

given here but can be found in [15].

1) Measurement rates:

α
(θ,ℓ,i)
k|k = α

(ℓ,i)
k|k−1 + n

(θ,i)
z,k , β

(θ,ℓ,i)
k|k = β

(ℓ,i)
k|k−1 + 1. (28)

2) Kinematic state:

m
(θ,ℓ)
k|k = m

(ℓ)
k|k−1 +K

(θ,ℓ)
k

(

z̄
(θ)
k −Hkm

(ℓ)
k|k−1

)

, (29a)

P
(θ,ℓ)
k|k = P

(ℓ)
k|k−1 +K

(θ,ℓ)
k HkP

(ℓ)
k|k−1, (29b)

z̄
(θ)
k =

[(

z̄
(θ,1)
k

)T

· · ·
(

z̄
(θ,Ns)
k

)T
]T

, (29c)

Hk =
[(

H
(1)
k

)T

· · ·
(

H
(Ns)
k

)T
]T

, (29d)

K
(θ,ℓ)
k = P

(ℓ)
k|k−1H

T

k

(

S
(θ,ℓ)
k

)−1

, (29e)

S
(θ,ℓ)
k = HkP

(ℓ)
k|k−1H

T

k + X̂
(θ,ℓ)
k|k−1, (29f)

X̂
(θ,ℓ)
k|k−1 = blkdiag





X̂
(ℓ,1)
k|k−1

n
(θ,1)
z,k

, . . . ,
X̂

(ℓ,Ns)
k|k−1

n
(θ,Ns)
z,k



 , (29g)

X̂
(ℓ,i)
k|k−1 =

V
(ℓ,i)
k|k−1

v
(ℓ,i)
k|k−1 − 2d− 2

. (29h)

3) Random matrices:

v
(θ,ℓ,i)
k|k =v

(ℓ,i)
k|k−1 + n

(θ,i)
z,k , (30a)

V
(θ,ℓ,i)
k|k =V

(ℓ,i)
k|k−1 + Z

(θ,i)
k +N

(θ,ℓ,i)
k|k−1 , (30b)

N
(θ,ℓ,i)
k|k−1 =

(

X̂
(ℓ,i)
k|k−1

)
1
2
(

S
(θ,ℓ,i)
k

)− 1
2

ε
(θ,ℓ,i)
k|k−1

×
(

ε
(θ,ℓ,i)
k|k−1

)T (

S
(θ,ℓ,i)
k

)−T
2
(

X̂
(ℓ,i)
k|k−1

)
T
2

, (30c)

ε
(θ,ℓ,i)
k|k−1 =z̄

(θ,i)
k −H

(i)
k m

(ℓ)
k|k−1, (30d)

S
(θ,ℓ,i)
k =H

(i)
k P

(ℓ)
k|k−1

(

H
(i)
k

)T

+
X̂

(ℓ,i)
k|k−1

n
(θ,i)
z,k

, (30e)

Matrix square-roots are computed using, e.g., Cholesky fac-

torization.

4) Weights:

w
(θ,ℓ)
k|k =

w
(ℓ)
k|k−1

∏Ns

i=1 L
(θ,ℓ,i)
k

∑

θ′∈Θ̄

∑Jk|k−1

ℓ′=1 w
(ℓ′)
k|k−1

∏Ns

i′=1 L
(θ′,ℓ′,i′)
k

, (31a)

L
(θ,ℓ,i)
k =

Γ
(

α
(θ,ℓ,i)
k|k

)

Γ
(

α
(ℓ,i)
k|k−1

)

(

β
(ℓ,i)
k|k−1

)α
(ℓ,i)

k|k−1

(

β
(θ,ℓ,i)
k|k

)α
(θ,ℓ,i)

k|k

×

(

n
(θ,i)
z,k πn

(θ,i)
z,k

)− d
2

2−
n
(θ,i)
z,k

(d−1)

2

∣

∣

∣

∣

(

X̂
(ℓ,i)
k|k−1

)− 1
2

S
(θ,ℓ,i)
k

(

X̂
(ℓ,i)
k|k−1

)−T
2

∣

∣

∣

∣

1
2

×

Γd

(

v
(θ,ℓ,i)

k|k
−d−1

2

)

Γd

(

v
(ℓ,i)

k|k−1
−d−1

2

)

∣

∣

∣V
(ℓ,i)
k|k−1

∣

∣

∣

v
(ℓ,i)
k|k−1

−d−1

2

∣

∣

∣V
(θ,ℓ,i)
k|k

∣

∣

∣

v
(θ,ℓ,i)
k|k

−d−1

2

. (31b)
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Fig. 2. Initialization example. True underlying extended target (orange area),
measurements (red squares), and initialized estimates (blue ellipses).

TABLE II
MULTIPLE ELLIPSE PARAMETER INITIALIZATION

1: Input: Set of measurements Z = {zi}ni=1. Desired number of initial
hypotheses Np. Initial kinematics c0 and initial covariance P0. Initial
mean e and variance v for measurement rates.

2: zc = 1
n

∑n
i=1 zi, rz = 1

2
maxi ‖zi − zc‖2, Σ0 =

(

rz
4

)2
Id, ℓ = 0.

3: for p = 1, . . . , Np do

4: for m = 1, . . . ,Mk do

5: Set ℓ = ℓ+ 1
6: γ: α

(ℓ,i)
0 = e2

v
, β

(ℓ,i)
0 = e

v
.

7: x: P
(ℓ)
0 = P0, c

(ℓ)
0 = c0,

p
(ℓ,i)
0 = zc + rz





cos
(

2π(i−1)
Ns

+
2π(p−1)
NsNp

)

sin
(

2π(i−1)
Ns

+
2π(p−1)
NsNp

)



 .

8: X: v
(ℓ,i)
0 = 2d+ 5, V

(ℓ,i)
0 = Σ0

(

v
(ℓ,i)
0 − 2d− 2

)

.

9: end for

10: end for

11: Output: p (ξ0) =
∑J0

ℓ=1 w
(ℓ)
0 GGIW

(

ξ0 ; ζ
(ℓ)
0

)

where w
(ℓ)
0 = 1

J0
.

5) Predicted observation pdfs:

p(ℓ)
(

Zk|θ,Z
k−1

)

=

Ns
∏

i=1

L
(θ,ℓ,i)
k (32a)

p
(

Zk|Z
k−1

)

=
1

|Θ̄|

∑

θ∈Θ̄

Jk|k−1
∑

ℓ=1

w
(ℓ)
k|k−1

Ns
∏

i=1

L
(θ,ℓ,i)
k . (32b)

III. IMPLEMENTATION ISSUES

A. Estimate initialization

When a new target appears the parameters ζ(ℓ) of the

estimate must be initialized. Table II gives a simple algorithm

where this is performed using the first set of measurements.

The algorithm initializes Np hypotheses in each motion mode.

A simple initialization example is given in Figure 2. In

this example there is a single motion mode, and Np = 4
hypotheses are generated using only 8 measurements.

B. Generation of association events

For nz,k measurements and Ns subobjects there are

(Ns)
nz,k possible measurement-to-subobject association

events. Due to the quickly increasing size of the full set of

association events approximations are necessary to achieve

tractable computational complexity.

In this paper a subset Θ̄ ⊆ Θ of association events is

computed using a method that is based on the Expectation

Maximization algorithm [4] for Gaussian Mixtures (EM-GM),

see e.g. [3, Chapter 9]. First EM-GM is used to partition

the current set of measurements into Nc clusters, where

Nc ∈ [1, 2, . . . , Ns]. Because EM-GM may have multiple

stationary points, for each Nc the algorithm is given several

different initializations. Note that care is taken to ensure that

the set of partitions returned by EM-GM only contains unique

partitions.

The next step is to use the clusters to obtain measurement-

to-subobject associations. Given a partition of the mea-

surement set with Nc clusters, and an estimate with Ns

subobjects, there are Ns!/(Ns −Nc)! possible cluster-to-

subobject associations. A cluster-to-subobject association de-

fines a measurement-to-subobject association event θ because

each measurement is associated to a cluster, which in turn

is associated to a subobject. Let C(Nc) denote the number

of unique partitions with Nc clusters obtained using EM-GM.

Then the number of measurement-to-subobject association

events that has to be considered is

∣

∣Θ̄
∣

∣ =

Ns
∑

Nc=1

C(Nc)
Ns!

(Ns −Nc)!
. (33)

Empirically we have found that this number typically is several

orders of magnitude smaller than (Ns)
nz,k .

C. Mixture reduction

With Jk|k components, Mk motion models and |Θ̄| associa-

tion events there are Jk+1|k+1 = |Θ̄|MkJk|k components after

one iteration of prediction and correction. Mixture reduction

is used in each iteration after the correction step to keep the

number of components at a tractable level. Hypotheses with

weights lower than a threshold τ are pruned and the weights

are re-normalized. Merging is then performed on the mixture,

where we have used a combination of the gamma mixture

merging from [12] and the Gaussian inverse Wishart merging

from [13]. Note that merging is only performed within the

same motion modes, and not across the motion modes.

IV. SIMULATION RESULTS

A. Target extraction and performance evaluation

To extract a target estimate from a mixture (4), additional

merging is first performed, this time across the motion modes.

Expected values of the measurement rates, positions and extent

matrices are then computed w.r.t. the component with the

highest weight w
(ℓ)
k|k. Both the predicted estimate ξ̂k|k−1 and

the filtered estimate ξ̂k|k are compared to the true target state

ξk. The following error metrics are used for the measurement

rates, subobject positions, and random matrices,

dγ
k|k =

Ns
∑

i=1

∣

∣

∣γ
(i)
k − γ̂

(π(i))
k|k

∣

∣

∣ , γ̂
(i)
k|k = E

[

γ
(i)
k

∣

∣

∣Z
k
]

(34a)

dp
k|k =

Ns
∑

i=1

∥

∥

∥p
(i)
k − p̂

(π(i))
k|k

∥

∥

∥

2
, p̂

(i)
k|k = E

[

p
(i)
k

∣

∣

∣Z
k
]

(34b)

dXk|k =

Ns
∑

i=1

∥

∥

∥X
(i)
k − X̂

(π(i))
k|k

∥

∥

∥

F
, X̂

(i)
k|k = E

[

X
(i)
k

∣

∣

∣Z
k
]

(34c)
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Fig. 3. True target trajectory, initial position is origin. Left: x, y-position. Middle: velocity. Right: turn rate.

A subobject-to-subobject association π(i) is obtained by min-

imizing dp
k|k. Because γ

(i)
k , p

(i)
k and X

(i)
k all have different

units we refrain from computing an overall metric for the

extended target state ξk.

B. True tracks and setup

The target trajectory that was simulated is shown in Fig. 3;

true position (left), speed (middle) and turn rate (right).

Two different d = 2 dimensional extended target shapes

were simulated. They consist of three and two subobjects,

respectively. The shape of the targets are consistent with the

examples given in Fig. 1, i.e. the shape resembles that of

an airplane and of the letter V, respectively. For the plane-

like target, for the subobject that corresponds to the fuselage

the measurement rate was 2γ0, and the extent matrix was

X = diag
(

[102 , 22]
)

. For the subobjects that correspond

to the wings the measurement rates were γ0, and the extent

matrices were X = diag
(

[52 , 12]
)

. For the V-shaped target,

the subobjects both had measurement rates γ0 and extent

matrices X = diag
(

[202 , 12]
)

. The scenarios were simulated

for different values of γ0: 2, 5 and 20.

Two motion models were implemented, one with small

process noise corresponding to non-maneuver, and one with

larger process noise corresponding to maneuver. The transition

probabilities were set to 95% probability to stay in the same

mode, and 5% probability for mode switch.

The filter parameters that were used in the implementation

are listed in Table III.

TABLE III
PARAMETERS FOR PROPOSED METHOD

Parameter Value

Sample time T 1
Number of initial hypotheses Np 2(Ns − 1)
Initial kinematics c0 03×1

Initial covariance P0 102Inx

Measurement rate initial mean e 15
Measurement rate initial variance v 10

Measurement rate prediction factor η
(m)
k

1.05, ∀m
Exponential decay α(m) 0 and 4

Acceleration noise v
(m)
xy 2, ∀m

Prediction degrees of freedom n
(m)
k+1 100, ∀m

Pruning threshold τ 0.01

The proposed model, called MRMUK, is compared to a

random matrix model that models each subobject individually

and independently, i.e. individual kinematics instead of unified

kinematics and the correclation between the subobjects’ posi-

tions is not estimated. This model is denoted M2. Estimation

of multiple independent elliptic objects can be found in [11],

[19], [21], [24]–[26].

C. Results

The plane-shaped and the V-shaped targets were simulated

for γ0 = 2, γ0 = 5, and γ0 = 20. For each value of the

measurement rate γ0 the scenarios were simulated 103 times.

For the plane-shaped target (three subobjects) the filter errors

dk|k and prediction errors dk|k−1 are shown in Fig. 4, for

the V-shaped target (two subobjects) the results are shown in

Fig. 5. Example filter and prediction outputs for the plane-

shaped target for γ0 = 5 are shown in Fig. 6. From the results

the following observations can be made:

• Both the prediction errors and the filter errors are smaller

for MRMUK than M2 for all γ0.

• The biggest difference is for the subobject position er-

rors, especially during maneuvers. Note that, even if

the estimated random matrices have the correct size and

orientation, the subobject positions are more important

for the overall extended target extent estimate. The larger

the subobject position errors are, the more distorted the

overall shape becomes, which can be seen in Fig. 6.

The lower errors for MRMUK, especially the lower position

errors, are a direct effect of a) using a single state vector

for the subobject positions and the kinematics including a full

covariance matrix; and b) having unified kinematics for the

subobject positions.

D. Computational complexity

The code used in this work was implemented in MATLAB

and run on a 2.83GHz Intel Core2 Quad CPU with 3.48GB

of RAM running Windows. Note that the code has not been

optimized for speed.

In each time step approximately 15 to 25 different partitions

of the set of measurements were computed. The average

number of measurement-to-subobject association events are

TABLE IV
NUMBER OF ASSOCIATION EVENTS, MEAN ± STANDARD DEVIATION

γ0
∣

∣Θ̄
∣

∣ (Ns)
E[nz,k]

2 114± 29 6.6× 103

5 128± 24 3.5× 109

20 130± 23 1.5× 1038
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Fig. 4. Estimation errors for plane-shaped target. MRMUK in blue, model M2 in orange. x-labels F and P denote filter errors dk|k and prediction errors
dk|k−1. On each box, central mark is median, edges of box are 25th and 75th percentiles, whiskers extend to most extreme datapoints the algorithm considers
to be not outliers.
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Fig. 5. Estimation errors for V-shaped target. MRMUK in blue, model M2 in orange. x-labels F and P denote filter errors dk|k and prediction errors dk|k−1.
On each box, central mark is median, edges of box are 25th and 75th percentiles, whiskers extend to most extreme datapoints the algorithm considers to be
not outliers.

given in Table IV. A comparison to the number of association

events if there are E[nz,k] measurements shows that the set of

association events is reduced by several orders of magnitude.

It is noteworthy that for γ0 = 20 the reduction in number of

association events is by far greatest, yet the estimation errors

are smaller for γ0 = 20 than for γ0 = 2 and γ0 = 5.

The number of mixture components increase in each time

step. However, in the mixture reduction step many components

can be pruned, and the remaining components can be merged

such that typically only 2 to 6 components remain.

The average cycle times are given in Table V. We see that

the times for prediction and reduction are independent of γ0.

The time to compute clusters for data association increases

TABLE V
CYCLE TIMES [SECONDS], MEAN ± STANDARD DEVIATION

γ0 Prediction Clusters Correction Reduction Total

2 0.4± 0.2 0.7± 0.1 0.6± 0.4 0.02± 0.02 1.7± 0.6
5 0.3± 0.1 0.9± 0.1 0.5± 0.3 0.01± 0.02 1.8± 0.4
20 0.2± 0.1 1.2± 0.1 0.3± 0.2 0.01± 0.02 1.7± 0.3

when γ0 increases, because with more measurements it takes

more time to cluster them. The correction time decreases when

γ0 increases, because with more measurements the scenario is

less ambiguous and the probability mixture typically has fewer

components. Note that these two increases/decreases in time

offset each other such that the average total cycle time is about

1.7 seconds for all values of γ0 that were tested.

V. CONCLUSIONS AND FUTURE WORK

The paper has presented an extended target model in which

the target extent is modeled using a collection of elliptical sub-

objects. The simulation results show that MRMUK outperforms

work that does not model the unified kinematics and position

correlations.

MRMUK can be reduced to the cases where either the

measurement rates γ
(i)
k , the extent matrices X

(i)
k , or both,

are known. The simulation study considered extended targets,

however, the model is applicable also to group targets. In case

the targets in the group are moving relative to each other, in

addition to the unified group movement, individual kinematics

can be estimated along with the unified kinematics.
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model M2 (dashed orange line) and proposed method (solid blue line).
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